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Introduction

The Subject of this Series of Lectures is: Strong A.I. — what it is, how we may
achieve it — apparent obstacles to achieving it — and how to overcome these
obstacles.

First: What is “strong A.I.”? My own personal interest is in a machine that
is at least as good as a human in solving problems in Math, Science, and most
aspects of Engineering. Eventually, through its ability to improve itself, and
through the action of Moore’s law, it will be able to greatly transcend humans.

The Critical capabilities:
1. Ability to solve most problems as well as humans do.
2. That it is embodied in a technology to which Moore’s law applies — i.e.

that the amount of computing we get for a dollar, doubles every year or so.
3. It has the ability to work effectively on the problem of self improvement

— both in software and in hardware — so the “every year or two” in Moore’s
law becomes progressively shorter and shorter. At a certain point in the life
of the machine we begin to get very rapid improvement and a very intelligent
machine.

The result is an extremely rapid increase in computation speed in a relatively
short time — accompanied by a corresponding dramatic increase in problem
solving capability.

How do we get Strong A.I.? If you give a good scientist a problem to solve,
he is able to bring to bear on its solution, everything that he has ever learned
in a very effective way. This is probably an optimum way of learning.

We now have an extremely good understanding of learning in a large area
of human endeavor... probabilistic prediction. We know how to bring all past
experience into play to make near optimum predictions in the sciences. 1 We
are able to apply this technique to the most difficult aspects of the sciences...
inventing new theories and revision of old theories.

I will show how these prediction techniques can be extended to solve more
general kinds of scientific problems.

1“Near optimum prediction” is not always very useful prediction: Best prediction of the
toss of a coin may remain near 50–50: for chaotic processes like long term weather prediction,
the best prediction can be of very low precision.
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There is a natural question at this point. The scientific community has been
working on A.I. for at least 50 years with no apparent great breakthroughs: why
do I feel we are now so much closer to a solution to the problem.

In the past, there have been several obstacles to achieving strong A.I. Among
the most prominent:

1) Inadequate understanding of learning/prediction: (I will regard these two
as identical for the purposes of our discussion).

2) In induction models: use of an inadequate set of functions.
3) In search for models: Inadequate search techniques, inadequate diversity

in search space.
Still, many years after the solutions to these problems were available to the

A.I. Community, strong A.I. has not appeared! — Why is this?
Associated with the good models for induction is the need to search over

a large space of functions; these functions are candidates for good induction
models. We have a very good criterion for the merit of a particular induction
function, but we still have to find the good functions.

To solve this problem, several tools have for some time, been available to
the A.I. community:

1) Levin’s search procedure: (I’m using Levin Search in a more general
way than originally proposed) This enables us to avoid spending excessive time
testing functions (partial recursive functions) that don’t converge.

2) PPM: Prediction by partial Matching. This is a very fast, surprisingly
precise method for approximate induction. It is possible to improve this method
considerably — but at the moment there seems to be a very large speed penalty.

3) Discovery of Grammars of Stochastic Context Free Grammars. A rel-
atively recent solution to an old problem that enables us to get approximate
induction over a significantly larger, more relevant, function space than ever
before.

4) Genetic programming and its recent enhancements. A potentially ade-
quate technique for very good induction that has in the past, been plagued by
inadequacies that we can now address with some degree of confidence.

I’ve mentioned some of the past inadequacies of A.I. research that we pre-
sumably now know how to deal with. I’ve listed a few techniques that I expect
will be useful in attaining the goal. how do we put this all together to get
“Strong A.I.”?

First we note that intelligence is not obtained in a vacuum: Just as Newton
“stood on the shoulders of Giants”, our artificial intelligence will “stand on the
shoulders” of everyone who has contributed to our modern scientific enterprize.

In what we will call “Phase I”, this is accomplished by using “Training Se-
quences” of problems that embody the intelligence of the Scientific Community.
The Training Sequence contains all of the information we ever put into the
machine. We never “tell” the machine anything. It learns only by discovering
solutions to problems and by discovering regularities in those solution.

We start out with very simple problems: the machine tries various possible
solutions in order of complexity — using Levin’s search technique to decide how
much time to spend on a trial. After it has solved a fair number of simple
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problems, it looks at regularities in the solutions to these problems, to guide
future searches. To start off, it will use PPM, PSG discovery and possibly a type
of Genetic programming to search for “regularities”. Using these regularities, it
is able to solve harder problems — which it uses to find more “regularities” to
solve more difficult problems — and so on.

At a certain point, the machine will have learned enough to usefully work on
the problem of improving its search techniques. At this point it enters “Phase
II”.

Because of the limited search techniques used in Phase I, the system was
severely limited in the kinds of problems it could solve. These limitations do
not exist in Phase II — which is able to discover arbitrarily complex search
techniques.

While Phase I was limited to a certain broad class of prediction problems,
Phase II is able to work on any well defined problems. It is limited only in our
ability to write good training sequences and our ability to give it the information
processing capacity to solve its problems. At this point we are well on the road
to “Strong A.I.”

The first lecture will describe Algorithmic Probability. This will be followed
by a discussion of how it is used in practical problems.

I’ll talk about Context Free Grammar (CFG) discovery, Prediction by Partial
Matching (PPM) and Genetic Programming, and their roles as components of
Strong A.I.

The last lecture will go into the details of Phase I and Phase II, showing
how the components fit together to create “Strong A.I.”.

1 Probability and Induction

What is probability?
“An estimate of what is to occur in the future”. Also necessary is a measure

of confidence in the prediction: As a negative example consider an early A.I.
program called “Prospector”. It was given the characteristics of a plot of land
and was expected to suggest places to drill for oil. While it did indeed do
that, it soon became clear that without having any estimate of confidence, it is
impossible to know whether it is economically feasible to spend $100,000 for an
exploratory drill rig. The moral is that predictions by themselves are usually
of little value – it is necessary to have confidence levels associated with the
predictions. Probability is one way to express this confidence.

What is Induction?
Prediction is usually done by finding inductive models. These are deter-

ministic or probabilistic rules for prediction. We are given a batch of data –
typically a series of zeros and ones, and we are asked to predict any one of the
data points as a function of the data points that precede it.

In the simplest case, let us suppose that the data has a very simple structure:
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0101010101010...
In this case, a good inductive rule is “zero is always followed by one; one is

always followed by zero”. This is an example of deterministic induction, and
deterministic prediction. It is 100% correct every time!

There is, however, a common kind of induction and prediction that is not
as reliable. Suppose we are given a sequence of zeros and ones with very little
apparent structure. The only noticeable regularity is that zero occurs 70% of the
time and one appears 30% of the time. More generally, inductive algorithms will
give a probability for each symbol in a sequence, as a function of the previous
symbols.

One measure of “Merit” of an induction algorithm is the probability that
it assigns to the entire data set. This will be the product of the probabilities
assigned to each of the symbols: S =

∏
pi.

We want as large a value of S as possible. The maximum value S can have
is one, which implies perfect prediction.

2 ALP, MDL and Stochastic Complexity

An important application of symbol prediction is text compression. If an in-
duction algorithm assigns a probability S to a text, we can devise a coding
method that can re-create the entire text using just −log2S bits. If S = 1, then
−log2S = 0 and the induction algorithm will be able to reproduce the text with
no extra information. The bit cost of the text will be the number of bits in the
description of the algorithm.

If M is the name of the induction algorithm, then we will use |M | to represent
the number of bits in the description of M . If S > 0 then the code of the text
is in two parts: first, the code for M of |M | of bits, then the code for the
probabilistic description of the data, which is −log2S bits. The total number of
bits in the compressed code is |M | − log2S bits.

We can use this length of compressed code as a “figure of merit” of a par-
ticular induction algorithm. Ideally we want an algorithm that will give good
prediction: i.e. Large S, and small |M |. |M |− log2S, the figure of merit, should
be as small as possible.

Usually there are many inductive models available. Our “figure of merit”
can be used to select the best inductive model to use. Early approximations
were made by Van Heerden in 1963; later in 1968 Wallace described MML
(minimum message length) and in 1978 Rissanen wrote about MDL (minimum
description length). MML and MDL are very similar – I’m not sure I know
what the difference is.

MML, MDL and Stochastic Complexity may all be regarded as approxi-
mations of Algorithmic Probability (ALP) — which was first described much
earlier — by Solomonoff in 1960. Instead of selecting a single “best” inductive
hypothesis, ALP uses a weighted sum of all possible hypotheses.

In finding good hypotheses for empirical data, we have two kinds of possible
errors: Overfitting, and Underfitting.
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In the case of Overfitting we obtain very good probabilities for the corpus –
large S – by using a very large, complex hypothesis – i.e. large |M |. Predictions
of future data tend to be poor.

In Underfitting we use very simple hypotheses: very small |M |, but the
probabilities assigned to the corpus are small – S is too small. Predictions of
future data tend to be poor.

By choosing a hypothesis that minimizes |M | − log2S we avoid both Under-
fitting and Overfitting to a large extent, and obtain very good predictions for
future data.

It should be noted that in general, it is impossible to find with any certainty,
the true Minimum Description Length model – there is an infinity of models to
be tested. At any particular time in the search, we will know the best one so
far, but we can’t ever be sure that spending 10 more minutes of search will not
give a much better model.

This strict “incomputability” of MDL is usually dealt with by restricting the
space of models to be considered – so one can make a complete search in a finite
time.

We have briefly mentioned ALP as a weighted sum of all possible models.
More exactly:

PM (an+1|a1, a2 · · · an) =
∑

2−|Mi| Si Mi(an+1|a1, a2 · · · an) (1)

Here Mi(an+1|a1, a2 · · · an) is the probability assigned by the ith model to
the predicted (n + 1)th symbol of the sequence, in view of the previous part of
the sequence. Si is the probability assigned by Mi (the ith model) to the known
data. 2−|Mi| is something like the a-priori probability assigned to the model M
– the probability we assign to M before we see the data.

This is apparently a more complex, more time consuming way to compute
probabilities – (though actually, summing a bunch of probabilities, rather than
picking the largest, uses about the same computing resources).

What advantages does ALP have? For one, it’s very accurate. Say we had
some data that was generated by an unknown probabilistic source, P . Not
knowing P , we use instead, PM , the Algorithmic Probabilities of the symbols in
the data. How much do the symbol probabilities computed by PM differ from
their true probabilities, P? The Expected value with respect to P of the total
square error between P and PM is bounded by −1/2lnP0.

E
P

n∑
m=1

(PM (am+1 = 1|a1, a2 · · · am)− P (am+1 = 1|a1, a2 · · · am))2 ≤ −1
2

lnP0

lnP0 ≈ kln2 (2)

P0 is the a-priori probability of P . It is the probability we would assign to
P if we knew P , but hadn’t seen the data.

k is the Kolmogorov complexity of the data generator, P . It’s the shortest
binary program that can describe P , the generator of the data.
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This is an extremely small error rate. The error in probability decreases
more rapidly than 1/n.

So . . . rapid convergence to correct probabilities is one big feature of ALP.
Like MDL, ALP is incomputable.

A common approximation is Rissanen’s Stochastic Complexity. Instead of
summing over all models, he picks a space of models of interest and sums over
that space only.

In using ALP. we always make approximations. Rissanen’s picking a space
of models is one way to approximate. Another way is to not pick the set of
models a-priori, but have the set to be considered come out of the search itself.

What we want is a set of models of maximum total weight. A set of this
sort will bring us as close as possible to ALP and give best predictions.

To obtain such a set, we devise a search technique that tries to find, in the
available time, a set of Models, Mi, such that the total weight,

∑

i

2−|Mi|Si (3)

is as large as possible.
Apart from accuracy of probability estimate, ALP has for AI another, more

important value: It gives a very good understanding of the data.
In the area of AI that I’m most interested in – Incremental Learning – this

diversity of explanations is of major importance. The way the System works:
At each point in the Life of the System, it is able to solve with acceptable merit,
all of the problems it’s been given thus far. We give it a new problem – usually
its present Algorithm is adequate. Occasionally it will have to be modified a
bit. But every once in a while it gets a problem of real difficulty and the present
Algorithm has to be seriously revised. At such times, we try using or modifying
once sub-optimal algorithms.

If that doesn’t work we can use parts of the sub-optimal algorithms and put
them together in new ways to make new trial algorithms.

It is in giving us a broader basis to learn from the past, that the value of
ALP lies. A very conventional scientist understands his science using the single
“current paradigm” – A more creative scientist understands his science in very
many ways, and can more easily create new ways of understanding when the
need arises for Theory Revision.

To review a bit: Thus far, I’ve described ALP and shown how it differs from
MDL and Stochastic Complexity. I’ve discussed its precision and a little bit of
its “incomputability” and why I use ALP in AI.

The probability distribution for ALP that I’ve shown is called “The Universal
Distribution for sequential prediction”.

There are two other universal distributions I’d like to describe.
Suppose we have a corpus of discrete objects, each described by an finite

string aj :
Given a new finite object, what is the probability that it is in the previ-

ous set? In MDL, we consider various algorithms that assign probabilities to
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strings. (We might regard them as Probabilistic Grammars.) We would use for
prediction, the grammar, M , for which

|Mi| − log2Si (4)

is maximum.
Here |Mi| is the number of bits in the description of the algorithm Mi.
Si =

∏
j

Mi(aj) is the probability assigned to the entire corpus by Mi.

To obtain the ALP version, we simply sum over all models as before, using
weights 2−|Mi|Si

This kind of ALP has an associated convergence theorem giving very small
errors in probability. As noted, this approach can be used in linguistics. We can
use |Mi| − log2Si to assign a likelihood that the data was created by grammar,
Mi.

There is another kind of problem that I’ll be discussing later at some length.
Suppose you have a bunch of question answer pairs, Qi, Ai: Given a new ques-
tion, Qn+1, what is the probability distribution over possible answers, An+1?
Equivalently, we have an unknown analog and/or digital transducer, and we
are given a set of input/output pairs Qi, Ai – For a new input Qi, what is
probability distribution on outputs? Or, say the Qi are classification data for
mushrooms and the Ai are whether they are poisonous or not.

As before, we hypothesize an operator Oj(A|Q) that is able to assign a
probability to any A given any Q:

The ALP solution is

P (An+1|Qn+1) =
∑

j

aj
0

n+1∏

i=1

M j(Ai|Qi)

=
∑

j

aj
nM j(An+1|Qn+1)

aj
n = aj

0

n∏

i=1

M j(Ai|Qi) (5)

The ALP system has a corresponding theorem for small probability of error.
There is a corresponding MDL version and Stochastic Complexity version. In
MDL we pick the model of maximum weight. In Stochastic Complexity we
choose a subspace of models to sum over. In ALP we try to find a set of models
of maximum weight in the available time.

3 Incomputability

Just how does incomputability arise and how do we deal with it?
Recall that for ALP. we added up the predictions of all models, using suitable

weights:
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PM =
∞∑

i=1

2−|Mi| SiMi (6)

Here Mi gives the probability distribution for the next symbol as viewed by the
ith model. Just what do we mean by these models, Mi?

There are at least three kinds of functions that Mi can be.
1. Primitive Recursive
2. Total Recursive
3. Partial Recursive
Primitive Recursive Functions are very well behaved. It is possible to enu-

merate them recursively – which make the summation from 1 to infinity mean-
ingful. For each value of its argument, it is always possible to know if the
function has a value or not. Primitive recursive functions are definable by Do
loops in which the parameters of the loop are primitive recursive or composi-
tions of primitive recursive functions. Just about all of the functions used in
Science and Engineering are primitive recursive. It took many years before the
Akerman function was discovered – a function that increases so rapidly that it
could not possibly be primitive recursive.

Partial recursive functions are definable by recursion equations. They in-
clude all primitive recursive functions, and like primitive recursive functions,
they are recursively enumerable, so the summation to infinity is meaningful.

Some partial recursive functions do not have values (they are not defined)
for certain values of their arguments. The thing that causes trouble is that for
certain arguments of certain of the functions, it is impossible to know if the
function is defined for those arguments!

The way it works: Each partial recursive function is defined by a computer
program. You plug in the argument and often the program will quickly print
an output and stop. For other values of the argument, the program will take a
long time – but will eventually print an output and stop.

For other argument inputs, the machine will compute without output for a
long time. It may eventually print and stop. – But it may calculate forever and
never stop. Furthermore, it is impossible to tell if it will eventually stop, or not.
If you’ve had no output for a month or so, there is no good reason to believe it
will not print and stop in the next 10 minutes!

The total recursive functions are a subset of partial recursive functions in
which we know which arguments for which each function eventually prints an
output. While the total recursive functions are enumerable (since they are a
sub-set of a recursively enumerable set), they are not themselves recursively
enumerable – There is often no way to tell if a function is total recursive or not.

In searching over possible induction models, MDL and Stochastic Complex-
ity confine themselves to primitive recursive functions. In my own work on
incremental learning, I plan to search over the space of partial recursive func-
tions. It involves spending much time making trials on functions that don’t
have any output.
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Since I am interested in obtaining the most “weight” of predictive models
for a given computation time – this would seem like a very counterproductive
approach!

The main attraction of partial recursive functions is that they enable very
compact descriptions of important, useful functions. Furthermore, these func-
tions are expressible as simple combinations of other primitive recursive func-
tions, so they are easy to learn.

Many partial recursive functions can be expressed more cheaply (less mem-
ory and time) as primitive recursive functions using Do loops, but in the form
of primitive recursive functions they would be far more complex and have much
lower a-priori probability than their associated partial recursive functions. It
may be cost effective to compile some of the partial recursion functions as prim-
itive recursive functions.

The forgoing discussions have been largely theoretical. From a practical
point of view, the computability of primitive recursive versus partial recursive
functions may not differ very much. While a primitive recursive function will al-
ways converge for the arguments that it is supposed to converge for, the amount
of time for convergence can be very large — well beyond the time available. In
which case there would be no practical difference between such a function and
a partial recursive function.

Another mitigating fact about partial recursive functions is that after you
have used one a great deal and found it converges for all values found, it becomes
very likely that it will continue to converge for new arguments. This property
is particularly desirable in predictive functions that have been successful over a
large set of historical examples.

However, the trade off between partial and primitive recursive functions is
likely to be determined empirically rather than theoretically.

4 Subjectivity

The subjectivity of Probability resides in a-priori information – the information
available to the statistician before he sees the data to be extrapolated. This
is independent of what kind of statistical functions we use. In ALP this takes
the form of our “Reference Computer”. Recall our assignment of a |M | value
to an induction model – It was the length of the program necessary to describe
that function. In general, this will depend on the machine we use . . . its
instruction set. Since the machines we use are Universal – they can imitate one
another – the length of description of programs will not vary wildly between most
reference machines we might consider. But nevertheless, using small samples
of data (as we often do in AI), these differences between machines can modify
results considerably...

Consider the evolution of a-priori in a scientist during the course of his
life. He starts at birth with minimal a-priori – but enough to be able to learn
to walk, to learn to communicate and his immune system is able to adapt to
certain hostilities in the environment. As he grows older he solves new problems

9



and incorporates the problem solving routines into his a-priori tools for problem
solving. This continues through out the life of the scientist – as he matures, his
a-priori information matures with him.

In making predictions there are several common ways to insert a-priori in-
formation. First, by restricting the set of induction models to be considered.
This is certainly the commonest way. Second, by consciously assuming certain
probability distributions over certain parameters based on past experience with
such parameters. Third, we note that much of the information in our sciences is
expressed as definitions — modifications of language. ALP, or approximations
of it, avails itself of this information by using these definitions to help assign
code lengths to model descriptions.
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