
Lecture 2: Applications of Algorithmic

Probability

Ray J. Solomonoff

rjsolo@ieee.org http://world.std.com/˜rjs/

1 ALP and “The Wisdom of Crowds”

It is a characteristic of ALP that it averages over all possible models of the
data: There is evidence that this kind of averaging may be a good idea in a
more general setting. “The Wisdom of Crowds” is a recent book by James
Serowiecki that investigates this question. The idea is that if you take a bunch
of very different kinds of people and ask them (independently) for a solution to
a difficult problem, — then a suitable average of their solutions will very often
be better than the best in the set.

He give examples of people guessing the number of beans in a large glass
bottle — or guessing the weight of a large ox — or several more complex, very
difficult problems.

He is concerned with the question of what kinds of problems can be solved
this way as well as the question of when crowds are wise and when they are
stupid. They become very stupid in mobs or in committees in which a single
person is able to strongly influence the opinions in the crowd.

In a wise crowd, the opinions are individualized, the needed information
is shared by the problem solvers, and the individuals have great diversity in
their problem solving techniques. The methods of combining the solutions must
enable each of the opinions to be voiced.

These conditions are very much the sort of thing we do in ALP. Also, when
we approximate ALP we try to preserve this diversity in the subset of models
we use.

Next, I want to discuss several applications of ALP, as well as several other
developments related to machine learning. In the last lecture I will show how
to use these ideas to create a very good learning machine.

2 Coding the Bernoulli Sequence

First, consider a binary Bernoulli sequence of length n. It’s only visible regular-
ity is that zeroes have occurred n0 times and ones have occurred n1 times. One

1



kind of model for this data is that the probability of 0 is p and the probability
of 1 is 1− p. Call this model Mp.

PMp
is the probability assigned to the data by Mp.

PMp = pn0(1− p)n1 (1)

Let us consider all models Mp with 0 ≤ p ≤ 1 We want to sum their proba-
bilities: This gives us

1∫

0

pn0(1− p)n1dp (2)

It is given by

B(n0 + 1, n1 + 1) =
n0!n1!

(n0 + n1 + 1)!
(3)

Here B(·, ·) is the Beta function.
In summing the Mp’s, we can define Mp∆ to have precision ∆ in specifying

p. This means we need −log2∆ bits to describe it and its a priori probability is
1/∆. If ∆ is very small, then when we add all of the ∆pn0(1 − p)n1 ’s together
we get the integral above.

We can get about the same result another way: The function pn0(1 − p)n1

is (if n0 and n1 are large), narrowly peaked at p0 = n0
n0+n1

If we wanted to use
MDL we would use the model with p = p0. The cost of the model itself will
depend on how accurately we have to specify p0. If the “width” of the peaked
distribution is w, then the “probability cost” of model Mp0 will be just 1

w .

It is known that the half width of the distribution is just
√

p(1−p)
n0+n1+1 .1 As a

result the probability assigned to this model is
√

p0(1−p0)
n0+n1+1 · pn0

0 (1− p0)n1 · 2. If
we use Sterling’s approximation for x!, it is not difficult to show that

n0!n1!
(n0 + n1 + 1)!

≈ pn0
0 (1− p0)n1

√
p0(1− p0)
n0 + n1 + 1

·
√

2π (4)

√
2π = 2.25066 which is approximately equal to 2.

The formula for the probability of a binary sequence, n0!n1!
(n0+n1+1)! can be

generalized for an alphabet of k symbols.
A sequence of k different kinds of symbols has a probability of

(k − 1)!
k∏

i=1

ni!

(k − 1 +
k∑

i=1

ni)!
(5)

1This can be obtained by getting the first and second moments of the distribution, using

the fact that
1∫
0

px(1− p)ydp = x!y!
(x+y+1)!

.

2



This formula can be obtained by integration in a k− 1 dimensional space of
the function pn1

1 pn2
2 · · · pnk−1

k−1 (1− p1 − p2 − pk−1)nk .

3 Context Free Grammar Discovery

This is a method of extrapolating an unordered set of finite strings: Given the
set of strings, a1, a2, · · · an, what is the probability that a new string, b, is a
member of the set? We assume that the original set was generated by some sort
of probabilistic device. We want to find a device of this sort that has a high a
priori likelihood (i.e. short description length) and assigns high probability to
the data set. A good model Mi, is one with maximum value of

P (Mi)
n∏

j=1

Mi(aj) (6)

Here P (Mi) is the a priori probability of the model Mi.
Mi(aj) is the probability assigned by Mi to data string, aj .
To understand probabilistic models, we first define non–probabilistic gram-

mars. In the case of context free grammars, this consists of a set of terminal
symbols and a set of symbols called nonterminals, one of which is the initial
starting symbol, S.

A grammar could then be:

S → Aac

S → BaAd

A → BAaS

A → AB

A → a

B → aBA

B → b

The capital letters (including S) are all non-terminal symbols.
The lower case letters are all terminals.
To generate a legal string, we start with the symbol, S, and we perform

either of the two possible substitutions. If we choose BaAd, we would then
have to choose substitutions for the non-terminals B and A.

For B, if we chose aBA we would again have to make choices for B and A.
If we chose a terminal symbol, like b for B, then no more substitutions can be
made.

An example of a string generation sequence:
S, BaAd, aBaaAd, abaaAd,abaaABd,abaaaBd,abaaabd.

3



The string abaaabd is then a legally derived string from this grammar. The
set of all strings legally derivable from a grammar is called the language of the
grammar.

The language of a grammar can contain a finite or infinite number of strings.
If we replace the deterministic substitution rules with probabilistic rules, we

have a probabilistic grammar. A grammar of this sort associates a probability
with every finite string. In the deterministic grammar above, S had two rewrite
choices, A had three, and B had two. If we assign a probability to each choice,
we have a probabilistic grammar.

Suppose S had substitution probability .1 for Aac and .9 for BaAd. Simi-
larly, assigning probabilities .3, .2 and .5 for A’s substitutions and .4, .9 for B’s
substitutions.

S .1 Aac

.9 BaAd

A .3 BAaS

.2 AB

.5 a

B .4 aBa

.9 b

In the derivation of abaaab of the previous example, the substitutions would
have probabilities .9 to get BaAd, .4 to get aBaaAd, .9 to get abaaAd, .2 to get
abaaABd, .5 to get abaaaBd, and .9 to get abaaabd.

The probability of the string abaabd being derived this way is .9× .4× .9×
.2 × .5 × .9 = .02916. Often there are other ways to derive the same string
with this grammar, so we have to add up the probabilities of all of its possible
derivations to get the total probability of a string.

Suppose we are given a set of strings, ab, aabb, aaabbb that were generated
by an unknown grammar. How do we find the grammar?

I wouldn’t answer that question directly, but instead I will tell how to find a
sequence of grammars that fits the data progressively better. The best one we
find may not be the true generator, but will give probabilities to strings close
to those given by the generator.

The example here is that of A. Stolcke’s, PhD thesis, 1994.
We start with an ad hoc grammar that can generate the data, but it overfits

. . . it is too complex:

S → ab

→ aabb

→ aaabbb

4



We then try a series of modifications of the grammar (Chunking and Merging)
that increase the total probability of description and thereby decrease total de-
scription length. Merging consists of replacing two non-terminals by a single
non-terminal. Chunking is the process of defining new non-terminals. We try
it when a string or substring has occurred two or more times in the data. ab
has occurred three times so we define X = ab and rewrite the grammar as

S → X

→ aXb

→ aaXbb

x → ab

axb occurs twice so we define Y = aXb giving

S → X

→ Y

→ aY b

X → ab

Y → aXb

At this point there are no repeated strings or substrings, so we try the op-
eration Merge which coalesces two non–terminals. In the present case merging
S and Y would decrease complexity of the grammar, so we try:

S → X

→ aSb

→ aXb

X → ab

Next, merging S and X gives

S → aSb

→ ab

which is an adequate grammar.
At each step there are usually several possible chunk or merge candidates.

We chose the candidates that give minimum description length to the resultant
grammar.

How do we calculate the length of description of a grammar and its descrip-
tion of the data set?

Consider the grammar

5



S → X

→ Y

→ aY b

X → ab

Y → aXb

There are two kinds of terminal symbols and three kinds of non-terminals.
If we know the number of terminals and non-terminals, we need describe

only the right hand side of the substitutions to define the grammar. The names
of the non-terminals (other than the first one, S) are not relevant.

We can describe the right hand side by the string Xs1Y s1aY bs1s2abs1s2aXbs1s2.
s1 and s2 are punctuation symbols. s1 marks the end of a string. s2 marks the
end of a sequence of strings that belong to the same non-terminal. The string
to be encoded has 7 kinds of symbols. The number of times each occurs:

X, 2; Y , 2; S, 0; a, 3; b, 3; s1, 5; s2, 3.
We can then use the formula

(k − 1)!
k∏

i=1

ni!

(k − 1 +
k∑

i=1

ni)!
(7)

to compute the probability of the grammar: k = 7, since there are 7 symbols
and n1 = 2, n2 = 2, n3 = 0, n4 = 3, etc. We also have to include the probability
of 2, the number of kinds of terminals, and of 3, the number of kinds of non-
terminals.

There is some disagreement in the machine learning community about how
best to assign probability to integers, n. A common form is

P (N) = A2−log∗2n (8)

where log∗2n = log2n + log2log2n + log2log2log2n · · · taking as many positive
terms as there are, and A is a normalization constant.

There seems to be no good reason to choose 2 as the base for logs, and using
different bases gives much different results. If we use natural logs, the sum
diverges.

This particular form of P (n) was devised by Rissanen. It is an attempt
to approximate the shortest description of the integer n, e.g. the Kolmogorov
complexity of n.

Its first moment is infinite, which means it is very biased toward large num-
bers. If we have reason to believe (from previous experience) that n will not
be very large, but will be about λ, then a reasonable form of P (n) might be
P (n) = Aαn where α and A are arranged so that the expected value of n is λ.

6



The forgoing enables us to evaluate P (Mi) of equation 1. The
n∏

j=1

Mi(aj)

part is evaluated by considering the choices made when the grammar produces
the data corpus. For each non-terminal, we will have a sequence of decisions
whose probabilities can be evaluated by an expression like equation 7. Since
there are three non-terminals, we need the product of three such expression.

The process used by Stolcke in his thesis was to make various trials of chunk-
ing or merging in attempts to successively get a shorter description length – or
to increase equation 6 — Essentially a very greedy method. He has been actively
working on Context Free Grammar discovery since then, and has probably dis-
covered many improvements. There are many more recent papers at his website.

Most, if not all of CFG discovery has been oriented toward finding a single
best grammar. For applications in A.I. and genetic programming it is useful to
have large set of not necessarily best grammars — giving much needed diversity.
One way to implement this:

At each stage of modification of a grammar, there are usually several different
operations that can reduce description length. We could pursue such paths
in parallel . . . perhaps retaining the best 10 or best 100 grammars thus far.
Branches taken early in the search could lead to very divergent paths and much
needed diversity.

This approach helps avoid local optima in grammars and premature conver-
gence when applied to Genetic Programming.

——————————————————————-

Papers relevant to Lecture II: (All are available on the net)

1. R. Solomonoff, “A Formal Theory of Inductive Inference, Part II” June
1964. Discusses fitting of context free grammars to data. Most of the discussion
is correct, but Sections 4.2.4 and 4.3.4 are questionable and equations 49 and
50 are incorrect.

2. Andreas Stolcke, “On Learning Context Free Grammars”, PhD Thesis,
1994. Much detailed discussion.

3. A. Stolcke, S. Omohundro, “Inducing Probabilistic Grammars by Bayesian
Model Merging”, 1994. This is largely a summary of (2).

4. Y. Shan, R.I. McKay, R. Baxter et al. “Grammar Model-Based Program
Evolution”, Dec. 2003. A recent review of work in this area, and what looks
like a very good learning system. Discusses mechanics of fitting Grammar to
Data, and how to use Grammars to guide Search Problems.

5. Sepp Hochreiter, Juergen Schmidhuber, “Flat Minimum Search Finds
Simple Nets”, Dec. 1994. Application of MDL to selection of neural nets for
good prediction capability.

7


