Algorithmic Probability, Heuristic Programming and AGI

Ray J. Solomonoff
Visiting Professor, Computer Learning Research Center
Royal Holloway, University of London

IDSIA, Galleria 2, CH-6928 Manno—Lugano, Switzerland

rjsolo@ieee.org

Introduction

This paper is about Algorithmic Probability (ALP) and
Heuristic Programming and how they can be combined
to achieve AGI. It is an update of a 2003 report de-
scribing a system of this kind (Sol03). We first describe
ALP, giving the most common implementation of it,
then the features of ALP relevant to its application to
AGIL

They are: Completeness, Incomputability, Subjectiv-
ity and Diversity. We then show how these features en-
able us to create a very general, very intelligent prob-
lem solving machine. For this we will devise “Training
Sequences”— sequences of problems designed to put
problem-solving information into the machine. We de-
scribe a few kinds of training sequences.

The problems are solved by a “generate and test” al-
gorithm, in which the candidate solutions are selected
through a “Guiding Probability Distribution”. The use
of Levin’s search procedure enables us to efficiently con-
sider the full class of partial recursive functions as possi-
ble solutions to our problems. The guiding probability
distribution is updated after each problem is solved, so
that the next problem can profit from things learned in
the previously solved problems.

We describe a few updating techniques. Improve-
ments in updating based on heuristic programming is
one of the principal directions of current research. De-
signing training sequences is another important direc-
tion.

For some of the simpler updating algorithms, it is
easy to “merge” the guiding probabilities of machines
that have been educated using different training se-
quences — resulting in a machine that is more intel-
ligent than any of the component machines .

What is Algorithmic Probability?

ALP is a technique for the extrapolation of a sequence
of binary symbols — all induction problems can be put
into this form. We first assign a probability to any fi-
nite binary sequence. We can then use Bayes’ theorem
to compute the probability of any particular continua-
tion sequence. The big problem is: how do we assign
these probabilities to strings? In one of the commonest
implementations of ALP, we have a Universal Turing

http://world.std.com/ "rjs/pubs.html

Machine with three tapes: a unidirectional input tape,
a unidirectional output tape, and a bidirectional work
tape. If we feed it an input tape with 0’s and 1’s on it,
the machine may print some 0’s and 1’s on the output
— It could print nothing at all or print a finite string
and stop or it could print an infinite output string, or it
could go into an infinite computing loop with no print-
ing at all.

Suppose we want to find the ALP of finite string x.
We feed random bits into the machine. There is a cer-
tain probability that the output will be a string that
starts out with the string x. That is the ALP of string
T.
To compute the ALP of string z:

Pu(z) = Z 9= 18i(z)]
i=0

Here Pps(x) is the ALP (also called Universal Prob-
ability) of string = with respect to machine, M.

There are many finite string inputs to M that will
give an output that begins with z. We call such strings
“codes for z”7. Most of these codes are redundant in
the sense that if one removes its most recent bit the
resultant string will still be a “code for 7. A “minimal
code for z” is one that is not redundant. If one removes
its last bit, the result will no longer be a‘“code for z”.
Say |S;(z)| is the length in bits of the 4" “Minimal code
for z”.

2-15:(®)1 {5 the probability that the random input will
begin with the“ ¢** minimal code for 2”.

Pys(x) is then the sum of the probabilities of all the
ways that a string beginning with x, could be generated.

This definition has some interesting properties:

First, it assigns high probabilities to strings with
short descriptions — This is in the spirit of Ockham’s
razor. It is the converse of Huffman coding that assigns
short codes to high probability symbols.

Second, its value is somewhat independent of what
universal machine is used, because codes for one uni-
versal machine can always be obtained from another
universal machine by the addition of a finite sequence
of translation instructions.

A less apparent but clearly desirable property —
Pys(z) is complete. This means that if there is any

describable regularity in a batch of data, Py; will find
it, using a relatively small amount of the data. At this
time, it is the only induction method known to be com-
plete (Sol78).

More exactly: Suppose p(z) is a probability distribu-
tion on finite binary strings. For each x = z1, 22 - - - z;,
1 gives a probability that the next bit, z;1 will be 1:
(i1 = Uz, 22 7;)

From Pj; we can obtain a similar function P(z;11 =
lay, @ - - ;).

Suppose we use p to generate a sequence, z, Monte
Carlo-wise. u will assign a probability to the i 4+ 1**
bit based on all previous bits. Similarly, P will assign
a probability to the i + 1" bit of z. If Py, is a very
good predictor, the probability values obtained from g
and from Pj; will be very close, on the average, for long
sequences. What I proved was:

Eu) (@i =1z, 22 25)

i

Il
-

K2

1
—P(xi_H = l\xl,xg . xl))Q S 5]4}1112

The expected value of the sum of the squares of
the differences between the probabilities is bounded by
about .35k. k is the minimum number of bits that M,
the reference machine, needs to describe p. If the func-
tion p is describable by functions that are close to M’s
primitive instruction set, then k will be small and the
error will be small. — But whether large or small, the
squared error in probability must converge faster than
L (because - 1 diverges).

Later research has shown this result to be very robust
— we can use a large, (non-binary) alphabet and/or
use error functions that are different from total square
difference (Hut02). The probability obtained can be
normalized or unnormalized (semi-measure)(Gac97).

The function u to be “discovered” can be any describ-
able function — primitive recursive, total recursive, or
partial recursive. When ALP uses an unnormalized
semi-measure, it can discover incomputable functions
as well.

The desirable aspects of ALP are quite clear. We
know of no other model of induction that is nearly as
good

An apparent difficulty — Py (z) is incomputable:
The equation defining Py (x) tells us to find all strings
that are “minimal codes for x.” Because of the Halting
Problem, it is impossible to tell whether certain strings
are codes for x or not. While it is easy to make approx-
imations to Pys(x), the fact that it is incomputable has
given rise to the common misconception that ALP is lit-
tle more than an interesting theoretical model with no
direct practical application. We will show that In Fact
incomputability is a desirable feature and imposes no
serious restrictions on its application to the practical
problems of AGI.

The usual question is — “What good is it if you can’t
compute it?” The answer is that for practical predic-
tion we don’t have to compute ALP ezactly. Approxi-
mations to it are quite usable and the closer an approx-
imation is to ALP, the more likely it is to share ALP’s
desirable qualities.

Perhaps the simplest kind of approximation to an in-
computable number involves making rational approxi-
mations to v/2. We know that there is no rational num-
ber whose square is 2, but we can get arbitrarily close
approximations. We can also compute an upper bound
on the error of our approximation and for most meth-
ods of successive approximation we are assured that the
errors approach zero. In the case of ALP, though we
are assured that the approximations will approach ALP
arbitrarily closely, the incomputability implies that we
cannot ever compute useful upper bounds on approxi-
mation error — but for few if any practical applications
do we need this information.

The approximation problem for the universal distri-
bution is very similar to that of approximating a so-
lution to the Traveling Salesman Problem, when the
number of cities is too large to enable an exact solu-
tion. When we make trial paths, we always know the
total length of each path — so we know whether one
trial is better than another. In approximations for the
universal distribution, we also always know when one
approximation is better than another — and we know
how much better. In some cases, we can combine trials
to obtain a trial that is better than either of the compo-
nent trials. In both TSP and ALP approximation, we
never know how far we are from the theoretically best,
yet in both cases we do not hesitate to use approximate
solutions to our problems.

The incomputability of ALP is closely associated with
its completeness. Any complete induction system can-
not be computable. Conversely, any computable induc-
tion system cannot be complete. For any computable
induction system, it is possible to construct a space of
data sequences for which that system gives extremely
poor probability values. The sum of the squared errors
diverges linearly in the sequence length.

Appendix B gives a simple construction of this kind.

We note that the incomputability of ALP makes such
a construction impossible and its probability error al-
ways converges to zero for any finitely describable se-
quence.

To explain our earlier remark on incomputability as
a very desirable feature: Incomputability is the only
way we can achieve completeness. In ALP this incom-
putability imposes no penalty on its practical applica-
tion. It is a true “Win, Win” situation!

Another item of importance: For most applications
an estimate of future prediction error is needed. Cross
Validation or one of its many variants is usually pos-
sible. In this aspect of the prediction problem ALP
is certainly no worse than any other method. On the
other hand, ALP gives a good theoretical framework
that enables us to make better estimates.

Subjectivity

Occasionally in making extrapolations of a batch of
data, there is enough known about the data so that it
is clear that a certain prediction technique is optimal.
However, this is often not the case and the investigator
must make a (subjective) choice of inductive techniques.
For me, the choice is clear: I choose ALP because it is
the only complete induction method I know of. How-
ever ALP has another subjective aspect as well: we
have to choose M, the reference machine or language.
As long as M is universal, the system will be complete.
This choice of M enables us to insert into the system
any a priori information we may have about the data
to be predicted and still retain completeness.

The choice of the M can be used very effectively for
incremental learning: Suppose we have 100 induction
problems: Xl, XQ, cee XlOO-

The best solution would involve getting the machine
to find a short code for the entire batch of 100 problems.
For a large corpus this can be a lengthy task. A shorter,
approximate way: using the machine M as reference,
we find a prediction code for X;. In view of this code,
we modify M to become M’ in such a way that if Py,
makes a prediction for Xs, it will be the same as if we
used Py for both X; and X5. M’ becomes a complete
summary of M s increase in knowledge after solving X .
We can consider the M to M’ transformation as an
updating of the M to M’ It is possible to show that such
an M can be found ezxactly, but the exact construction
is very time consuming (reference). Approximations to
M’ can be readily found. After M’ solves X, M’ can
be updated to M"” and have it solve X3, and so on to
X100. We will discuss the update process later in more
detail, for a somewhat different kind of problem.

To understand the role of subjectivity in the life of a
human or an intelligent machine, let us consider the hu-
man infant. It is born with certain capabilities that as-
sume certain a priori characteristics of its environment—
to—be. It expects to breathe air, its immune system is
designed for certain kinds of challenges, it is usually able
to learn to walk and converse in whatever human lan-
guage it finds in its early environment. As it matures,
its a priori information is modified and augmented by
its experience.

The inductive system we are working on is of this
sort. Each time it solves a problem or is unsuccessful
in solving a problem, it updates the part of its a priori
information that is relevant to problem solving tech-
niques. In a manner very similar to that of a maturing
human being, its a priori information grows as the life
experience of the system grows.

From the foregoing, it is clear that the subjectivity
of algorithmic probability is a necessary feature that
enables an intelligent system to incorporate experience
of the past into techniques for solving problems of the
future.

Diversity

In Section 1 we described ALP based on a universal Tur-
ing machine with random input. An equivalent model
considers all prediction methods, and makes a predic-
tion based on the weighted sum of all of these predic-
tors. The weight of each predictor is the product of
two factors: the first is the a priori probability of each
predictor. — It is the probability that this predictor
would be described by a universal Turing machine with
random input. If the predictor is described by a small
number of bits, it will be given high a priori probabil-
ity. The second factor is the probability assigned by the
predictor to the data of the past that is being used for
prediction. We may regard each prediction method as a
kind of model or explanation of the data. Many people
would use only the best model or explanation and throw
away the rest. Minimum Description Length (Ris78),
and Minimum Message Length (WB68) are two com-
monly used approximations to ALP that use only the
best model of this sort. When one model is much bet-
ter than any of the others, then Minimum Description
Length and Minimum Message Length and ALP give
about the same predictions. If many of the top models
have about the same weight, then ALP gives better re-
sults — the other methods give too much confidence in
the predictions of the very best model.

However, that’s not the main advantage of ALP’s
use of a diversity of explanations. If we are making
a single kind of prediction, then discarding the non-
optimum models usually has a small penalty associated
with it. However if we are working on a sequence of
prediction problems, we will often find that the model
that worked best in the past is inadequate for the new
problems. When this occurs in science we have to revise
our old theories. A good scientist will remember many
theories that worked in the past but were discarded —
either because they didn’t agree with the new data, or
because they were a priori “unlikely”. New theories are
characteristically devised by using failed models of the
past, taking them apart, and using the parts to create
new candidate theories. By having a large diverse set
of (non-optimum) models on hand to create new trial
models, ALP is in the best possible position to create
new, effective models for prediction.

In the biological world, when a species loses its ge-
netic diversity it can quickly succumb to small environ-
mental changes — it soon becomes extinct. Lack of
diversity in potato varieties in Ireland led to massive
starvation.

When ALP is used in Genetic Programming, it’s rich
diversity of models can be expected to lead to very
good, very fast solutions with little likelihood of “pre-
mature convergence”.

Putting It All Together

I have described ALP and some of its properties,and to
some extent, how it could be used in an a AGI system.
This section gives more details on how it works. We

start out with problems that are input/output pairs
(I/O pairs). Given a sequence of them and a new
input we want the machine to get a probability den-
sity distribution on its possible outputs. We allow I
and O to be strings or numbers or mixtures of strings
and numbers. Very many practical problems fall into
this class — e.g. classification problems, identification
problems, symbolic and numerical regression, grammar
discovery---. To solve the problems, we create trial
functions that map inputs into possible outputs. We
try to find several successful functions of this kind for
each of the problems. It is usually desirable, though
not at all necessary, to find a common function for all
of the problems.

The trial functions are generated by a universal func-
tion language such as Lisp or Forth. We want a lan-
guage that can be defined by a context free grammar,
which we use to generate trial functions. The functions
in such languages are represented by trees, which dis-
play the choices made in generating the trial functions.
Each node in the tree represents a choice of a terminal
or non-terminal symbol. Initially if there are k possible
choices at a node, each choice is given probability 1/k.
These probabilities which we call “The Guiding Prob-
ability Distribution” (GPD) will evolve considerably, as
the training sequence progresses.

In a simplified version of the technique we use Levin’s
Search Procedure (Lsearch)® to find the single most
likely solution to each of n problems. For each problem,
I;/0O;, we have a function, F; represented in say, Re-
versed Polish Notation (RPN), such that F;(I;) = O;.
Using a suitable prediction or compression algorithm
(such as Prediction by Partial Matching — PPM) we
compress the set of function descriptions, [F;]. This
compressed version of the set of solutions can be pre-
dictive and enables us to get a probability distribution
for the next sequence of symbols — giving a probabil-
ity distribution over the next function, F,1;. Levin
Search gives us Fj, ;1 candidates of highest probability
first, so when we are given the next I,,11/0,1 pair,
we can select the F), 1 of largest probability such that
Fn+1(In+1) = On+1~

We then update the system by compressing the code
for Fj, 41 into the previous sequence of solution func-
tions and use this compressed code to find a solution
to the next I/O in the training sequence. This contin-
ues until we have found solution functions for all of the
problems in the sequence.

In a more realistic version of the system, using the di-
versity of ALP, we try to find several functions for each
I/0O pair in a corpus of say, 10 pairs. Suppose we have
obtained 2 functions for each problem in the set. This
amounts to 2! = 1024 different “codes” for the entire
corpus. We then compress each of these codes and use
the shortest say, 30 of them for prediction on the new
input,/19; The probability distribution on the output,
0101 will be the weighted mean of the predictions of the

'See Appendix A

30 codes, weights being proportional to 2code length,
We also use these 30 codes to assign probabilities to
grammar elements in constructing trial functions in fu-
ture problems.

We mentioned earlier, the use of heuristic program-
ming in designing this system. In both training se-
quence design and in the design and updating of the
GPD, the techniques of heuristic programming are of
much import.

Consider the problem of learning simple recursive
functions. We are given a sequence of n, F(n) pairs
containing some consecutive values of n. We want to
discover the function, F(). A heuristic programmer
would try to discover how he himself would solve such
a problem—then write a program to simulate himself.

For machine learning, we want to find a way for
the machine to discover the trick used by the heuris-
tic programmer.— Or, failing that, the machine should
discover when to use the technique, or be able to break
it down into subfunctions that are useful for other prob-
lems as well. Our continuing problem is to create train-
ing sequences and GPDs that enable the machine to do
these things.

The Guiding Probability Distribution

The Guiding Probability Distribution (GPD) does two
important things: first it discovers frequently used func-
tions and assigns high probabilities to them. Second,
it discovers for each function, contexts specifying the
condition under which that function should be applied.
Both of these operations are quantified by ALP.

In the previous section we described the GPD—how
it made predictions of symbols in the next trial function
— How the predictions were based on regularities in the
sequence of symbols that represent in the solutions of
earlier problems. Here we will examine the details of
just how the GPD works.

Perhaps the simplest sequential prediction scheme is
Laplace’s rule: The probability of the next symbol be-
ing A, say, is proportional to (the number of times A has
occurred in the past, plus one). There is no dependency
at all on context. This method of guiding probability
evaluation was used in OOPS (Sch02) a system similar
in several ways to the presently described system.

Prediction by Partial Matching (PPM) is a very fast,
relatively simple, probability evaluation scheme that
uses context very effectively. It looks at the string
of symbols preceding the symbol to be predicted and
makes a probability estimate on this basis.

PPM and variations of it have been among the best
compressors in Hutter’s Entwiki challenge—a competi-
tion to discover the best compressor for 10 Bytes of
the wikipedia.

Most of the improvements in PPM involve “con-
text weighting”—they use several independent predic-
tion schemes, each based on context in a different way.
These systems are then merged by giving (localized)
weights each of them.

Merging of this sort can be used on the GPDs of
several learning systems trained with different train-
ing sequences. A weakness of this simple merging is
that the system does mnot create new functions by com-
posing functions discovered by the different prediction
schemes.

— A relevant quote from von Neumann — “For dif-
ficult problems, it is good to have 10 experts in the
same room—but it is far better to have 10 experts in
the same head”.

For really good induction, the GPD needs to recog-
nize useful subfunctions and contexts to control the ap-
plication of these subfunctions. PPM does this to some
extent, but it needs much modification. While it is, in
theory, easy to specify these modifications, it seems to
be difficult to implement them with any speed. Much
work needs to be done in this area.

Suppose Lsearch is generating candidate functions of
I, the current input problem. If z is the part of the
candidate that has been generated thus far, then in gen-
eral, the probability distribution on the symbol to fol-
low 2z, will be some function of I; and x, i.e. G(I;,x).
The form of G will slowly vary as we advance along the
training sequence. For the best possible predictions, the
form of G should be able to be any conceivable partial
recursive function. Few prediction systems allow such
generality.

How does the high compression obtained by PPM
effect prediction systems? Compression ratio is the ra-
tio of uncompressed string length to compressed string
length. Compression ratio translates directly into in-
creasing (geometric) mean probability of symbols and
subsequences of symbols. A compression ratio of two
increases probabilities to their square root. This trans-
lates directly into decreasing search times for solutions
to problems. Using Lsearch, the time to find a particu-
lar solution will be about ¢;/p;, t; being time needed to
generate and test the solution, and p; being the prob-
ability assigned to the solution. If #; = 107° seconds
and p; = 10716 for a particular uncompressed problem,
then it will take about 10'° seconds — about 330 years
to find a solution. A compression factor of two will in-
crease p; to the square root of 1071 — i.e. 1078. So
ti/p; = 10? seconds—about 1.7 minutes — a speed of
up of 108.

What compression ratios can we expect from PPM?
A recent version got a compression ratio of 6.33 for a
71 kbyte LISP file. Unfortunately, much of this ratio
was obtained by compressing long words used for func-
tion names. This kind of compression does not help
find functional solutions. From the compression ratios
of other less efficient compressors, my guess is that the
elimination of this “long word” regularity would still
give a compression ratio of greater than two. — Per-
haps as much as three — enabling the rapid solution of
problems that without compression would take many
years of search time.

It is notable that high compression ratios were ob-
tained for long text files. For us, the moral is that

we will not get full advantage of compression until our
training sequences are long enough.

We have discussed PPM at some length as being a
good initial GPD. A few other prediction methods that
we have examined:

Genetic programming: Very effective. It can discover
recursive prediction functions, but it is very slow. We
have, however found many ways in which it could be
sped up considerably (Sol06).

Echo State Machines (ESM). (JH04) A very deep
neural net — very fast in implementation. Doesn’t do
recursive functions, but we have found a way to move
in that direction.

Support Vector Regression (SVR). (SS09) This is the
application of SVMs to regression. The predictions are
very good, but the algorithms are very slow and do not
support recursion.

In any of the compressors, speed and compression
ratios are both important. In selecting a compressor it
is necessary to consider this trade-off.

Training Sequences

It is clear that the sequence of problems presented to
the system will be an important factor in determining
whether the mature system will be very much more ca-
pable than the infant system. The task of the training
sequence is to teach functions of increasing difficulty
by providing problems solved by these functions in a
learnable progression. The main criterion of excellence
in a training sequence: it enables the system to solve
many problems outside the training sequence itself (out
of sample data). To do this the problems in the se-
quence should be solved using a relatively small num-
ber of powerful functions. Designing training sequences
of this sort is a crucial and challenging problem in the
development of strong intelligence.

The system must also be able to recognize the context
in which each function should be applied. This, however
is a task for the guiding probability distribution.

In most ways, designing a training sequence for an
intelligent machine is very similar to designing one for
a human student. In the early part of the sequence,
however, there is a marked difference between the two.
In the early training sequence for a machine, we know
ezactly how the machine will react to any input prob-
lem. We can calculate a precise upper bound on how
long it will take it to solve early problems. It is just

T/ P (1)

P; is the probability that the machine assigns to the
solution known by the trainer. T; is the time needed to
test that solution. I call this upper bound the “Concep-
tual Jump Size” (CJS). It tells us how hard a problem
is for a particular machine — a measure of how long
we expect that machine will take to solve it. I say “up-
per bound” because the system may discover a better,
faster, solution than that known by the trainer.

This CJS estimate makes it easy to determine if a
problem is feasible for a system at a particular point
in its education. The P; for a particular problem will
vary during the life of the system, and for a properly
constructed training sequence it should increase as the
system matures. This increase in P; can be used as a
rough measure of the machines “rate of learning”.

Eventually in any training sequence for a very in-
telligent machine, the trainer will not be able to un-
derstand the system in enough detail to compute CJS
values. The trainer then treats the machine as a hu-
man student. By noting which problems are easy and
which are difficult for the machine, the trainer infers
which relevant functions the machine has learned and
which it has not learned and devises appropriate train-
ing problems .

Learning to train very intelligent machines should
give useful insights on how to train human students
as well.

There are at least two ways to write training se-
quences: “Bottom Up” and “Top Down”. The Bottom
Up approach starts with some simple problems that
have easy solutions in terms of the primitives of the
reference language. The next problems in the sequence
have solution functions that are simple combinations
of functions the machine has already learned. This in-
crease in complexity of problem solutions continues to
the end of the training sequence.

In Top Down training sequence design, we start with
a difficult problem that we know how to solve.We ex-
press its solution as a function mapping input to out-
put. This function is then decomposed into simpler
functions, and we design problems that are solvable by
such functions. These functions are in turn factored
into simpler functions and again we devise problems
that are solvable by such functions. This breakup of
functions and designing of problems continues until we
reached the primitive functions of the reference lan-
guage. The desired training sequence is the set of prob-
lems designed, but we present them in an order reversed
from that in which they were invented.

The functions themselves form a partially ordered
set. Function Fi is greater than function Fy if Fy is
used to create Fj.

For more details on how to construct training se-
quences of this kind see (S0l89).

So far I've mainly worked on elementary algebra,
starting with learning to evaluate algebraic expressions
and solving simple equations — this can be continued
with more complex equations, symbolic differentiation,
symbolic integration etc. This list can go on to prob-
lems of arbitrary difficulty.

A promising source of training material: learning the
definitions of the various operations in Maple and/or
Mathematica.

Another possible source of training sequence ideas is
“A Synopsis of Elementary Results in Pure and Ap-
plied Mathematics”, a book by G. S. Carr. It was the
principal source of information about mathematics for

Ramanujan—one of the greatest creative geniuses of re-
cent mathematics. His style was one of imaginative
inductive leaps and numerical checking—much in the
manner of how we would like the present system to op-
erate.

After the machine has an understanding of algebra,
we can train it to understand English sentences about
algebra. This would not include “word problems” which
typically require knowledge about the outside world.

It cannot be emphasized too strongly, that the goal
of early training sequence design, is not to solve hard
problems, but to get problem solving information into
the machine. Since Lsearch is easily adapted to parallel
search, there is a tendency to try to solve fairly diffi-
cult problems on inadequately trained machines. The
success of such efforts is more a tribute to progress in
hardware design then to our understanding and exploit-
ing machine learning.

In Conclusion

We have a method for designing training sequences. We
have a method for updating the guiding probability dis-
tribution. We have a method for detecting/measuring
“learning” in the system.

These three techniques are adequate for designing a
true AGI.

If the system does not learn adequately, the fault is
in either the training sequence (the conceptual jumps
needed are too large) — or that the update algorithm
may not be able to recognize important kinds of func-
tions that occur in the training sequence and know un-
der what conditions they should be used — in which
case we must modify the training sequence and/or the
update algorithm. The update algorithm must be de-
signed so that it can readily spot functions used in the
past that are relevant to current problems.

What we have is a recipe for training an intelligence
system, and a few ways to debug our attempts at train-
ing it.The system itself is built on ALP, which is cer-
tainly adequate to the task. Our understanding of much
of our own human learning will probably be inadequate
at first. There will be conceptual leaps in the train-
ing sequences which we don’t know how to break down
into smaller jumps. In such cases it may be neces-
sary to practice a bit of “Brain Surgery” to teach the
machine—direct programming of functions into the ref-
erence language. Usually we will try to avoid such dras-
tic measures by simplification of problems or by giving
auxiliary related problems — by giving “hints”.

We have mentioned the possibility of merging the
guiding probability distributions of different systems
created by independent investigators. It would be well
if there were several research groups working on sys-
tems of the type described, with enough similarity in
the reference languages and update algorithms so that
the guiding probability distributions could, indeed, be
merged.

The system we have described will do fairly general
kinds of prediction. It can be regarded as Phase 1 of a

larger project. Phase 2 (Sol 03 a) — is built on Phase
1 and is designed to solve even more general kinds of
problems. In particular, it is able to work time-limited
optimization problems — for example, “Get as good a
solution as you can to this traveling salesman problem
in 10 minutes”. Most practical problems in science and
engineering are of this kind. This includes the prob-
lem of improving the GPD of Phase 1 — enabling the
system to significantly improve itself.

Appendix A: Levin’s Search Procedure

It would seem that evaluating a very large number
of functions would take an enormous amount of time.
However, by using a search technique similar to one
used by Levin for a somewhat different kind of prob-
lem, it is possible to perform the search for acceptable
functions in something approaching optimum speed. It
may occasionally take a long time to find a very good
solution — but it is likely that no other search tech-
nique with equivalent education and hardware could
have found that solution any faster.

How the procedure works: Suppose we have an input
string, I; and an output string, O;. We also have a
probability distribution p; over all possible functions,
F; and we want to find high probability functions, F},
such that F;([;) = Os.

We could simply apply many random functions to
I, and watch for functions that meet our requirements.
This would take a lot of time. There is,however, a much
more efficient way:

We select a small time limit, T, and we test all func-
tions, F} such that

tj < ij (2)

Here p; is the probability of the function being tested,
and ¢; is the time required to test it. The test itself is to
see if F;(I;) = Oy. If we find no function of this sort, we
double T and go through the same test procedure. We
repeat this routine until we find satisfactory functions.
If F; is one of the successful functions, then the entire
search for it will take time < 2t;/p;.

There is a faster, time shared version of Lsearch that
takes only time < ¢;/p;, but it takes much, much more
memory.

An important feature of Lsearch is that it is able to
deal with trials that do not converge — i.e. for ¢; = oo

Appendix B: Frustrating Computable
Probability Distributions

Given a computable probability function p, I will show
how to generate a deterministic sequence (i.e. proba-
bilities are only 0 and 1)

YA NAVAVARRE

to which p gives probabilities that are extremely bad:
they are always in error by > .5.

Let u(Zpy1 = 1121 -+ Zy,) be u’s estimate that Z, 41
will be 1, in view of Z1--- Z,.

if u(Zy =1/ \) <.5then Z; =1else Z; =0

if w(Zy =1Z,) < .5 then Zo =1 else Z5 =0

if w(Zy = 121,25, Zx—1) < .5 then Z = 1 else
Zk = 0.

In a similar way, we can construct probabilistic se-
quences in which g is in error by > €, where, € can have
any value between 0 and .5.

References

P. Gacs. Theorem 5.2.1. In An Introduction to Kol-
mogorov Complexity and Its Applications, pages 328—
331. Springer-Verlag, N.Y., second edition, 1997. by
Li, M. and Vitanyi, P.

M. Hutter. Optimality of universal bayesian se-
quence prediction for general loss and alphabet.
Technical report, IDSIA, Lugano, Switzerland, 2002.
http://www.idsia.ch/ marcus/ai/.

H. Jaeger and H. Haas. Harnessing nonlinearity: Pre-
dicting chaotic systems and saving energy in wireless
communication. Science, Vol. 304(5667):78-80, April
2004.

J. Rissanen. Modeling by the shortest data descrip-
tion. Automatica, 14:465-471, 1978.

J. Schmidhuber. Optimal ordered problem solver. TR
Idsia-12-02, IDSTA, Lugano, Switzerland, July 2002.
http://www.idsia.ch/~juergen/oops.html.

R.J. Solomonoff. Complexity—based induction sys-
tems: Comparisons and convergence theorems. [EEE
Trans. on Information Theory, 1T-24(4):422-432,
1978.

R.J. Solomonoff. A system for incremental learning
based on algorithmic probability. In Proceedings of
the Sizth Israeli Conference on Artificial Intelligence,
Computer Vision and Pattern Recognition, pages 515—
527, Tel Aviv, Israel, December 1989.

R.J. Solomonoff. Progress in incremental machine
learning. TR Idsia-16-03, IDSIA, 2003. Given at NIPS
Conference, Dec. 14, 2002, Whistler, B.C., Canada.

R.J. Solomonoff. Machine learning - past and future.
Dartmouth, N.H., July 2006. Lecture given in 2006 at
AT@50, The Dartmouth A. I. Conference: The Next
Fifty Years.

N. Sapankevych and R. Sankar. Time series prediction

using support vector machines: A survey. IEEE Com-
putational Intelligence, Vol. 4(2):24-38, May 2009.

C.S Wallace and D.M. Boulton. An information mea-
sure for classification. The Computer Journal, 11:185—
194, 1968.

All of Solomonoff’s papers and reports listed here are
available at http://world.std.com/ rjs/pubs.html

