C E C |

AthenaMuse® 2.2

Documentation

December, 1996

MIT AthenaMuse Software Consortium
Massachusetts Institute of Technology

Center for Educational Computing Initiatives 1 Amherst Street, Building E40-300 Phone 1 617 253 0173
Massachusetts Institute of Technology Cambridge, Massachusetts 02139-4307 Fax 1 617 258 8736

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

Written by

Wissam Ali-Ahmad
Philip Bailey
|ssam Bazzi

Ana Beatriz Chiquito
Katherine Curtis
Robert Deroy
William Euerle
Adam Feder
Judson Harward
Mary Hopper
Cesar Hurtado
Masanori Kgjiura
Justin Lapierre
Li Wel Lehman
Steven Lerman
Margaret Meehan
Cyril Morcrette
Kimberly Ringer
Y onah Schmeidler
Hiroshi Tominaga
Sigmund Tveit
Juan David Velasquez

of the

MIT AthenaM use Software Consortium

This documentation should not be reproduced or redistributed without the written consent of the

AthenaMuse Software Consortium
E40-300
Massachusetts Institute of Technology
Cambridge, MA 02139

®AthenaMuse is aregistered trademark of the Massachusetts I nstitute of Technology

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

Table of Contents

CADLEr 1 OVEIVIBW ...ttt sttt sbe et e e se e sbe e se e e e sbeeneeene e 1
1.1: Organization Of ThiS DOCUMENTcceeiiiiiiriieie e 2
1.2: The Structure of an APPIICALIONcoveiiiiiie e 2
1.3: ROAO M @D tO T ADL ...ttt st 3
1.4: AM2 PhIlOSOPNY ..ottt st 5

Chapter 2: HEllo, WOKTU ... 7
2.2:YOUr FIrSE AM2 PrOgraM.....cccueeieeeesieeie e sieenie e siesseessee st se e ssessesseessesnensseeses 7
P (o =T £ o o TP 8

Chapter 3: The Application Description Language.........c.cceveeereerieneenennieseesiesee e 13
3.1 LexXiCal CONVENTIONS......ccoieiiieieeiie et ee e st sae e b ae e e nae e 14
Gl [0 (= g (1= £ TSRS 14
3.3: BaSE TY S, ettt e ae e ne e e r e e ae e 14
3.4: Base TYPE CONSLANTS.......cccueeiieieiieiiee ettt sr e s sae e s ne e neesae e 15
3.5: COMPOUNT TYPES...c.eeeeerueesieeiesteesieeeesieeste s e s seesbeseesbeestesseesseesesseesbeseesreessesnnans 16
3.6: Variable DEfINItIONS.........cooeiiiiieiee e e 18
R 0= o] TSRS 19

D 110 01 = SRS 19
OPEIBLONS ...ttt ettt et e sie e be e s ae e e ase e saeesaneebeesneeebeesaneanneensnesnreans 19
3.8 ASSIGNMENE ...ttt sttt b et s a e e et e e et e e e beeeesreenne e 25
3.9: COMPIEX DALA TYPES ...veeeeieeeieeieesieeie sttt ae s s seesbeseesseenaesnnens 25
3.10: UNSEL VAIUBS.......eiieieiieie ettt sttt ee e sae e 27
311 TYPE CONVEISION......coiuieiiiieeieeiesteesieeeesreesaeseesbeseesseestesseesseessesneesbeensesneessesnnans 28
3.12: BUilt-Iin FUNCLION CallS ... 29
.13 IMIESSAOES.t etee it et et ettt s s e et e e ae e e be e s bt e et e e be e e e e e beeean e e neeeneeereenaneenne 30
3.14: SIEAM OPEIALOIScceeeiieeeteeeiee ettt ettt ee e te e s eeesbe e e e e be e saeesseesseesareesneeenns 31
3.15: CONLIOI FIOW ...ttt nre e 33
3.16: ODJECt DEfINITIONcceviiieieeee et 34
3.17: Dynamic Objects and Storage Management...........cocvveereneeneeieeseeseesieesieseens 36
3.18: ODJECt DESIIUCTION ...ttt sbe e s sre e 38
3.19: Object Member REFEIENCE.cceii e 38
3.20: ClasS DEFINITIONceieiieiieeieeies et sb e e s nae e 40
3.21: MethOd DEfINITIONoeueeieeieeieieeie et e e e nne e 41
3.22: MetaClass OPEraliONS.........cooeieerieriiereesieeie e sie e sreeseeseesseessesseesbesneesseessesnnens 43
3.23: WrrapPed ClasSES........coueiieeiiiieseeie ettt sae e st ee e sae e 44
SCOPE Of ACIASSNAME ... s 45
Creating an INstance Of A ClaSS.......cccviieiiriireeeee e 45
Creating @ SUDCIASSooeiiiieiieie e 45
IMEMDET ACCESSueiieeieeie ettt sttt et e b b et nne e 45
(VK= oo T g1V or= i o] o SRS 46

AthenaMuse 2.2 Documentation

324 INNEITLANCE ...t ettt a e st eeesaeenaeenneas a7
3.25: ODJeCt INITIAlIZAETON ... s 49
320, SCOPIE.. . eeeueeeteeetee e et et e et e e bt e e et e bt e eae e e be e eae e e Re e eRe e eaE e e Re e e e e e be e eaneeneeaaeeereenaeeenne 52
277 ASSELS. ..ot ettt bt e Rt e b et e beeeesreenae et 54
3.28: Program SITUCIUIE.........ooieeee ettt s ne e e e sae e 58
Chapter 4: USINg ACHVITIES IN ADL ..ot 59
4.1: Using the Pressed AttrDULE ..o s 60
4.2: Using Notification Request ODJECESccceierieiiereeesee e 62
4.3: Using Other Types of System-defined NRO ClaSses.........ccoveevererrennienenniennens 65
MOUSE NROS ...ttt r e s e ne e e e e e sne e 65
TIMEN NROS ...ttt b et sre et e e neesneenaeeneens 67
4.4: NROs Derived from System-defined NROS..........ccoceiinieneninneeeseeeeee e 69
4.5: Creating ADL Classes That Manage ACIVITIEScccceereeieneenieniee e 70
Inheriting An Existing Activity From a Class That Manages Activities 70
Creating aNEW ACHIVITY ...ooiieeeeeeee e s 72
Creating Classes That Inherit From the ActivityManager CIasscccccveuennee. 75
4.6: Creating CUStOMIZEA NROScccoiiiiiiieeiesieeee et 78
4.7 Using Activities for Notification of SUDSCIIPLIONS.........ccceceveeienieneeieseeseene 80
Chapter 5: EXample ADL PrOgramS.........cooeerueeiereerieseesieesseseessesssesseessessssssesssesssssessees 81
5.1: TOQQIe BUON ClaSScccviiiiiieie ettt s sne e 81
ADL Implementation of the ToggleButton CIasscccoceverieneeneniinneenienens 82
An Example of Using the ToggleButton CIassccovvveererienienenie e 86
Implementation OPLIONSccooiiiiieriiseee e e 87
5.2: A Simple Image VIewer Class.........ccc e 88
ADL Implementation oOf the VIiewer Classccccoviiinenieneeneseeseeie e 88
Example Use of the Viewer Class ... 91
5.3: A PICture BULEON ClBSS........coiiiieieeie ittt 92
ADL Implementation of the PictureButton CIasscccoceverieninneninneenenens 93
An Example Using the PictureButton ClIassccccooviieienienenin e 98
5.4: A ViIidEO VIBWEN ClaSS.....coiiiiiiiiieiieeie ettt sre e s sae e 99
ADL Implementation of the VCR ClaSS.......cccceviiieiiiiieieeeeeee e 99
Chapter 6: Wrapped Class REFEIENCE.........coiiriiieeeeeee e 111
6.1: Activities and AppliCation SEIVICES........ccoiiriiieereeeeree et 113
M CappliCation - ADSEFACEcoverieiiieie e 115
Activity Manager - ADSEFACTcooiiiiiieieeesee e 116
Attribute Manager - ADSIFACT........cooi e 118
L TP 118
IMOUSEINTO ...ttt s sb e e snn e e enn e e s nn e nanes 120
TIMEINTO ottt b et r e e b e e aeeneas 121
6.2 USEr INTEITACE.....cuii et 123
XPWIAGEL - ADSEIACT ... e 125
XFcontainable - ADSIFACTc.ooiiiiiiieceeee s 128

AthenaMuse 2.2 Documentation

XFCONtAINES = ADSTFACT ..ot e e s rae e e e aans 128
XFcontainableContainNer - ADSIFACTooiiviuiiiiiieie e 129
D2 (0] o TSP OPRROT 129
D = (Y U USRS 131
D Y1 = | R 133
D 11121 134
XFMESSAGEDIQ .. 136
XESIMPIE = ADSIFACT ... 138
XFFONtahI @ - ADSIFACToeeiiieiee e bre e eans 138
D =0T R OUSRPRRR 139
D o110 o U ORRRTR 141
XFtoggleButton - ADSTFACEccvevierieiieceee e 142
D e 1= 02 (=) O ORRRRRR 143
D =0 (0] =10 11 0] o 144
DS = L= ok S OSSP 148
D 1« SO 151
D (a1 = o [OOSR 153
DS v (] 1 7= T ORSRT 156
XEMENUITEM = ADSIFACTevveeei it e s rae e e aans 159
XFmenuLabeledItem - ADSIFACEccoiiiuiiieiiiiiie e 159
D 111= 21 PR 160
XEMENUCOMMANG ...ttt s e s e s s e bba e e s e eraeeeeaans 161
XEMENUSEPAIELONcceeieieeiieeeiee ettt sttt et s e e e sbe e sae e e ne e sneeeeeesneeenes 162
D 10 | SRR 164
D= 1 10 OSSR 167
LR S\ 1011 (T 0= = TR 171
Y Y 72 S ST A 11 - T 173
MMVISUAl = ADSEIFACT ...t bre e e reee s 174
MMLEemMpPOral - ADSEIACTccoiiiieeecee e 176
MMaudioControl = ADSEFACEoooiiviieiiiiiie e 180
Y Y o (0] = 182
117 oo o | 183
Y g o ST 184
MMAIGITAIAUIO ..ot esre e 187
AN A Y= o 1 o I PPPPRRPPPRPPIR 189
Y0 010 Y7 = 191
MMvidDiscPlayer (0nly 0N UNIX)oooiiiiiieeeee e 193
Y120 195
6.4 INPUL/OULPUL.........eoieieetiecie ettt et e e e st e e et e e sbeeeneesneeenreens 199
1@\ (o L TSP 201
TONWNOLITY ..t 201
@S == g T o 1Y 1 - (o 202
1 1 =R 205
L@ 1] 1SS o= oSSR 206
L@ o1 TSRO 207
0 5 O 208

AthenaMuse 2.2 Documentation

[OWED - ADSEFACT ...ttt 211
1 o TSP 212

1@ 111 TSR 215
|OWEDREQUESE - ADSEFACTeoveeiieeeie e e 218
[OFIPREGUESLottt st b e sre e 219
[ONLPREGUESE ... e 220
[OWEDENLILY - ADSLIACT ..o 221

1@ 10] =01 ST 222
TOREPENTILY ..ottt 222
[OWEDSEIEam - ADSEFACToceeieeie e 223

1@ 101 =" o o TR 225

1@ 018105 "= o [T 227
KINSLIBAIM ...t s e sr e nn e snn e e snneas 229
6.5: EXIEINGl PrOCESSESceiiiitieitieie sttt sttt sttt st na et sne s 233
XTCOMMEANG ...t sttt sb et e e e b e e e neeneas 233
XTprocFilter (Only 0N UNIX) ..o 235
XTprocSink (0Nly 0N UNDX) ..o 235
XTprocSource (0Nly 0N UNIEX) ..o 236
B.6: DALADESE........coveeieiiieiee et e es 239
DBAELADESEocveieeiiieieitiesie ettt e ee e 240

D] = = S ST 243

] =]] o] o AU 244
2. TSP 245
DBCUISOE ...ttt nn e e enn e e e nanes 246
DBQUENY e e s 247
=] o 1472 Y SRR 249
2] 007 o[- LSRR 250

[=] 4= TSR 251

[=] = TSP 251
3] 2] (] 1= TSP 252
=] (] 1SS =0 o TSR 253
DBIMONELANY ...t s 254
B.7: DA@ SITUCIUIES........eeieeeeeeieeee ettt sttt s sb et e e sae e s ne e sneesnneeas 255
DSQUEUE ...ttt st b e b e s ae e e ne e sneeeareen 255
DS = oGP 257
Appendix A: Built-In FUNCLIONS FOr ADLcoiuiiiiiiee e 261
0t o = (o o TSR TRRRRRN 261
A.2: FUNCLION DESCIIPLIONS. ...c.veiiiieiesieeie sttt sae e 261
Appendix B: Creating Wrapped ClaSSESccoiriiierrerieneeieesee e 271
B.1: Wrap SCrHpt MOGEL ..o 271
B.2: HOW tO Wrap @ CH+ ClaSS.....cciiiiieierieseee et 272
B.2: Inheritance Model of the Wrap SCript........ccoceiieiinienenieseese e 280
B.3: The Wrap Script and the Macintoshccoooeiiriineieeee e 286

AthenaMuse 2.2 Documentation

Chapter 1 Overview

AthenaMuse 2 (AM2) is amultimedia authoring tool designed for authoring by multiple usersin a
heterogeneous, networked environment. The following if an outline of this chapter, which pro-
vides abrief introduction to AM2 and an overview of the document:

* Section 1.1, “Organization of This Document” page 2
* Section 1.2, “The Structure of an Application” page 2
* Section 1.3, “Road Map to the ADL” page 3

* Section 1.4, “AM2 Philosophy” page 5

At the heart of AM2 is a scripting language called the Application Description Language (ADL).
We conceived the ADL as the platform-independent storage format for AM2 application descrip-
tions. Our origina intention was to build a series of direct manipulation editorsto assist users of
al levels of programming experience in devel oping AthenaM use applications. Only one such edi-
tor, a prototype layout editor, has been developed. Consequently, the ADL has also become the
primary authoring medium for AM2 applications.

One reason for the ADL’ s effectiveness as a scripting language is that we designed it in concert
with the internal C++ classes that regulate the AM2 environment. An AM2 application at run-time
may be thought of as a collection of class instances that responds to user input like an automaton.
The ADL isavery economical description of the classesthat are used to build that automaton. The
goal of this documentation isto explain how application devel opers can use the ADL to build the
classes necessary to implement a particular multimedia application. Our intended audience are
application developers. We assume some programming experience and familiarity with the gen-
eral principles of object-oriented programming, but knowledge of C++ isnot necessary to use the
ADL. At times, however, in what follows, we will compare or contrast the ADL to C++ and Small-
talk to clarify its use to those familiar with these other object-oriented languages.

The AthenaM use environment currently runs on three flavors of UNIX (SunOS 4.2.n, Solaris 2.5,
and HPP-UX 9) aswell as on Win95 and Windows/NT 3.5.1. A preliminary version of Athena-
Muse runs on Macintosh System 7, but as of the date of this document, this version is not sup-
ported.

February 25, 1997 1

AthenaMuse 2.2 Documentation

1.1 Organization of This Document

To start you on the road to building that application we give you several types of information:

Overview: abrief description of the structure of an application and the building blocks avail-
ableto you in the ADL, plus adiscussion of the ADL’s philosophy

Hello World: provides a glimpse of AthenaMuse’s powerfully simple application description
language (ADL) before the more formal descriptions that will follow in later chapters

Description of the ADL.: the simpler, basic constructs of the language and the more complex
units made from these simpler ones

Using activities in ADL: a description of the mechanism by which AM2 objects request noti-
fication of and respond to user actions and other external events, such as reaching the end of a
video segment in an application

Annotated samples of ADL programs: for those who like to learn by association and exam-
ple, this section provides a series of programs of increasing complexity

Wrapped class reference: description of the system-defined wrapped classes, including
accessible members and methods, supported activities and sample programs illustrating com-
mon uses of wrapped classes

Creating wrapped classes: explanation of the use of the wrap script, atool for system devel-
opers who want to make their own C++ classes available to the ADL

The AthenaMuse environment attempts to offer true application portability across the UNIX and
Windows platforms. This document will footnote platform dependencies where they exist.

Certain features were conceived as part of the original AthenaMuse design but have never been
implemented. While there is no guarantee that these features will be implemented in the future,
we have retained discussion of them in this document because the design of AM2 is usually more
comprehensible when they are included. All such features are clearly marked

1.2 The Structure of an Application

AM2 has two design goals that have affected the design of the application building environment:

1. Thedescription of an application’ s interface should be separate from the content presented.

For example, in amultimedia application that contains a video viewer you may want to use
the viewer many times, but each video clip viewed with it istied to the particular context.

An application should be as portable as possible across platforms and environments so that
you can customize an application to suit auser’s background and preferences, and so that you
can take advantage of special features of a particular hardware configuration or operating sys-
tem. For example, an application may use the English language on interface controls as a
default, but it should also allow customization of the control labelsin other languages. And
the application should request general services, such as a video source, and determine how to
access that source from a description of the system configuration.

2 February 25, 1997

AthenaMuse 2.2 Documentation

Satisfying these two goal's suggests that an application consist of three distinct parts:

1. Application description specifies the application’ s interface and functionality in as pure and
platform-independent aform as possible

2. Application content is stored separately from the application description

3. Customizations of the application, are stored separately so that the same application descrip-
tion can run with different sets of customizations (known in AM2 as assets)

In AM2, classes describe the application’ s interfaces and functionality. At run-time, instances of
these classes are populated with content drawn from databases, files, network services, or the
application itself. The use of classesto specify interfaces encourages usersto think in terms of and
to build with nested interface templates. The ADL’ s rich set of features for initializing the
instances of these templates marries them to the content. The joining of the two forms the screens,
images, text fields, and buttons of the application. Theinitialization also contains a step that
allows the user to customize each instance (see Section 3.25, “Object Initialization” page 49).

1.3 Road Map to the ADL

The elements of the ADL are defined briefly here. Italicized terms refer to other ADL terms also
defined in thislist.

» Assets allow auser to customize an application description using a special form of initializa-
tion.

* Assignment isavery simpletype of statement that cal culates the value of an expression and
assignsit to avariable.

» Base types arethe simplest system-defined variable types used inthe ADL, e.g., i nt eger or
string.

» Base type constants are actual values of base typs that can be expressed inthe ADL, e.g., 42
or“Hello, world!”.

* Built-in function calls are invocations of system-defined functions that can take arguments
and return avalue. They help the user manipulate base and compound values in ways that
would be difficult if not impossible with expressions.

» Class definitions specify the members and methods of a class.

» Complex types are indexed collections of data of a specified type. The ADL supports both
indexed and associative arrays.

» Compound types are ADL datatypes built from base types. They include lists, times and
intervals.

» Control structures are built from statements and conditional expressions to form complex
statements that can change the course of an application’s execution. Thei f and thewhi | e
statements are examples of control structures.

February 25, 1997 3

AthenaMuse 2.2 Documentation

Dynamic object creation provides a mechanism for the application developer to create
objects as needed at run-time.

Expressions are built from constants, variables, and operators. They are used at
run-time to calculate new values.

Identifiers name variables and classes in the ADL.
Inheritance describes how one class builds on the members and methods of other classes.

Initialization describes the various mechanisms for initializing class objects with their mem-
bers and inherited bases.

Lexical conventions determine how to format the ADL in afile or on the screen, including the
mechanisms for embedding explanatory comments in a script.

Libraries are collections of classes used as a starting point in building new classes, and the
application asawhole.

Messages are sent to objects, which must possess the appropriate method to handle the mes-
sage. A message can be part of an expression if it returnsavalue or it can stand by itself asa
Statement.

Metaclass operations describe special operators and messages used to treat a class as a spe-
cial kind of object.

Method definitions specify how messages with a particular selector, or name, are handled.

Object definitions are similar to variable definitions. They specify class members or tempo-
rary objects in methods. An object definition can specify how the object isto be initialized at
run-time.

Object destruction describeswhat happens when a defined object is destroyed automatically,
such as at the end of amethod, or when adynamic object is destroyed explicitly.

Object member reference describes how to use parts of an object in expressions, assignment
statements, and messages.

Program structure describes how this whole hierarchy of components can be used to gener-
ate complete applications.

Scope governsthe visibility of variables and objects, that is, the portion of the program where
their names are known.

Type conversion specifies the rules the ADL uses to change the type of avalue when it
encounters one type but needs another, or when the result of an expression could be of several
types. For instance, isthe value of the expression 3. 14159/ 2 ani nt eger or areal ?

Variable definitions declare the devel oper’ s intention to use a named variable within agiven
context, or to initialize the variable to a particular value.

4 February 25, 1997

AthenaMuse 2.2 Documentation

1.4 AM2 Philosophy

AM?2 uses a completely object oriented approach to provide a flexible and extensible multimedia
environment. Early design discussions focused on describing an object oriented paradigm and
deciding whether to use an existing language for implementation or to invent one. The design
team decided to create a new language called Application Description Language, based on C++.

The ADL isameans of specifying an entire AM2 application, with particular efficiency in describ-
ing user interface templates and their associated functionality. It also provides easy access to and
manipulation of the underlying system objects provided by the AM2 run-time environment.

The design team selected C++ as the AM2 implementation language both for its portability and
relative efficiency. While C++ is an extremely rich and complex programming language, the ADL
requires only a small subset of that functionality. The language features supported by the ADL are
both necessary to its task and sufficient to accomplishit. That is, the ADL supports the minimal
set of language constructs necessary to specify the general set of multimedia applications.

The ADL never allows a C++ usage to have a different meaning in the ADL than it would havein
C++. Nor does the ADL arbitrarily express C++ concepts using non-C++ usage without very
strong reasons for all such variations. For instance, the ADL uses the keyword conmon to desig-
nate what in C++ would be aclass st at i ¢ data member in order to reduce the ambiguity of the
much overused static declaration. Any ADL concepts or mechanisms that C++ does not support
are directly required by the ADL’ s particular multimedia mission. For example, the list compound
datatypeis highly desirable to support the construction of messages at run-time and to facilitate
communication with underlying databases.

It is worth acknowledging the two single most important differences between the ADL and C++.
First, the ADL does not associate pointers with specific data types as C++ does. And second, the
ADL allowsthe entire contents of a message to be determined at run-time including the message
selector and the number of arguments.

AthenaMuse was originally intended to offer transparent application portability across Windows,
UNIX, and the Macintosh. Work on the Macintosh platform has been discontinued as of the sum-
mer of 1996, but the goal of application portability has been met on the other platforms. It is
worth noting certain principles of AM2’s approach to platform portability:

» Since application portability isagoal, the use of platform specific featuresis discouraged, but
not forbidden. That is, AM2 should not deny the developer access to platform-specific fea-
tures, but neither should it encourage their use.

» By default, an application running on a UNIX version of AM2 should obey the Motif ook and
feel, while a version running under Windows should obey the Windows user interface guide-
lines. The preliminary Macintosh version followed the same principles.

The later feature makes the former less bothersome. AthenaM use classes attempt to embody
semantic functionality rather than low-level feature sets. For instance, the AM2 approach to
menusis platform independent. It is the registration of the menu with a particular application on a
particular operating system that determines the visual style of the menu (e.g., pull-down or pop-
up, tear-off, etc.).

5 February 25, 1997

AthenaMuse 2.2 Documentation

February 25, 1997

AthenaMuse 2.2 Documentation

Chapter 2 Hello, World

Ever since Brian Kernighan and Dennis Ritchie introduced usto The C Programming Languagel,
it has become traditional to introduce a new programming language to its audience via the sm-
plest of programs, one that produces the message, “Hel | o, Wér | d”. And that is exactly what we
shall do below. Before the more formal descriptions that will follow in later chapters, we want to
give aglimpse of AthenaMuse’s powerfully simple application description language (ADL).

2.1 Your First AM2 Program

So follow along now and type in the following lines using your favorite text editor.

1 anonynous: XFtop

2 {

3 XFbutton button {

4 | abel = “Hello, world”;

5 Pressed = {'Exit, theApp};
6 b

7 } top {

8 hei ght = button. hei ght;

9 width = button.w dth;

10 }

HelloWorld.adl

If you have installed AthenaMuse correctly, you should now be able to type
% am2Program hel | o. adl

To run this sample program, where am2Program is the name of the AthenaM use executable on
your system. The result should be a small frame containing a single button |abelled

“Hel 1 o, Wor ! d”.2If you click on the button, the program exits and the frame disappears. All
right. It may not be the most exciting program, but in avery few lines of code you have imple-
mented a well-behaved application that creates a window button with which you can interact.
Let’slook at the code line by line to see how it works.

1 First edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

On Windows, this frame appears in the upper left corner of the screen. On UNIX, its location depends on
your window manager. Many window managers allow the application to “float” as an outline box until you
click to position it.

February 25, 1997 7

AthenaMuse 2.2 Documentation

2.2 Explanation

Line 1:

Line 2:

Line 3:

The building blocks of AM2 applications are classes and objects. A class
defines a set of structured data and a set of methods that operate on that
data. An object is an instance of a particular class.

Our application starts off with the definition of aclassthat will describethe
frame holding the single button of the application. We are only going to
need one instance of this class so we don’t need to name it. We declare the
class with the keyword anonynous. If we were going to create another
instance of this class later, we would need to name the class so we could
refer to it again. In this case, we would declare it with the keyword cl ass
and supply aname for the class.

XFt op isthe name of a system supplied wrapped class. XFt op providesa
top-level shell or frame that can contain other components and that will
interact with your system’ swindow manager. By itself, instances of XFt op
arefairly boring, but they perform avery real function. By dealing with the
window manager and the other top level windows on your display,
instances of XFt op handle requests to minimize the application and man-
age stacking order.

The colon between the keyword anonynous and the class name XFt op
means that the namel ess class we are describing inherits from XFt op. That
is, it has al the characteristics of the system-supplied XFt op, plus afew
extras that we will define in the following lines.

The curly brace ({) marksthe start of our special additions, which will
distinguish our anonymous class from its XFt op base. It is matched by the
closed curly brace (}) online 7 that marks the end of our specia addi-
tions.

Aswe said, an XFt op that doesn’t contain anything is boring. Our frame
does contain something, asingle button. And thisisthe line that inserts the
button in the frame.

In AM2, the standard way to make one window system component (we call
them widgets) contain another is to make the contained widget a member
of the container parent class. Well, almost. Since XFt op isabuilt-in
wrapped class, we can't alter it, say by adding a new member. But we can
create a new class that inherits from the wrapped class. And that derived
class can contain additional members. So wrapped classes implementing
container widgets are used as bases for user defined classes that contain
other widgets as members.

And we are defining just such a member here. The member is an instance
of the wrapped class X Fbutton, and we refer to it within this anonymous
class by the name we assign it here, but t on. Thisisalittle subtle. The
class we are defining here has no name, but it has named members. All

February 25, 1997

Line 4:

Line 5:

AthenaMuse 2.2 Documentation

members must have names, but classes do not need to be named unless we
are going to refer to them later.

The open curly bracket that follows the button declaration marks the begin-
ning of ablock of code that allows usto particularize thisinstance of the
XFbut t on class.

The XFbut t on wrapped class contains amember called | abel . You
don’'t have to declare this member. It sbuilt in. You don’'t even haveto ini-
tialize it, although you almost certainly want to. If you don’t, your button
won't have atext label. In thisline, we set but t on’slabel to be the string
“Hel 1 o, Worl d”. Noticethat thisinitialization is actually an executable
statement, and so must be followed by a semicolon.

This line describes what we want to happen when the button is clicked by
the mouse. AM2 provides the programmer a very flexible way to monitor
whatever the user is doing on the screen using activities. This functionality
is described in Chapter 3, Using Activities (provide cross reference).

But we can do something much simpler here. XFbut t ons possess a mem-
ber called Pr essed that specifies what the user wants to happen when the
button gets pressed. The value of Pr essed must be a list delimited by
curly braces and containing two elements. The first element is amessage
and the second is a handle to the object to which the message should be
sent. So, the Pressed member should contain values that look like{ mes-
sage, target }.

In the ADL, a message can also be a list, whose first element is a string
called the selector. The selector determines which method will be invoked
in the target of the message when the message is sent. The other elements
of amessage list are arguments to the method. But the message we want to
send is so simplethat it doesn’t possess arguments, just the selector that all
messages must have. And in the case of a message without arguments, the
message list can be represented simply by the selector string, which iswhat
has happened here. The messageisastring, ' Exi t . Note that if astring
consists of asingle word, it can be preceded by asingle quote (*) rather
than enclosed in double quotes (").

The second part of the value of Pr essed must be a handle to the target of
the message. A handle isthe ADL’s version of a pointer or reference. A
variable or member declared as a handle can contain references to other
objects or variables. In this case, we are using the keyword t heApp to
specify avery special reference to the application object.

Everything in an ADL program defines a class including the application
itself. The application, although it is not preceded by the keyword anony-
mous and curly braces, defines an anonymous class that includes all global
variables and all other class definitions. When the application starts up, a
single instance of this application class is created and initialized. This
object can be accessed through the keyword t he App which always con-

February 25, 1997

AthenaMuse 2.2 Documentation

tains a handle to this application object. So, by making t he App the target
of the' Exi t message, we are assuming the application has a method
called Exi t that doesn’'t take any arguments. It does. As amatter of fact, it
inherits that method from a class called MCappl i cat i on that servesasa
silent base classto all applications. Y ou can read about MCappl i cati on
in the wrapped class documentation in Section 6.1, “Activities and Appli-
cation Services” 113.

Line 6: The closing brace on this line ends the block of initializations for the mem-
ber but t on. It can be thought of as ending the declaration of the member,
and all declarations must end with a semicolon.

Line 7: The first curly brace on this line, the closed brace, ends the definition of
our anonymous class derived from XFt op. The next word, t op, isthe
name of the instance of this anonymous class. Why do we need to name
thisinstance? Well, thisinstance isaglobal variable in the application, and
global variables are considered to be members of this application class.
And, aswe said above, all members must have names. Trust us on this one
for now. It makes things come together much more nicely if we haveto
supply aname for this variable. The second curly brace, the open one,
starts the initialization block for this single instance of our anonymous
class derived from XFt op.

Line 8: Hereweinitialize the height of the frame to be the same asthe height of the
button that it contains. The units are pixels. It turns out that XFt op hasa
member called, you guessed it, hei ght . We set the frame' s height to be
the same as the height of the frame’'s member called but t on. Note that
both the frame and the button have a member, hei ght . We usethe .
notation to access the member hei ght of the frame’s member but t on.
Thevariable hei ght to theleft of the= refersto the frame’s member of
the same name because this initialization block belongs to the frame, not
the button (or any other object).

Now an interesting question. Why do we have to specify the height of the
frame but not the height of the button? By default, buttons with text labels
are sized to be just big enough to contain the label. Y ou can override that
by setting the width and height of a button, but we have not done that here.
Whichiswhy the “Hel | o Wor | d” application ends up being so small on
the screen. But XFt ops have a default size that is very, almost vanishingly
small. Why didn’t we make them large enough to contain their contents by
default? Well, we thought about it and tried it out, but application develop-
ers decided that it hardly ever turned out to be what they wanted. So we
decided that you had to size the top-level frame. Children of this top-level
frame (that is, the widgets contained by it) would have default positionin
the upper left hand corner. If you have more than one child widget, that is
unlikely to be what you want for the second and later widgets. But in this
case, we don'’t have to worry about positioning the button, just sizing the
frame around it.

10 February 25, 1997

AthenaMuse 2.2 Documentation

Line 9: Thislineislike the previous except it sets the width of the frame, not the
height.
Line 10: We're done. The curly brace closes the initialization block for the frame

t op, and because the initialization compl etes the definition of the anony-
mous class and its single instance, we must follow it by a semicolon.

» Try changing afew vaues here and there, or try to comment out aline by prepending two
dlashes (/ /') and then rerun the program. We have glimpsed only the very surface of AM2’s
capabilitiesin this example, but it should give you some sense already of what it feelslike to
create an application in the ADL.

11 February 25, 1997

12

AthenaMuse 2.2 Documentation

February 25, 1997

Chapter 3

AthenaMuse 2.2 Documentation

The Application Description Language

The purpose of this chapter isto provide a detailed description of the ADL, which is the core of

AM2. Note that this covers both the ssmpler, basic constructs of the language and the more com-

plex units made from these ssmpler ones. The following outline describes the sections of this

chapter:

Section 3.1, “Lexical Conventions” page 14
Section 3.2, “ldentifiers” page 14

Section 3.3, “Base Types” page 14

Section 3.4, “Base Type Constants” page 15
Section 3.5, “Compound Types” page 16
Section 3.6, “Variable Definitions” page 18
Section 3.7, “Expressions” page 19

Section 3.8, “Assignment” page 25

Section 3.9, “Complex Data Types” page 25
Section 3.10, “Unset Values” page 27

Section 3.11, “Type Conversion” page 28
Section 3.12, “Built-in Function Calls” page 29
Section 3.13, “Messages” page 30

Section 3.14, “Stream Operators” page 31
Section 3.15, “Control Flow” page 33

Section 3.16, “Object Definition” page 34
Section 3.17, “Dynamic Objects and Storage Management” page 36
Section 3.18, “Object Destruction” page 38
Section 3.19, “Object Member Reference” page 38
Section 3.20, “Class Definition” page 40
Section 3.21, “Method Definition” page 41

Section 3.22, “Metaclass Operations” page 43

February 25, 1997

13

AthenaMuse 2.2 Documentation

» Section 3.23, “Wrapped Classes” page 44

» Section 3.24, “Inheritance” page 47

» Section 3.25, “Object Initialization” page 49
» Section 3.26, “Scope” page 52

e Section 3.27, “Assets” page 54

» Section 3.28, “Program Structure” page 58

3.1 Lexical Conventions

Lexical conventions determine how to format ADL code in afile or on the screen, including the
mechanisms for embedding explanatory comments in a script.

Formatting

ADL code is not sensitive to the presence or absence of white space between language elements
provided that al keywords and identifiers are distinguished. Thus the programmer has the same
degree of freedom that C and C++ allow in formatting code. White space includes these charac-
ters: space (* ‘), newline (*\n"), carriage return (‘\r’), form feed (‘\f’), and vertical tab (‘\v’).

Commenting

Comments are indicated as they are in C++. Two contiguous slashes (/) indicate the start of a
comment that continues to the end of the current line. Thisform is the usual method for annotat-
ing individual, single-line statements. A slash immediately followed by an asterisk (/*) indicates
acomment that continues until the reverse sequence (*/) is encountered. Thisform isthe usual
method for inserting multi-line comments.

3.2 Identifiers

Anidentifier isthe name of avariable, class, method, or built-in function. It must begin with alet-
ter and consist of a sequence containing only letters, digits, or the underscore character (). Case
issignificant. Identifiers can possess an arbitrary number of characters, and at least the first 32
characters are distinguishable. Some ADL implementations may consider more than 32 characters
significant. If aparticular implementation considersthefirst n(n 3 32) characters significant, and
two identifiers differ only after the nth character, the implementation considers them identical.

3.3 Base Types

The system recognizes the base, or primitive, typesbool ean, i nt eger,real ,string, vtype,
and handl e.

Boolean

A boolean must have the value TRUE or FAL SE.

Integer

Ani nt eger correspondsto a C/C++ long and is represented with at least 32 bits.

14 February 25, 1997

AthenaMuse 2.2 Documentation

Real

Areal correspondstoaC/C++ doubl e. The minimum and maximum positive values of ar eal
are platform dependent, but should accommodate arange of at least 10.0%¢ to 10.0%® .

String

AnADL st ri ng represents an ASCII string implemented using an underlying C++ class, and,
thus, does not correspond exactly to a C/C++ char *. The only restrictions on maximum string
length are implementation dependent, but in all AM2 implementations strings are guaranteed to
have amaximum length of at least 65535 bytes. If theinteger constant MAX_STRING_LENGTH
has a value greater than O, that value specifies the maximum allowed string length.

Vtype
A vt ype alows storage of types of variables, and is used for type-checking.
Handle

A handl e toal val ue of abasetype or acompound type (see Section 3.5, “Compound Types”
page 16), or to an ADL object represents a reference to the underlying variable or object. Itisa
more general case of the C/C++ pointer, in that AM2 will eventually support handlesto objectsin
other AM2 process spaces. AM2 handles do not support the full semantics of C/C++ pointers. In
particular, there is no relation between handles and arraysin the ADL, and handle arithmetic is not
alowed.

3.4 Base Type Constants

The ADL supports constants in each of the primitive system types: bool ean, i nt eger, real,
string,vtype and handl e.

Boolean Constants
Boolean constants must be one of the keywords TRUE or FALSE.
Integer Constants

Integer constants are always decimal and can be signed, e.g., 255, -1, +100000. The named inte-
ger constants MAX_INTEGER and MIN_INTEGER represent the values of the largest positive
integer and the smallest negative integer on the host system.

Real Constants

Real constants follow the standard C language form of an integer part, adecimal point, an eor E,
and an optionally signed integer exponent. At least one of the integer and fraction parts must be
present, as well as either the decimal point or the exponent. Examples: 3. 1416, 1E+9,

-0. 21le- 3.

The named floating point constants MAX_REAL and MIN_REAL represent the values of the
largest and smallest positive real numbers that can be represented on the host system.

The REAL_EPSI LON constant represents the smallest positive real value such that
0.0 + REAL_EPSILON '= 0.0

February 25, 1997 15

AthenaMuse 2.2 Documentation

String Constants

A string constant that contains only letters (A-Z, az), digits (0-9), or the underscore character
(_) can be so designated by preceding it with the single quote character ('). This feature ssmpli-
fies the specification of messages (see Section 3.13, “Messages” page 30). Y ou can always
enclose a string constant within double quotes ("), and you can embed the standard C escaped
character constants® in strings.

"Hel |l o, world\n"

"GetWdth

Figure 3.1 String Examples

Type Constants

Type constants can be one of the keywordsbool eanType, i nteger Type, real Type,
stringType, vtypeType, handl eType, |istType, tinmeType, or interval Type.

Handle Constants

The only permissible handle constant is expressed by the keyword NULL. It represents avalue
that cannot be avalid handle to any variable or object. Thus, NULL indicates that a handle vari-
able does not point to any valid target.

3.5 Compound Types

The ADL supports three compound datatypes: | i st, tinme, and interval.Itasosup-
ports both multidimensional indexed arrays and one dimensional associative arrays. Arrays are
complex data types, however, and are discussed further in alater section (see Section 3.9, “Com-
plex Data Types” page 25).

List

Ali st isacompound type built up out of expressions of base and compound types. Lists can,
therefore, nest. Thereisno syntactical requirement that all list elements be of the same type. You
create listsusing the list delimiters ({}), and separate list elements with commas.

Alistelementina({}) expression can be an expression itself. In this case, the expressionis eval-
uated and the list element isinitialized with the result. The list contains the result of evaluating the
expression, not the expression.

Note that lists are not objects, and objects cannot be members of lists. Handles to objects, how-
ever, are a base type and so can be list members. The empty list denoted by ({}) can be used in
comparisons and to initialize lists.

1 Brianw. Kernighan and Dennis M. Ritchie, The C Programming Language (1988), 193-194.

16 February 25, 1997

AthenaMuse 2.2 Documentation

{' Monday, ' Tuesday, 'Wdnesday, 'Thursday, 'Friday }
{"dipA {0, max+1} }

{ dayOf Month, nonth, year }

Figure 3.2 List examples

Time

A ti me isan ordered 4-tuple of integers representing a period of time, and is not meant to be used
for absolute (real) time. A t i me consists of numbers of hours, minutes, seconds, and millisec-
onds, and can be either positive or negative.

Time constants consist of from one to four integers separated by colons. If only one number is
given, a colon must precede it. The four numbers correspond to hours, minutes, seconds, and mil-
liseconds. If fewer than four numbers are given, then they are assumed to be the less significant
(and more precise) components of atime (i.e., 3:4 istaken to mean 3 seconds and 4 milliseconds).
White space between the parts of atime constant is not allowed.

All times are kept in standard form: milliseconds are between 0 and 999, minutes and seconds are
between 0 and 59. This means that constants such as 90:0 are automatically converted to 1:30:0
internally. If any integer inat i me constant is negative, all integers forming the constant must be
negative or O, so that -1:-30:0 islegal but -1:30:0 is not legal.

Interval

Ani nt erval isanordered pair of i nt eger s or r eal numberswith an associated open or
closed condition for each half of the pair. Y ou can convert appropriately formatted lists consisting
of

{ {boolean, integer|real}, {boolean, integer|real} }
or
{ {Dboolean, time}, {boolean, time} }

to intervals, and vice versa. Note that this aternate representation of ani nt er val consistsof a
two part list of lists. Each sublist containsabool ean and either ar eal , ani nt eger, or atime.
A TRUE value corresponds to the closed condition, and a FAL SE corresponds to the open condi-
tion. You can represent thei nt er val constant as follows:

» anopening left parenthesis or square bracket

e aninteger, real, or timneconstant

e acomma

e asecondinteger, real, or tine constant

» aclosing right parenthesis or square bracket

February 25, 1997 17

AthenaMuse 2.2 Documentation

A parenthesis indicates an open condition, and a square bracket indicates a closed condition. The
interval variable is assigned only as a unit. Y ou can access and alter the interval endpoints and the
associated open and closed conditions only by using the corresponding | i st form of the interval,
or abuilt-in function. Aninterval appearsin expressionsonly if it uses the special relational oper-
ator (:),pronounced in.

integer]real|time : interval

Such a (sub)expression evaluatesto TRUE if and only if the left argument falls within the interval
defined by the right argument. Interval expressions are intended primarily to test whether the cur-
rent value of a state object fallswithin a particular range. See the example of interval usagein Fig-
ure 3.3.

4 : [0,9] /1 returns TRUE

i nterval range;

i nteger frame;
range = (0 , 54000];
frame = 999;
if (frame : range)
{ /* Do this */ }

Figure 3.3 Sample Interval Usage

3.6 Variable Definitions

Y ou can define base and compound variables at the beginning of any scope (see Section 3.26,
“Scope” page 52) using the keywordsbool ean, integer, real, string, tineg,
vtype, handle, |ist, andany followed by anon-null list of identifiers (see Section 3.2,
“Identifiers” page 14). A variable defined with the keyword any can contain avalue of any base
or compound type, while variables defined with the other types can only contain values of their
defined type. It isan error to assign a value of one type to avariable of another type if the value
type cannot be implicitly converted to the variable type (see Section 3.11, “Type Conversion”
page 28).

Exiting from an enclosing scope destroys variables, and their values are not preserved across sep-
arate entries to that scope. The ADL does not support the C and C++ concept of st at i ¢ vari-
ables. The same functionality can usually be provided by a class common data member, although
it is currently unimplemented.

i nteger anint, nylnt, yourlnt;

list A B;

string daysOf Week;

Figure 3.4 Sample Variable Definitions

18 February 25, 1997

AthenaMuse 2.2 Documentation

3.7 EXxpressions

Y ou construct expressions from variables (see Section 3.6, “Variable Definitions” page 18),

constants (see Section 3.4, “Base Type Constants” page 15), operators, and delimiters. The ADL

operator set is anear subset of the C++ operator set with afew additions and is described in the

figures below.

3.7.1 Delimiters

Delimitersin the ADL primarily group together related tokens. For example, you use parentheses
to change precedence within an expression. ADL delimiters have a higher precedence than opera-

tors, thereby allowing them to control the order of evaluation.

DelimiterPair Purpose Sample Usage
() To change order of computation in expressions (1+2) * 3
{} To form alist from expressions {"A "World, 2*3}
(1. 1), To form an interval from pairs of numbers 5: (4,6)
(1., 0O

Figure 3.5 ADL Delimiters

In some cases delimiters create anew semantic item out of the elementsthey enclose. Theinterval

delimiters serve this purpose by making an interval from two numbers. However, intervals are

more than two numbers paired together. They possess “open” or “closed” attributes at each end-

point and support atest for membership in the interval.

3.7.2 Operators

When the same operator occursin both the ADL and in C++, it has the same semantics, prece-
dence, and associativity. The following points deserve special notice:

» The ADL normally evaluates both subexpressions of a binary operator before calculating the

result of the binary operator. However, the boolean operators (& &) and (]|) present a specia

case. The ADL evaluates the right subexpression only if the left subexpressionis TRUE in the

case of (& &) and FALSE in the case of (||).

* Thesend message operators (=>), (| >), (?=>),and(?| >) have been overloaded to

accept both objects and object handles as a second operand.

February 25, 1997

19

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type of Operands Type of Result
+ unary plus 6 integer, real, or time integer, real, or time
- unary minus 6 integer, real, or time integer, real, or time
* multiplication 7 integer or real integer or real
* multiplication 7 (integer or real) * time time
/ division 7 integer or real integer or real
/ division 7 time / time integer
% remainder 7 integer integer or real
+ addition 8 integer, real, or time integer, real, or time
- subtraction 8 integer, real, or time integer, real, or time

Figure 3.6 Arithmetic Operators?

a. Notethe absence of the pre- and postfix operators ++ and --.

ber of interval

I: interval

Operator Operation Precedence Type of Operands Type of Result
== equal 11 any? boolean
= not equal 11 any boolean
< less than 11 integer, real, or time boolean
<= less than or 11 integer, real, or time boolean

equal to
> greater than 11 integer, real, or time boolean
>= greater than 11 integer, real, or time boolean
or equal to
isamember of 11 integer, real, or time boolean
interval > interval
l: is not amem- 11 integer, real, or time boolean

20

Figure 3.7 Relational Operators

a. Anyimplies any base or compound data type. The equal and not equal operators can also be applied to arrays
(Section 3.9, “Complex Data Types” page 25), but not to objects.

February 25, 1997

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type of Operands Type of Result
! not 6 boolean boolean
&& and 12 boolean boolean
| or 13 boolean boolean
Figure 3.8 Boolean Operators
Operator Operation Precedence Type of Operands Type of Result
) built-in 1 any any
function call
Figure 3.9 Function Operators
Operator Operation Precedence Type of Operands Type of Result
scope 1 classname: : member any
resolution
member 2 object. member any
selection
-> member 2 handle- >member any
selection
Figure 3.10 Member Operators
Operator Operation Precedence Type of Operands Type of Result
& address of 3 variable or object handle
* dereference 3 handle variable or object

February 25, 1997

Figure 3.11 Handle Operators

21

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type of Operands Type of Result
new object 14 new class handle
creation
del et e | object destruc- 15 del et e handle none
tion
cl one clone object 3 clone object or object handle
handle
Figure 3.12 Object Operators
Operator Operation Precedence Type of Operands Type of Result
cl assOf get handle to 3 cl assOf object or handle
metacl ass object handle
object
t he- get handle to 3 t heCl ass classname handle
C ass metaclass
object
Figure 3.13 Metaclass Operators
Operator Operation Precedence Type of Operands Type of Result
+ concatenate 8 string string
& concatenate 9 string string
with space
Figure 3.14 String Operators
Operator Operation Precedence Type of Operands Type of Result
<< append 10 list << any list
+ concatenate 8 list list

a Seealsothebuilt-in list functions of Section 3.12, “Built-in Function Calls” page 29, and thef or

list {

22

Figure 3.15 List Operators?

} construction of Section 3.15, “Control Flow” page 33.

i in

February 25, 1997

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type of Operands Type of Result
? is element 6 array element boolean
renove remove 15 array element none
Figure 3.16 Array Operators
Operator Operation Precedence Type of Operands Type of Result
? isvalue set 6 any boolean
Figure 3.17 Is Value Set Operator
Operator Operation Precedence Type of Operands Type of Results
<< put 10 list << any list
object << any object
object << object]
object
>> get 10 list >> any list
object >> any object
object >> object]
object

a. Stream operators are further discussed in Section 3.14, “Stream Operators” page 31.

Figure 3.18 Stream Operators?

Operator Operation Precedence Type of Operands Type of Result
=> send synchro- 4 string or list => any
nous object or object handle
message
> send asynchro- 4 string or list | > any
nous object or object handle
message
?=> send optional 4 string or list ?=> any
synchronous object or object handle
message
?| > send optional 4 string or list ?| > any
asynchronous object or object handle
message

February 25, 1997

Figure 3.19 Message Operators

23

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type Of Operands Type of Result

@ resource resol ution 5 string string

Figure 3.20 Resource Operators

3.14159 * (radius * radius)
| engt h("Dogs and cats") <= 255
user Message + "\ n"
{ 'ResizeButton } + Args |> myButton
(ol dWdth == "GetWdth => nyButton))

Figure 3.21 Sample Expressions

24 February 25, 1997

AthenaMuse 2.2 Documentation

3.8 Assignment

Assignment statements allow you to assign new values to declared variables of base (Section 3.3,
“Base Types” page 14) and compound types (Section 3.5, “Compound Types” page 16). You
can use any such declared variable as an Ivalue in an assignment. When you copy astring or listin
an assignment, you perform a deep copy. When you make an assignment to a previoudly initial-
ized string or list, you destroy the previous contents.

buttonWdth = ' GetWdth => nyButton;

buttonWdth = 2 * buttonW dth;

Figure 3.22 Sample Assignments

Declared objects are neither base nor compound system types, and hence an identifier declared to
name an object cannot receive an assignment. Handles, however, are a base system type and a
variable declared as a handle can receive a handle to an object in assignment statements.

Note that unlike C and C++ there is no assignment operator, and assignment cannot be a subex-
pression. There are no compound assignment operators like(+=). The lvalue determining the tar-
get of the assignment is guaranteed to be evaluated after the expression on the right side of the
assignment statement (see Section 3.11, “Type Conversion” page 28 for adiscussion of type
conversion in assignment).

3.9 Complex Data Types

Indexed Arrays

Anindexed array isacomplex datatype derived from one of the base or compound types. All ele-
ments of an indexed array must be of the same type, but since lists can be array elements this
restriction is not severe. Indexed arrays cannot be members of lists, but a handle to an indexed
array can be such amember.

The type and dimensionality of an indexed array must be declared before its use, but indexed
array bounds are not fixed. Indexed array indices must be integers, but need not be positive or
even non-negative. An indexed array expands as it receives values assigned to new elements
beyond the previous bounds. It isarun-time error to use the value of an indexed array element
before that element receives an assignment. An indexed array element can be the target of an
assignment and can appear in any expression where a constant or variable of itstype is appropri-
ate.

Y ou can assign indexed arrays provided that the rvalue for the assignment is an array of the same
dimensionality and type. A deep copy occursin such acase, and al the previous data from the tar-
get array islost. Indexed arrays can also appear with the relational operator (==) provided that
both operands are indexed arrays. Two indexed arrays are considered equal if they possess the
same dimensionality, the same type, the same bounds, the same assigned elements, and the corre-
sponding elements are equal in each array.

February 25, 1997 25

AthenaMuse 2.2 Documentation

Declaration

i nteger anlnt;
i nt eger twoDi MArray<2>, another Array<2>;
[ist |istArrayA<l>;

Element Assignment, Expression Use and Initialization Checking

twoDi mArray[0, 1] = 5;
anlnt = twoDi mArray[O0, 1] + 1;
anint = twoDimArray[0,0]; // error, used before set

Array Assignment and Operations

anot her Array = twoDi mArr ay;

if (anotherArray == twoDi nArray)
{ /* Do This */ }

anot her Array[0,0] = 1;

if (anotherArray == twoDi nArray)
{ /* Don"t Do This */ }

Figure 3.23 Indexed Array Usage

Use arrays with caution because they require considerable storage over and above that required
for their elements. The relation between indexed arrays and pointersin C and C++ does not hold
between ADL’s arrays and handles. In the ADL, you can pass the handle of an array as an argu-
ment to a built-in function or a message. Note that in this case the handle being passed points to
the original array, not a copy of it

Associative Arrays

An associative array is acomplex data type derived from one or more of the base or compound
types. An associative array issimilar to an indexed array except that the indices, or keys, need not
be an integer but can be of any base or compound type, even al i st . Certain index types, how-
ever, are probably not useful. For instance, ar eal index could be misleading.

All elements of asingle associative array must possess keys of the same type. Y ou declare the
key and value typesin the array declaration. As with indexed arrays, associative arrays are
dynamic, growing as elements receive assignment. They can receive assignment as a unit, and
their equality tested as such. Associative arrays are equal if and only if the values and keys of both
arrays are of the same types, they possess the same keys, and elements with the same keys possess
the same value.

26 February 25, 1997

AthenaMuse 2.2 Documentation

Declaration

string captionArray<integer>;
list authorArray<string>;

string holiday<string, integer>;
string key;

Element Assignment, Expression Use and Initialization Checking

captionArray[19774] = "The old covered bridge";

key = "Joseph Conrad";

aut hor Array[key] = { 'Nostronp, 'Victory, "Lord Jim' };
holiday['July, 4] = "Independence Day";

Figure 3.24 Associative Array Usage

Array Element Operators

There are two specia unary operators that you can use with array elements or expressions that
evaluate to array element lvalues.

» The(?) operator tests whether the following array element specification refersto an element
that exists. Since arrays are dynamic, a given key may or may not exist within agiven array.
The (?) operator allows the user to test for the existence of an array element without generat-
ingaused before set error.

* Ther enove operator removes the following array element from the corresponding array.

if (?authorArray["Jane Austen"])
{

}

renove aut horArray["Jane Austen"];

Figure 3.25 Array Element Operations

3.10 Unset Values

Database tables regularly contain optional fields. If you retrieve arecord from a table with an
optional field, and the field does not contain avalue, the field is said to contain anull value. The
semantics of null values and a null handle are similar but subtly different. A null handle has a
value; it ssmply doesn’t point to any object. Programmers often use a null handle to mark an end
of alist or an inactive option rather than missing data. Null values, however, have no value at all.
They are unset. The ADL supports the concept of unset values primarily to provide a more uni-
form interface to databases.

The constant UNSET is typeless and represents an unset value. It can be assigned to a variable of
any type, used in (==) and (! =) comparisons and put on lists. The examples shown in Figure 3.26
arelegal.

February 25, 1997 27

AthenaMuse 2.2 Documentation

i nteger answer;

string question;

list record = { "Wen?" };
any elt;

if (answer == UNSET)

{
guestion = "\Wy";
}
elt = at(1, record);
if (elt '= UNSET && isString(elt))
{
question = elt;

}
record << UNSET;

Figure 3.26 Operations with the Constant UNSET

All uninitialized variables have an unset value. Unset values can appear wherever the constant
UNSET can with one exception: the comparison of two valuesisarun-time error if one or both are
unset. Y ou can, however, compare an unset value to the constant UNSET. It isimportant to distin-
guish an unset string or list from an empty one. Y ou can append to an empty string or list, but not
to an unset one. Unset values can appear in lists, however, and the list append operator (<<) can
append an unset value to alist.

Y ou can use the operator (?var) to test for the existence of an array element and to test if avari-
ableisset. Theexpression var == UNSET issyntactic sugar for it. Similarly, you can compare
array elements with UNSET to determine if they exist. Finally, assigning an array element the con-
stant UNSET is equivalent to calling the operator r enove except that it isan error tor enove a
non-existent element, but you can assign UNSET to one.

3.11 Type Conversion

Type conversion happens in the following instances:

* Assignment

* Argumentsto built-in function calls

* Arguments to messages

* Promotion in arithmetic and numerical relational expressions

In the first three casesi nt eger s converttor eal s, andr eal s truncatetoi nt eger s, asindi-
cated by the associated type declarations. St ri ngs are not automatically converted to numeric
values. Y ou can use the ADL built-in functions (see Section 3.12, “Built-in Function Calls”
page 29) t ol nt eger () andt oReal () to perform explicit conversions. In the case of promotion
in expressions, any binary operator with onei nt eger and oner eal operand promotes the

i nt eger operandtor eal before performing the operation. Certain compound types are also
implicitly converted.

28 February 25, 1997

AthenaMuse 2.2 Documentation

* Atineconvertstoaninteger,areal,oralist asrequired, and viceversa. Thei nt e-
ger orreal versionof ati me containsthe corresponding number of milliseconds. Thel i st
version contains four elements: hours, minutes, seconds, and milliseconds.

* Aninterval implicitly convertsto al i st, and an appropriately formatted | i st to an
i nterval (see Section 3.5, “Compound Types” page 16). An error resultsif you attempt to
convert an inappropriatel i st toani nterval orti ne.

The only other case of promotion occurs when a string on the left hand side of a send message
operator is promoted to a one member list. (see Section 3.13, “Messages” page 30).

3.12 Built-in Function Calls

The ADL provides a set of built-in function calls to access functions from the C standard library
and to operate on expressions of base type, compound type, and complex type. Appendix A,
“Built-In Functions for ADL” page 261 documents these functions, which currently fall into the
following categories:

e “Input/Output” page 261

* “Time and Date” page 262

e “Conversion” page 262

“Type Query” page 263

» “Sequences (lists and strings)” page 264
* “Mathematical” page 266

» “Handles” page 269

e “Classes and Inheritance” page 269

* “Networking” page 269

User-defined functions are not permitted. Messages to global objects currently provide equivalent
functionality. All arguments to built-in functions are passed by value, although such an argument
can be a handle to an underlying base, compound, complex, or object type.

random([1,5))

| engt h(nane)

Figure 3.27 Sample Function Calls

February 25, 1997 29

AthenaMuse 2.2 Documentation

3.13 Messages

A message is an operation that one object performs upon another. Y ou can send a message to any
object. It consists of three parts:

1. Selector (message name): The string identifier for the message must have a match in the
receiving object’s method dictionary.

2. Message arguments: Arguments are optional. The message selector and any arguments form
the message list.

3. Message target: A reference to an object, or to the handle of an object, that isto receive the
message list.

' Construct => Viewer;
"I nit?=> Viewer,;
{mName} + {"width", 40} |> nyTarget;
dayMonth = ' Get DayOf Mont h => Cal endar

Figure 3.28 Sample Messages

The target object method has the option to return avalue. If a method returns avalue in some
cases, it must return avalue in all cases. The returned value may be unset. Messages that return a
value can appear in expressions. Messages that do not return a value must appear in standalone
Statements.

If there are no message arguments, the message list can consist of ast ri ng. Otherwise, the mes-
sage list must be atrue list whose first element isa st r i ng specifying the message selector. The
message list canbeal i st variableor al i st valued expression. It is evaluated at run-time just
before the message is sent so that all parts of the message, including the selector, are dynamic. A
message argument may be unset.

One of the following message operators separates the message list and the message tar-
get:(=>),(]>),(?=>),and (?>). The operators (=>) and (?=>) specify that the message is to be sent
synchronously — that is, the message is sent immediately and the invoked method is executed
before the next statement in the calling method. A synchronous message thus effectively createsa
new stack frame. The operators (|>) and (?}>) conversely specify that the messageis to be sent
asynchronously —that is, the message is queued for later delivery. The system guarantees that an
asynchronous message will be delivered and executed before the return to the overall event loop if
an appropriate method exists in the destination object. No guarantees are made, however, about
the relative execution of multiple asynchronous messages.

The operators (?=>) and (?>) send optional messages, while the operators (=>) and (|>) send
required messages. It is an error to send a required message to an object that does not possess a
method for the message selector. If an object receives an optional message with a selector that it
does not understand, however, it ssmply ignores the message. Optional messages are particularly
useful for broadcasting system messages to all objects.

30 February 25, 1997

AthenaMuse 2.2 Documentation

Since message arguments are passed as membersof al i st , they must be passed by value. No
object can beamember of al i st , and thus, no object can be an argument to amessage. A handle
to an object, however, can be passed as an argument to a message. The return value, if present,
must also be one of the base or compound system types and is also passed by value. A message
cannot return an object or a complex data type (i.e., indexed or associative arrays).

3.14 Stream Operators

To simplify the use of streams, the ADL provides two stream operators: put (<<) and get (>>).2

The operators act differently depending on their arguments. In al cases, the intent is that the <<
operator sends data into a stream and the >> operator receives data from the other end of the
stream. In the next few paragraphs, we describe how the operators work for each set of argument
types. Any other argument combinations are type errors. In all cases, the result of the expression
isthe left operand. When the first argument is an lvalue whosetypeislist, asin Figure 3.29, these
operators make the list act as a stream.

l'ist_|value << any_val ue;

list_|value >> sinple_variable;

Figure 3.29

The << operator appends any_val ue onto the list specified by | i st _I val ue. The >> operator
reverses this operation, removing the first value fromthel i st _| val ue and storing it in the

si npl e_vari abl e onitsright. Using the >> operator on an empty list isan error. It isalso an
error if the value to be stored by the >> operator does not match thetype of si npl e_vari abl e.
Figure 3.30 shows the object on the left as a stream into which we put (<<) or from which we take
(>>) simpletypes. The send operator (<<) sends the object a message with one argument, the
value on the right hand side.

obj ect << any_val ue;

obj ect >> sinple_variable;

Figure 3.30

These operators differ from their C++ counterpartsin that the meaning of the "send" and "receive" operators
are essentially defined by the ADL. Class authors who define methods to handle the messages sent by the
operators may modify their effects on objects.

February 25, 1997 31

AthenaMuse 2.2 Documentation

The selector of this message is based on the type of the value. The selector is” Send” concate-
nated with the name of the type of the value. For instance, the following expression causes the
message { " SendBool ean", TRUE} to besenttonySt ream

nmyStream << TRUE

The receive operator (>>) sends the object a message with no arguments whose selector is based
onthetypeof thesi npl e_vari abl e. Theselector is"Recei ve" concatenated with the name of
the type of the variable. This message returns a value of the requested type. The operator then
assignsthisvalueto thesi npl e_vari abl e. For instance, in the following:

i nteger i;
myStream >> i;

nmy St r eamis sent the message Recei vel nt eger and the value returned isassigned toi . When
both operands are objects, asin Figure 3.31, the operators help the object on their right send and
receive itself from the object on the left (presumably a stream).

obj ect << object;

obj ect >> object;

Figure 3.31

To accomplish this, the object on theright is sent a message with a handle to the object on the | eft.
The selector of thismessage is either SendTo (<<) or Recei veFr om(>>).

32 February 25, 1997

AthenaMuse 2.2 Documentation

3.15 Control Flow
The ADL provides a standard and predictable set of control structures, as shown in Figure 3.32:

i f (BoolExpression) { . . . }
[else if (BoolExpression) { . . . }]

[else { .. .1}]
for i inlst { . . . }

for i inarray { . . . }

whi |l e (BoolExpression) { . . . }

do { . . . } while (BoolExpression);

cond {

(BoolExpressionl) { ... }
[(BoolExpression2) { ... }]
[...]
}

br eak;

conti nue;

return [value];

forward => [selector @ object/handle;

Figure 3.32 Control Structures

There are three non-C++ control structures:

1 for i inlist { . . . } iteratesover the elements of thelist and executes the code i

n

the block repeatedly with the variable i assigned to each member of thelist in turn. This usage
requiresthat all list elements are of the same type (the declared type of the variablei) or that

i beof typeany.

2. for i inarray { . . . } iteratesover the state of the array whenthef or statement is

first entered. For each such assigned element, i isassigned alist whose first member isthe

value of the array element, and whose second through n + 1°' members are the values of the

element’sindices, where n isthe number of array indices. The order in which the elements

arevisited is unpredictable.

3. cond, borrowed from LISP, guarantees that at most one of the code blocks within the cond

block is executed, the first that is preceded by a TRUE boolean expression. A default can be

specified using TRUE.
We discussthef or war d statement in Section 3.21, “Method Definition” page 41.

February 25, 1997

33

AthenaMuse 2.2 Documentation

list alist;
any val ue

for value in alist {
if (islnteger (value)) {
echo(“Value is an integer\n”);

{el se {
echo(“Value is not an integer\n”);
}
}
i nteger anArray<string>;
list alist;

anArray[“Steve"} = 43;
anArray[“Lori”] = 42;

for alist in anArray{
echo(“Age of"&at (2,alist)& is”"&t(1,alist)+“\n");

}
i nteger ival = 7;
cond{
(ival >= 2) {
echo(“Integer greater than 2\n");
}
(ival >= 0 {
echo(“Integer greater than or equal to O
but less than 2\n");
}
(TRUE) {
echo(“Integer is negative\n”);
}
}

Figure 3.33 Non-C++ Control Structures

3.16 Object Definition

Defining an instance of an object is similar to defining a variable, but the initialization of objects
is more complex. We deal with this topic more fully in Section 3.25, “Object Initialization”
page 49, where we discuss the process of initializing objects. In this section we are concerned
only with the syntax for defining objects.

The default object declaration takes the form of aclass name followed by anon-null list of object
identifiers. More generally, an object declarator substitutes for each identifier. An object declara-
tor isan identifier combined with two optional constructions that specify how the object isto be
initialized.

34 February 25, 1997

AthenaMuse 2.2 Documentation

Simple Object Declaration

MyCl ass nyCbj 1, nyQCbj2;

Object Declaration with Custom Constructor

MyCl ass { 'CustonConstruct, argl, ..., argn} => nmyQoj;

Object Declaration with Initializor Block

Myd ass nyCbj1 {
hei ght =100; wi dt h=100;
i

Object Declaration with Special Constructor and Initializor Block

MyCl ass { 'CustonConstruct, argl, ..., argn} => nmyQObj 1l {
hei ght =100; wi dt h=100;
i

Figure 3.34 Object Declaration

The ssimple form of object declaration shown in the first example of Figure 3.33 would create two
instances of the MyCl ass named my Cbj 1 and ny Obj 2 respectively. When these two instances
are created, the standard message Const r uct is, by default, sent to each instance. The more
complicated example shown in that same figure illustrates how the default Const r uct message
can be over-ridden. In this example, the message

{* CustonConstruct, argl, ... argn}

is sent when the instance ny Obj is created instead of the simple Const r uct message. This
requires, of course, that the class named MyCl ass have a constructor method named Cust om
Const ruct and that the member and type of the argumentsin the message agree with those spec-
ified for the method. A class can have any number of constructor methods, but only one of these
can be used to create any given instance of the class. Asdiscussed further in Section 3.25,
“Object Initialization” page 49, constructor methods are distinguished fom ordinary methods in
ADL by beginning them with the keyword upon rather than the keyword on.

The third examplein Figure 3.34 illustrates the use of initializor blocks. These blocks consist of
a series of ADL statements enclosed in curly brace delimiters. Initializor blocks allow an ADL
programmer to set values for the attributes of an instance of a class being constructed. Inthe
example in the figure, the attributes hei ght andwi dt h are each initialized to 100. Initializor
blocks (or izor blocks for short) are used very often by ADL programmers becasue they provide a
very convenient way to set attribute values for newly-created objects. However, it isimportant to
stress that the ADL statementsin an izor block are executed as though they were part of the object
being created, not as part of the object in which they actually appear. Thisistermed aforeign
scope in ADL. This means that the right hand side of the assignment:

hei ght 100

February 25, 1997 35

AthenaMuse 2.2 Documentation

refersto the variable named hei ght inthe new instance of MyCl ass being created. The conse-
guences of an izor blocks being executed in aforeign scope are often not obvious to beginning
ADL programmers. For example, consider afragment of ADL code asfollows:

i nt eger xval ue=50; //declare an integer initialized to 50
MyCl ass nmyQbj {height=zvalue;}; //incorrect use of izor block

One migh incorrectly expect that the value of the attribute named hei ght in MyCl ass would be
set to 50 by thiscode. Instead, this code will produce an error because the izor block that attempts
to set hei ght isexecuted in the scope of the classMyCl ass, and the variable xval ue on the
right hand side of the assignment is not defined in this scope. Thecorrect way to achieve the
desired result in ADL would be using the following cde fragment:

i nteger xval ue=50; //declares an integer initialized to 50
MyCl ass ny Qb; /'l create instance of MyC ass naned nyQbj
myQbj . hei ght =val ue; //set the height attribute of nyQbj

The fourth example in Figure 3.34 combines the use of a custom constructor with the useo f an
izor block. While the detals of the order in which things occur when a new object is constructed
are covered in much more detail in Section 3.25, “Object Initialization” page 49, it isworth not-
ing that the execution f the custom constructor occurs before the execution of the izor block.
Thus, any statements in the constructor method that set values of attributes that are also set in the
izor block will be over-ridden.

An object declaration can contain multiple object declarators, each with its own identifier, just as
it can contain multiple simple identifiers. Object instances are not variables and cannot receive
assignments.3 Objects declared within a scope are destroyed upon exit from that scope. Never
destroy declared objectsusing the del et e operator. In defining an object, you create a new
instance of the wrapped C++ class, initializeit, and makeit visibleto the ADL in the current scope
if the object isan instance of a system-defined wrapped class. If the object isan instance of auser-
defined ADL class, then you create a new instance of that class along with all its members and
bases (see Section 3.23, “Wrapped Classes” page 44 for more information on wrapped, or sys-
tem defined, classes and user-defined classes).

3.17 Dynamic Objects and Storage Management

Y ou can create objects dynamically by using the new operator with the name of, or ahandle to, a
defined class. Such an object does not possess a name, and the user refersto it solely through the
handle returned by the new operator. The object continues to exist even after exit from the enclos-
ing scope, and if you are not careful, it is easy to destroy the handle accessing the object. Free the
object using the del et e operator before destroying its handle.

3 Thisavoids forci ng the user to confront the complexity of the C++ copy constructor. Default cloning is pro-

vided (see Section 3.17, “Dynamic Objects and Storage Management” page 36).

36 February 25, 1997

AthenaMuse 2.2 Documentation

Y ou can use the new operator with both special constructors and initializor blocks. The created
object isinitialized using the default Const r uct method unless a special constructor message
intervenes between the new operator and the class name. The optional initializor block followsthe
class name.

Y ou can also use the new operator to create new instances of base and compound types, including
arrays. Aswith objects, the new operator returns a handle to the newinstance and not the instance
itself. Again, free theinstance using the del et e operator.

cl ass Myd ass
{ .
string nane;
upon Construct { ... }
upon CustontConstruct : list date { ... }

b

cl ass Foo

{
on Dolt

{
handl e aCl assPtr, bCl assPtr, alistPtr;
aCl assPtr = new MyC ass;
date = { 19, 'May, 1990 };
bCl assPtr = new {' CustonConstruct, date}
=> MyClass { nane = “MI.T."; },;
aListPtr = new |ist;

Figure 3.35 Dynamic Instancing Example

Thecl one operator () can be applied to an object or object handle to produce a
copy of an object. The default method for doing thisisto first simulate a use of the new operator
on the object’ s class, and then do arecursive cl one on member objects, a bitwise copy on mem-
bers of base data types, and a deep copy on compound data members.

A non-default cl one procedure is specified by defining aCl one method in the classto be
cloned. This method is called with the handle of the cloned object as an argument. The method
gets called after the smulated new, and substitutes for the remainder of the default cl one proce-
dure. Note that Cl one is called as amethod on the freshly cloned object, rather than on the object
being cloned. Thus aCl one method should have no return value. Destroy cloned objects using
thedel et e operator.

February 25, 1997 37

AthenaMuse 2.2 Documentation

3.18 Object Destruction

AM2 destroys an object declared within a scope on exit from that scope. The del et e operator
also destroys an object. Apply it only to the handle of an object returned by the newor cl one
operators.

The default destruction of an object involves:

» Therecursive destruction of all member objects and variables in reverse declaration order
* Therecursive destruction of all basesin reverse declaration order

» Thedestruction of the deleted object

This may be insufficient if the object contains handles to other objects or data allocated using the
new operator. So that you can specify custom actions to accompany an object’ s destruction, AM2
checksfor aDest r oy method whenever you delete an instance of a user-defined class. AM2 calls
thismethod, if it existsin the deleted object’ s class, before the destruction of member objects and
bases, and the freeing of object storage.

3.19 Object Member Reference

Y ou can access the data members of an object using the (.) operator. If my Qbj ect isthe name of
an object instance generated by a declaration, then my Cbj ect .memberName refersto the appro-
priate object member. Access control is discussed in Section 3.20, “Class Definition” page 40.
Y ou can chain object references using the (.) operator to refer to members of objects that are
themselves the members of an enclosing object. For instance, imagine a class named Viewer that
describes a standard video viewer, and that possesses a button named Forward that starts video
play. Then you might have the following statements:

{

Vi ewer myVi ewer;

nyVi ewer . Forward. wi dt h = 40;
}

Figure 3.36 Object Member Reference

If an object member reference occursin an expression, then the value is simply accessed. If an
object reference occurs as an lvalue, that is as the target of an assignment, and the assignment
appears in amethod applied to the object itself, then a simple assignment is performed. Such
assignments are called native. If, however, the object member reference occurs in a method
applied to some other object, then the run-time system checksfor astandard Set _name method in
the class of the object whose member is the target of the assignment, with the member name as
part of the selector and the value of the right side of the assignment as the argument.

Assignments that invoke Set _ methods are called foreign. If such aSet _ method is not found
for aforeign assignment, then a standard assignment is applied.

38 February 25, 1997

AthenaMuse 2.2 Documentation

For an example of native assignment, consider a class named Book that has an integer member
called Cur r ent Page. If you call aNext Page method on an instance of the Book class, and the
method contains the statement,

Current Page = Current Page + 1,

then, in effect, you increment Cur r ent Page without calling the Set _Cur r ent Page method. In
contrast you use foreign assignment when assigning to members defined in bases. Thus, if class
Di cti onary inheritsfrom Book, and amethod of Di ct i onary contains an assignment to Cur -
r ent Page, thisassignment invokesthe Set _Cur r ent Page method, if it exists.

All classes possess adefault Set At t ri but es method. This method takes one argument, a spe-
cialy formatted list of lists, each of whose sublists consists of apair of elements, a string member
name, and a corresponding value. The Set At t r i but es message is handled by iterating over the
argument list, and performing the appropriate foreign assignment for each member/value pair.
YoucanuseaSet Attri but es message to set membersin bases. You can override the Set At -
t ri but es method, but it is probably dangerous to do so. Thisfeatureis similar in intent to the X
toolkit varargs style interface, and it simplifies the writing of special constructors (see Section
3.25, “Object Initialization” page 49).

XFbutt on nyButton;
list buttonList = {
{ "x, 50},
{ 'y, 50},
{ "width, 200 },
{ "height, 100 }
i

{ "SetAttributes, buttonList } => myButton;

Figure 3.37 Sample SetAttributes Call

Y ou can create ahandl e to an object or avariable using the (& operator. Y ou cannot, however,
take the handl e of an object member that possesses aSet _ method. Y ou can access object
membersthrough ahandl e using the (- >) operator. The (*) operator dereferences ahandl e,
but it cannot be applied in such away that it returns an inappropriate target for an assignment. For
example, you cannot use it to return an object on the left hand side of an assignment.

Vi ewer myVi ewer;
handl e vwr Poi nt er;

vwr Poi nter = &nyVi ewer;
vwr Poi nter->Forward. wi dt h = 40;

Figure 3.38 Object Handles

February 25, 1997 39

AthenaMuse 2.2 Documentation

Note that unlike C++ pointers, ADL handles are dynamically typed. The built-in function
i sKi ndOf () provides run-time type checking of handles (see Section 3.22, “Metaclass Opera-
tions” page 43).

The keyword par ent isaways ahandle to the object that has the current object as a direct mem-
ber. In amethod, the current object is aways the object on which the method is being invoked. In
aninitializor block, the current object isthe one being initialized. If the current object was dynam-
ically created using the new operator, then thereisno par ent . This case can be tested using
another keyword, t heHeap. For dynamically created objects, par ent == t heHeap.

3.20 Class Definition

In the ADL, auser can define a new class from scratch (user-defined), create a subclass of a user-
defined class, or create a subclass of awrapped (system-defined) class. Class definitions can nest
and you can define a class within another class, but not within its methods.

There are two forms for class definitions. The more common form defines a named class from
which the user will later declare several instances. Such a class definition introduces a new type
name into the ADL just asit doesin C++. It consists of the following:

* thekeywordcl ass
e the name of the new class

* acolonif the new classis an explicit subclass followed by the names of parent classes
(separated by commas)

e anopen curly bracket ({)

» the class member declarations, if any

» the class method definitions, if any

» aclosecurly bracket

e anoptional commarseparated list of instance names

» atrailing semicolon

class MyClass [: Basel[, Base2[, ...]]1 {
Member Declarations
Method Definitions

} [instancel[, instance2[, ...]11;

anonynmous [: Basel[, Base?[, ...]1] {
Member Declarations
Method Definitions

} [instancel[, instance2[, ...]11;

Figure 3.39 Class Definitions

40 February 25, 1997

AthenaMuse 2.2 Documentation

Y ou can declare instance variables of the defined class immediately by appending their names
after the closing curly bracket of the class definition.

The second form defines an unnamed class, and is used when all the instances of the unnamed
class can be declared at the time the classitself is defined. Thisform of the class definition substi-
tutesthe key word anonynous for cl ass and omits the class name. By default, all instances of a
class contain their own copies of class data members. If the intention of the application developer
isthat al classinstances should share one copy of a data member, then that data member’ s decla-
ration should be prefaced with the cormon keyword (). Conmon members corre-
spond to the st at i ¢ class members of C++. The ADL has adopted a different nomenclature
because the word st at i ¢ isoverused in C++.4

A subclass can redefine a member or method of a parent class. Such aredefinition is said to hide
the original member or method definition in the parent class. That is, the subclass cannot access
the parent member or method without using a scoping operator (: :) (see Section 3.24, “Inherit-
ance” page 47).

AM2 currently provides only primitive access control to limit the developer’ s ability to get and set
the values of a class instances members. The ADL does not possess a scheme similar to the C++
categories of publ i c, pr ot ect ed, and pri vat e members. In C++ all access control is checked
at compile-time, which is possible because of the language’ s strict type checking. The ADL isless
strictly typed (handl es form asingle type), which forces any access control to be implemented
using run-time mechanisms. We believe that it would be too computationally-intensive to imple-
ment thethree C++ accesscategories. Onepossibility under considerationisto dispensewiththe

pr ot ect ed category and to modify the pri vat e category so that pri vat e members and meth-
ods of an object could only be accessed from within that object itself. In C++, pri vat e methods
can be called on an object from any object of the same class. The developer can use Set _ meth-
ods (see Section 3.19, “Object Member Reference” page 38) to make a member read-only in
methods outside the immediate class and or in class methods applied to other instances of the
same class.

Since wrapped classes are system-defined you cannot modify them, but you can create subclasses.
One of the great strengths of the AM2 environment is that wrapped classes are almost indistin-
guishable from user-defined classes, yet they are implemented in C++ and may interface to third-
party libraries. The following section discusses wrapped classes and the relationship to user-
defined classes in more detail.

3.21 Method Definition

Method definitions are contained in blocks introduced by the keyword on followed by the mes-
sage prototype. The prototype must begin with an identifier called the selector that is unique
within the method’ s class. The selector appears as an unquoted character string as the first compo-
nent of the message list (see Section 3.13, “Messages” page 30). The selector can be the same as
the selector of a method in the parent class or one of its ancestors. In this case, the new method
overrides the ancestor’ s method.

4 SeeB. Stroustrup, The C++ Programming Language2 (1991) 166.

February 25, 1997 41

AthenaMuse 2.2 Documentation

If the method receives arguments, you must declare these arguments in the message prototype
after the selector and a colon separator. The arguments must be of base or compound type. Nei-
ther arrays nor objects can be message arguments, but handles to them are allowed. The type of
the arguments, if they are present, are checked each time a method is invoked. Message argu-
ments may be unset.

The ADL does not allow the overloading of selectors. That is, amethod is always called with the
same type of argumentsin the same order. The same method selector cannot be specified for two
separate methods that are distinguished by their argument lists, asin C++. The method can return
avalue, once again of base or compound type. If it does so, you must declare the type of the return
value as the last part of the prototype following al the argument declarations. This declaration
takes the form of the keyword r et ur n followed by the type of the return value.

The block that follows the message prototype contains the executable ADL code that defines the
method. If a method declares areturn value, this code must indicate the return value using the
keyword r et ur n followed by an expression that evaluates to the return value. The returned value
may be unset. The method terminates upon execution of ar et ur n statement, or if the method
does not return avalue it terminates after execution of the last statement of the block. In methods
with no return value, do not follow ar et ur n statement indicating premature termination by an
expression.

In an object method, the keyword sel f isawaysahandle referring to the object and the keyword
sender is always a handle to the object that sent the message currently being handled. If the mes-
sage was sent by the system, e.g., adefault or specia constructor or an| ni t message, then
sender iSNULL. An object can directly set the value of an object member without using aSet _
message to self.

Methods, like object members, can be conmon, that is, they can apply to the class as awhole
rather than a particular instance of the class (). You can declare acommon
method by inserting the keyword comon between on and the selector in the method definition.
Common methods have access only to the common members of a class, not to the regular mem-
bers, because you cannot refer to aregular member without referring to an instance.

Y ou may declare amethod to bel ocal if you do not wish the method to be inherited by a sub-
class. That is, aloca method may not be invoked by a message directed to an instance of a
derived class.

See Figure 3.40 for the general form of a method definition. The colon isrequired if either an
argument list or return typeis present.

on [comon] [local] selector [:[typel argl, ... , typen argn]

[return rettype]]

{
Method Declarations
Method Statements

Figure 3.40 Method Definitions

42 February 25, 1997

AthenaMuse 2.2 Documentation

Thef or war d statement () indicates that the current message is to be forwarded
to another object. The statement has two formsillustrated in Figure 3.41.

forward => object/handle;

forward stringSelector => object/handle;

Figure 3.41 Two Forms of the Forward Statement

In both cases, execution transfers to a method in the new target specified by the object or handle
appearing after the (=>) operator. The first case of this example issues an identical message to
the new target. The second case uses the same arguments, but specifies anew selector by astring.
The new target appears to return directly to the message sender in the case of a synchronous two-
way message, not to the forwarding object. An object can forward a message to a different
method within itself by using the construction

forward ' newSel ector => sel f;

The forward statement is largely syntactic sugar except that it guarantees that the message isfor-
warded synchronously, even if the original message is asynchronous. That is, once a method has
started to handle a message, the f or war d statement is seen as an extension of the original han-
dler, and not the transmission of a new message.

3.22 Metaclass Operations

The future development of editorsin the ADL requires the capability to create ADL subclasses
dynamically. Such an editor may need to access the class (metaclass object) of awrapped or ADL
class. Thecl assOf operator, when applied to an object identifier or an object handle, returns a
handle to the corresponding metaclass object. It may also be necessary to send a message to the
metaclass object of a named class. The operator t heCl ass, when prefixed to a class identifier,
likewise returns a handle to the specified class.

class MClass : MyBase { ... } myQbject;
class YourClass { ... };
on Foo

{
if (isKindO(&ryObject, theC ass MyBase))
{ [/* Do This */ }
if (isKindO(&myQbject, theC ass YourCl ass))
{ [/* Don't do this */ }

}

Figure 3.42 Run-time Type Checking Using isKindOf()

February 25, 1997 43

AthenaMuse 2.2 Documentation

Thei sKi ndOf (hQbj ect, hd ass) built-in function provides run-time type checking of ADL
handles. Y ou can call it with two arguments: the first is a handle to an object, the second is a han-
dle to the metaclass object for a class. The second argument is usually derived from one of the
expressions shown in Figure 3.42.

Thei sKi ndOF () function returns TRUE if and only if the class pointed to by the second argu-
ment is the class or a base of the class of the object pointed to by the first argument. You can cre-
ate an instance of a class from a handle to the metaclass object using the new operator by
enclosing the handle in parentheses, as shown in Figure 3.43.

handl e hButton
handl e hButton

new (theC ass XFbutton);
new {‘Create, self} => (theC ass XFbutton);

Figure 3.43 Creating a Class Instance from the Handle to a Metaclass Object

3.23 Wrapped Classes

Wrapped classes are C++ classesthat are “ wrapped” with the necessary information to make them
usable in the ADL. Wrapped classes are a so called system-defined classes. They cannot be modi-
fied athough they can be adapted through subclassing. AM2 comes with a set of wrapped classes,
which are described in Chapter 6, “Wrapped Class Reference” page 111.

By convention, the names of wrapped classes begin with two capital lettersthat define the module
the class belongsto, followed by alower case word specifying the class within the module. If
more than one word is necessary, the names are concatenated with second and later words starting
with acapital letter. The following samples are typical wrapped class names:

XFt op /1 a top level frame or shell w ndow
XFbut t on

XFcheckBox /1l note the capitalization

MM mage

The exceptions to this convention are the set of wrapped notification classes (see Section 4.2,
“Using Notification Request Objects” page 62) and certain abstract wrapped classes, e.g.,
Act i vi t yManager , that never appear in ADL programs. Most programmerstry to distinguish
their ADL from wrapped classes by starting the names of ADL classes with only a single capital
letter, e.g., Exi t But t on. Notethat XFt op and XFbut t on will frequently be used as example
wrapped classes in this document.

System devel opers can aso create wrapped classes using the wrap script (see “Creating
Wrapped Classes” on page 271). We use wrapped classes and user-defined classes (those writ-
ten in the ADL by an application developer) in almost exactly the same way, with some restric-
tions on member access for wrapped classes. This section discusses how wrapped classes differ
from user-defined classes.

There are five things that you can do with any class: refer to it by name, create a subclass of it,
create an instance of it, access members of its instances, and invoke methods of its instances.
Let’slook at each activity in turn.

44 February 25, 1997

AthenaMuse 2.2 Documentation

3.23.1 Scope of a Class Name

An ADL programmer specifies a class by its name when creating a subclass or an instance of the
class, and when getting a handle to the class (using t heCl ass operator). The scope of aclass
name represents the part of the program in which the name refersto that class (see Section 3.26,
“Scope” page 52). A wrapped class' name has the same scope as that of a non-nested, user-
defined class. This means that awrapped class can be used anywhere in an ADL application.

One difference between wrapped classes and user-defined classesis that the | atter, when defined
with the same name as a wrapped class silently hides the corresponding wrapped class. For
instance, suppose there is awrapped class named XFsel ect Li st . A user-defined class named
XFsel ect Li st would hide the wrapped class of the same name so that any objects of type
XFsel ect Li st would be instances of the user-defined class, not instances of the wrapped class.
Two user-defined classes with the same name generate a semantic error.

3.23.2 Creating an Instance of a Class

Y ou can instantiate, that is represent by a concrete instance, all wrapped classes with the excep-
tion of an abstract wrapped class. An abstract wrapped class is one that exists only to provide
organization in the hierarchy of classes. It is not acomplete classin itself and therefore instances
of it are not allowed.

3.23.3 Creating a Subclass

Y ou can create a subclass, which is a class that inherits from a superclass, of most wrapped
classes. For example, an ADL program might create a subclass of the wrapped class XFt op to add
XFbut t on member instances as part of creating separate user interfaces.

Some wrapped classes, however, do not allow for the creation of subclasses. For example, the
wrapped class XFwi dget isan incomplete class that exists to provide organization in the hierar-
chy of classes. Most abstract wrapped classes are in this category. One notable exception is the
Act i vi t yManager class, an abstract classthat you can use to create subclasses (see Section 4.5,
“Creating ADL Classes That Manage Activities” page 70). It isabstract because without the
information stored in its subclasses an instance of it has little use. It is the subclass that provides
the information that makes it useful.

3.23.4 Member Access

Wrapped classes can have simple and compound members, namely booleans, integers, reals,
strings, lists, intervals, times, and handles. They cannot have arrays or instances of other objects
as members. There are three operations that you can attempt on a ssimple or compound member of
an object: taking a handle to the member, getting the member’ s value, and setting the member’s
value. The following sections describes the operations available for using those members and the
restrictions on the way they are referred to by name.

February 25, 1997 45

AthenaMuse 2.2 Documentation

Operating on Members

We call instances of wrapped classes wrapper objects. Taking a handle to amember of awrapper
object is not allowed because the member does not necessarily exist. Some members of awrapper
object are actually implemented by making method calls on the C++ object that implements the
wrapper instance. Other members, known as attributes, are actually contained and managed by
the underlying windowing or operating system. For instance, think of all the possible attributes of
abutton, width, height, borderWidth, foreground, background,etc. The XFbutton passes manage-
ment of these attributes down to the underlying windowing system on each platform.

Y ou cannot assign unset values to members of wrapped classes. For the most part, however, you
can get and set the members of awrapper object just like the members of an instance of a user-
defined class. Just as a user-defined class can prevent the setting of one of its members by provid-
ing aSet _nmenber Name method, and either not setting the member or calling the di e built-in
function, awrapped class can prevent the getting or setting of its membersin asimilar way. For
example, thewi dt h member of the MM mage wrapped class is read-only and attempting to set it
isafatal error. See the documentation for wrapped classesin Chapter 6, “Wrapped Class Ref-
erence” page 111 to determine which members are accessible.

Naming of Members

Aswith members of user-defined objects, you can refer to each member of awrapper object by its
name. For example, the class XFl abel hasamember called wi dt h. In subclasses of XFI abel ,
you simply refer towi dt h if the subclass does not have another member with the same name that
hidesit. From outside the label class, you can refer tow dt h asamember of XFl abel by acon-
struct similar to myLabel . wi dt h or handl eToMyLabel - >wi dt h.

Unlike the members of auser-defined object, in awrapper object you cannot qualify the members
of awrapped class by the name of the base that providesit. For instance, XFf ont abl e isa super-
class that provides the font member for other classes, such as XFt ext . Y ou cannot refer to this
font member as XFf ont abl e: : f ont . You can, however, refer to XFt ext : : f ont .

Qualifying sel f

Unlike the base objects of a user-defined object, you cannot access the base of a wrapped object
from the ADL. For instance, suppose that MySel ect Li st isauser-defined subclass of

XFsel ect Li st . Itisan error to accessthe XFwi dget base of XFsel ect Li st from within
MySel ect Li st using the conventional XFwi dget : : sel f because there is not necessarily an
object that properly represents this base.

3.23.5 Method Invocation

The invocation of methods works just as it does for user-defined objects, except that a method
cannot be sent to a base class of awrapped class. In the ADL, a message goes to the appropriate
base object to invoke an overridden method of that class. Sinceit is not possible to access any
base object of awrapped object, as discussed in the previous section, it is not possible to access
overridden methods.

46 February 25, 1997

AthenaMuse 2.2 Documentation

3.24 Inheritance

All variable or object members defined in a parent class are accessible in a subclass unless they
are hidden by amember of the same name. In such a case, the inherited members are still accessi-
ble, provided that you identify them using the scoping operator Par ent Cl assNane: : nenber -
Nane. Such an expression is known as a scope pair. If the parent class name is not known, you
can usethe keyword i nher i t ed in place of aclass name before the scoping operator to access
the nearest occurrence of an otherwise hidden member in the chain of inheritance.

cl ass Dad
{
XFbut t on button;
on Dolt { ... }

b

class Child : Dad
{
XFbutt on button;
on Foo
{ .
string message;
button.width = 40; // OK Menber hides parents
'Dol t=>self; // Dad::Dolt()
inherited::button.width = 100; //Dad:: button

Figure 3.44 Example of Inheritance and Member Concealment

Y ou can invoke a method defined in a parent class by a message to a derived class unless the
method has been declared | ocal in the parent class. The exceptions are the system messages

I ni t and Dest r oy, the system default constructor message Const r uct , and any other method
declared as a constructor by the developer. These methods are local to the class in which you
declare them by default, and you may not invoke them by a message to aderived class. The ratio-
nale for thisis that these messages are sent to objects and bases during initialization and destruc-
tion. If these messages could be inherited and were not redefined in each class, they might execute
multiple times during the initialization or destruction of an object.

Y ou can redefine or override methods in a derived class. If you want to access the version of a
method defined in a base, you can direct the message using the sel f keyword qualified with the
scope operator and the name of the base, provided the message executes in one of the methods of
the derived class. Thereis currently no way to send a message to a base of an arbitrary object
although there is a proposal to allow scope pairs with member sel f in member selection expres-
sions Figure 3.45.

February 25, 1997 47

AthenaMuse 2.2 Documentation

class A

{
on Dolt { ... }
i

class B: A

{
on Dolt

{

"Dolt => A::self;
}
b

B b;

on Init

{
"Dolt => b.A: :self; [/ proposal; not inplenented

}

Figure 3.45 Example of Inheritance and Method Concealment

Since a user-defined class can be a subclass of multiple classes, the ADL supports multiple inher-
itance. Multiple inheritance creates ambiguity when there are methods or members defined with
the same name in two separate parent classes of the same subclass. Such ambiguous referencesin
amethod of asubclass are an error in C++, but the methods used to detect such conflicts are com-
pute intensive and more appropriate for the compile-time type checking of C++ than the run-time
lookup of the ADL.

AM2 searches superclasses in a depth-first manner during inheritance lookup. If this order is not
appropriate, the author may usei nher i t ed declaration () to indicate in which
subclass a method or member should be sought. The keyword i nher i t ed introduces such a dec-
laration, followed by a base class name, the scoping operator, the type of the inherited member in
the base, and the member name. After such a declaration, the member name refersto the similarly
named member in the specified base, even if that member is not the first of that name in inherit-
ance order. Figure 3.46 provides an example.

The choice of depth-first search is arbitrary but ssmple, and has the virtue that it establishes an
unambiguous priority among parent classes. In the examplesin Figure 3.46, Chi | d ismore
closely related to Dad and Gr andDad thanitisto Mom

The usage of the keyword der i ved in ascope pair with amember name or with thesel f key-
word parallels the usage of thei nheri t ed keyword. The expressionder i ved: : sel f, whenit
appears in amethod of a base of a derived object, refers not to the base but to the whole derived
object. Likewise, deri ved: : prefixed to amember name refers to the member not (necessarily)
in the base but rather the first occurrence of the member in inheritance order in the whole derived
object. Therationale for theder i ved keyword isto provide part of the functionality of virtual
functionsin C++. You can divide this functionality in two parts:

48 February 25, 1997

AthenaMuse 2.2 Documentation

cl ass GrandDad
{
on G { ... }
}
class Dad : GrandDad
{
XFbut t on button;
on Dolt { ... }
b
cl ass Mbm
{
XFbut t on button;
on Dolt { ... }};
on G { ... }
class Child : Dad, Mom
{
i nherited Mom : XFbutton button;
on Foo
{
string nmessage;
button.width = 40; // Uses
"Dolt => self; /] Uses
'"Go => self; /] Uses
}
b

/1 uni npl ement ed

Mom : butt on
Dad: : Dol t
GrandDad: : Go

Figure 3.46 Multiple Inheritance and Scope Example

* Toimplement aregulated polymorphism where C++ pointers to base combined with virtual
functions allow the devel oper to treat instances of related classes as part of the same collection
and still to have the instances retain the specific behavior of their classes

* To alow communication from a base to the full derived object

ADL handles provide afreer, though less safe, version of C++’s polymorphism. Indeed, since
handles are untyped, they provide total polymorphism. Thereis no check that an object will
understand a message until the message is received at run-time. The polymorphism provided by
C++ virtua functionsis therefore unnecessary. But communication from base to derived object
can be very important, especially in the case of mix-in classes. Theder i ved keyword provides
this communication. (For an implementation of the der i ved keyword, refer to the example pro-
gramin Figure 4.11, “A Class Inheriting from the ActivityManager Class” page 76.)

3.25 Object Initialization

An ADL description of an AM2 application consists of class definitions and initialized instances of
those classes. Most class definitions include object members that are instances of other classes.

February 25, 1997

49

AthenaMuse 2.2 Documentation

The initialization of these instances is what gives an AM2 application its particularity. It iswhat-
makes one interface screen different from another and what distinguishes a particular interface
button from the next.

The ADL provides several mechanisms for initializing object instances. Each of theseis optional,
and each is applied successively. Theinitial state of an object isthe result of these cumulative and
possibly overlapping initializations. The complete initialization sequence for an ADL object is as
follows.

1. The ADL createsthe object. That is, the ADL allocates storage for the object so it has an
address.

2. The ADL creates and initializes all bases and members recursively, each set in declaration
order. (Creation means allocation, as discussed in the first step. Initialization refersto all of
the steps discussed in thislist.)

3. A constructor message is sent to the object and handled if the corresponding method exists. If
aspecial constructor is specified in the object definition or new statement, that is the construc-
tor message sent, it must be handled or the system generates an error. If the object definition
or anew statement does not specify a specia constructor, then the default Const r uct mes-
sage is sent without arguments. This message is optional, so the system does not generate an
error if thereis no corresponding Const r uct handler.

4. The optional initializor block, if it exists, executes asif it were a method of the object being
initialized. All assignmentsin the initializor block are treated as foreign.

5. The ADL queries the asset manager about the object, and applies any assets that pertain to the
object.

6. The ADL sendsan optional | ni t message to the object. If thereis an appropriate handler, it
executes. Otherwise it isignored.

Let usillustrate this sequence with afew examples:

cl ass Myd ass

{
Menber Decl arati ons;

upon Construct { ...

}

upon Create :
on Init { ...

handle h { ... }
}

b

MyCl ass alnstance { Initializor Bl ock};
MyCl ass {' Create, &alnstance} => blnstance;

Figure 3.47 Simple Initialization Example

Inthiscase, al nst ance and bl nst ance are instances of the classMyCl ass. We
initialize al nstance in the following steps:

50 February 25, 1997

AthenaMuse 2.2 Documentation

1. Createtheclassinstanceal nst ance.
Create and initialize all members of al nst ance using this procedure starting at the first step.

3. Cal the Construct method on the object al nst ance since there is no specia constructor
specified.

4. Executetheinitializor block that follows the declaration of al nst ance as a scope (see Sec-
tion 3.26, “Scope” page 52). Member reference follows the pattern of a method inside
MyCl ass. That is, the user may refer to members by simple member name rather than the
combination al nst ance.memberName. Member protection, however, follows the rules for
an external reference. Assignment to class members from within an initializor block invokes
the appropriate Set _ method.

5. Consult the asset database to locate any resources that apply to the class MyClass and the
instance al nst ance, and apply them to the instance.

6. Cadl thel ni t method.

Theinitialization of bl nst ance issimilar except that it calls the special constructor Cr eat e
instead of the default Const r uct , and it does not execute an initializor block.

Constructor methods require comment since their definition uses a special syntax. In general,
bases need not know anything about their derived instances. But there are circumstances where
thisis not the case. For instance, windowing systems generally refuse to create widgets without
knowing the parent widget. In the ADL, widget containment isimplemented as class membership.
That is, amanager widget contains its child widgets as members. If those child widgets are sub-
classes of the base wrapped widgets, then the initialization of the subclassed child widgets must
inform the wrapped bases of their parent during processing of the constructors.

As an example, consider a specialization of the base button class, XFbut t on, called

Exi t But t on. Exi t But t on has special behavior, background color and label. If we go to create
amanager that contains an exit button, then the constructor for this Exi t But t on must somehow
inform the base XFbut t on of its manager parent. The ADL distinguishes constructor method def-
initions in order to add the mechanism to make this possible. Figure 3.48 illustrates this.

upon selector [: typelargl, ... , typenargn]

[init { CtorMessagel => basel, ..., CtorMessagen => basen}]

{
Method Declarations
Method Statements

Figure 3.48 Constructor Method Syntax

Constructor definitions start with the keyword upon instead of on. The constructor body can be
preceded by an optional i ni t block that specifies constructor calls for direct bases. The construc-
tor messages in this block must correspond to special constructors defined in the bases. The con-
structor messagesin thei ni t block are evaluated in the scope of the constructor execution so
they have access to the constructor arguments.

February 25, 1997 51

AthenaMuse 2.2 Documentation

The Set At t ri but es (see Figure 3.37, “Sample SetAttributes Call” page 39) method alevi-
ates a scoping problem for constructors and initializor blocks. Initializor blocks provide the appli-
cation developer far greater flexibility in initializing object members than constructors, but
because they have object method scope, they cannot refer to variable values from the scope in
which the object is being initialized. A specia constructor that takes an attribute/value list asits
sole argument can import an arbitrary set of values from the initializing scope and use themto ini-
tialize the object, thus circumventing the fixed argument list of the special constructor and the
restricted scope of theinitializor block.

3.26 Scope

A scope isaregion of aprogram in which avariable or set of variables has definition. In AM2,
each class (see Section 3.20, “Class Definition” page 40) and method definition (see Section
3.21, “Method Definition” page 41) aswell aseach initializor block forms a scope (see Section
3.25, “Object Initialization” page 49).

AM2 scopes are of two kinds, transparent and opaque. The variables defined in an enclosing scope
are also visible in an enclosed transparent scope. In an enclosed opague scope, they are not.
Method definitions form transparent scopes and class definitions and initializor blocks opaque
ones. Class definitions are visible in the current scope and in all enclosed transparent scopes as
you would expect. Classes defined at the top level of an application are also visible everywhere.

Y ou can access members and variables from the enclosed scope using the syntax for object mem-
ber reference if an enclosed scope has been named (see Section 3.19, “Object Member Refer-
ence” page 38). Occasionally, you may need to refer to aglobal object, athough avoid doing so
wherever possible. Consider two application modules that are never simultaneously visible, but
which each possess a button that putsits own module to sleep and calls up the other. These would
normally be implemented asinstances of module classes. The button actions for each must be able
to send awake up message to the other module, and must therefore be able to see the name of the
other module in the enclosing application scope.

The ADL, therefore, allows you to specify that a symbol has one of two kinds of scoping:

* Local scopeisthe default. The object or variable is destroyed upon exit from the scopein
which it is defined. Separate declaration is not necessary.

» Application scope is specified by the keyword gl obal and indicates that the symbol isvisi-
ble in the scope in which the global declaration occurs, but it is actually defined in the top
level application scope.

The keyword gl obal must accompany and precede atype specifier (e.g., st ri ng) or class name
in adeclaration. If the declaration refers to a global instance of an anonymous class, thereis no
class nameto use asthe type specifier. In this case, you can use the key word anonymous as atype
specifier. You can combine global scopewiththe(.) or(->) operators. The globa decla-
ration merely designates where to look for the left-most member of a(.) or (->) chain.

52 February 25, 1997

AthenaMuse 2.2 Documentation

Note that an enclosed scope cannot refer to an enclosing scope without a global declaration. Pro-

gramming languages typically make the identifiers of an enclosing scope visible to an enclosed
scope. Our aim hereis to increase the modularity of the ADL by minimizing name clashes. This
should encourage the reuse of interface and modul e templates and the development of template
libraries. An enclosing scope can make one of its members visible inside an enclosed opaque
scope by passing a handle to the member as an argument to a custom constructor.

(see Section 3.17, “Dynamic Objects and Storage Management” page 36).

cl ass Acl ass

{
XFbut t on aButton;

b

cl ass Bcl ass

{

on Foo

{

gl obal Acl ass al nstance;
al nstance. aButton.wi dth = 40;

b

Acl ass al nst ance;
Bcl ass bl nst ance;

Figure 3.49 Scope Example

February 25, 1997

53

AthenaMuse 2.2 Documentation

3.27 Assets

Assets allow the customization of AM2 applications on several levels. They also help to separate
the implementation of an interface and itslook and fedl.

You can initialize any variable in an ADL program using assets, thereby allowing these itemsto
be customized on aper platform, per installation, per user, and per application basis. Note that dif-
ferent platforms may support different degrees of customization. For example, Macintosh and
Windows 3.1 systems do not have separate user accounts.

Suppose an author builds an application containing a button that causes the application to exit. In
the U.S., you might use the label “Quit.” However, in Norway you would probably use the |abel

“Avslutt.” Y ou can create the two labels using assets without making modifications to the actual

program code.

AM2 assets correspond roughly to X Window System resources, Microsoft Windows 3.1 and
Windows NT .INI files, and Macintosh preferences. However, AM2 usesits own asset mechanism
rather than the native one for each platform in order to provide a portable, common interface. An
ADL programmer or an application editor need only create one asset file, for use with the ADL
code on all platforms.

3.27.1 Asset File Structure

Asset filesare ADL code files containing application data initializationsthat the user can custom-
ize. There are three types of asset blocks: class, member and global. Class and member asset
blocks are associated with an identifier and can contain statements, class asset blocks, or member
asset blocks. When an asset block is applied to an object, any nested asset blocks are then applied
when creating members of that object. Also, any statements it contains are evaluated in the con-
text of the object being created, after evaluation of theizor block and before sending the I ni t

message.

Class Asset Blocks

The assets in class asset blocks apply to all objects of the named class except those that are cre-
ated dynamically (see Section 3.17, “Dynamic Objects and Storage Management” page 36).
They typically appear at the top level, i.e., not embedded in any other asset block. Top-level
class asset blocks do not, however, affect , dynamically created objects (see “Global Asset
blocks™ on page 54).

Member Asset Blocks

The assets in amember asset block apply to the member with the same name in the class associ-
ated with the most closely enclosing class or member asset block.

Global Asset blocks

Global asset blocks are evaluated immediately after being parsed, before the application has been
completely defined or instantiated. Thisis intended to be used to set paths for the library mecha-
nism. Any statements are evaluated in the scope of the wrapped asset manager class.

54 February 25, 1997

AthenaMuse 2.2 Documentation

!/l class asset bl ock:

// all buttons under here will be red
cl ass assets XFbutton
{
background = ’'red;
}

/'l menber asset bl ock:
/1 the nmenber “theExitButton” of this class will be labelled “Quit”
menber assets theExitButton

{

}

/1 gl obal asset bl ock:
/1 all objects of class ExitButton in the application (including

| abel = "Quit;

/1 dynamically created objects) will be labelled “Avslutt”
gl obal assets
{
cl ass assets ExitButton
{
| abel = '"Avslutt;
}

Figure 3.50 Asset Block Examples

Global asset blocks can contain class asset blocks but not member asset blocks or other global
asset blocks. Such class asset blocks are then associated with both the heap and the application
class, and are applied to all objects, including dynamically created objects.

Assets and the Library Mechanism

Libraries are an abstraction that allow collections of files, both for code and for data, to be
grouped without worrying about portable pathnames. Library mappings, that is associations
between library and directory names, can be made in platform, installation, and user dependant
asset files. Filesin theselibraries can then be accessed viathe statement “fi |l e” @1 i br ar yname”
both in uses statements and elsewhere in ADL code, such asin media element constructors. The
AppLi b library automatically maps to the directory containing the original ADL file given on the
command line. The wrapped asset manager handles library mappings. To set alibrary path, use
the’ Set Li br ar y method, and to retrieve amapping usethe’ Get Li br ar y method. Note that the
path returned by * Get Li br ar y always endsin adirectory separator that so you can concatenate
it directly to afile or subdirectory name. For example, lines 3-5 of Figure 3.51 retrieve the path
for the AppLi b library, append the name of the code subdirectory, and then set the library named
My Code to this new path. Theuses statement on line 7 then includes nybut t on. adl from that
library. Soif the ADL program being runwere/ nmi t/ ceci / user/ deno/ but t ons. adl , it
would beincluding/ mi t / ceci / user/ deno/ code/ nmybut t on. adl . Similarly, the second
example constructs an MM mage named nBi r d using thefilebi r d. gi f from the same directory
asthe main ADL program.

February 25, 1997 55

AthenaMuse 2.2 Documentation

gl obal assets
{
{ 'SetlLibrary,
" MyCode,
({' GetLibrary, ’AppLib} => self) + "code” } => self;
}
uses "mybutton. adl” @ MyCode” ;

NOoO o~ WwWNBRE

MM mage {' MEi nage, { MAfile, "bird.gif”@AppLib”"}} => nBird;

Figure 3.51 Library Mechanism Examples

3.27.2 Assets and Precedence

Y ou can determine precedence in the asset mechanism using these simple rules to determine
which assets will be applied to an object. Assets that have higher precedence are evaluated later,
causing their values to override any assigned earlier.

» Atany level, member asset blocks have higher precedence than class asset blocks.

» Assets specified closer to the current object have higher precedence. The distance is deter-
mined by the number of containers between declarations.

» Values set using assets are inherited unless the derived class possesses a member of the same
name as the attribute being set by assets in the base class. For example, if the classexi t But -
t on inheritsfrom XFbut t on, any asset set for the class XFbut t on will apply to the
instances of exi t But t on.

The order of initialization is crucial in understanding the effect of asset specifications (see Sec-
tion 3.25, “Object Initialization page 49). For instance, in the exampleinvolving exi t But t on
described above, if the exi t But t on constructor sets attribute | abel to" Exi t ", but the user’s
asset file setsall XFbut t on | abel sto" XFbut t on", anexi t But t on will have labd " Exi t ".
Why? Because the derived constructor is executed after the assets for the base class are consulted.

3.27.3 Example of Using Assets

Figure 3.52 and Figure 3.53 present hel | o. adl , rewritten to use assets. Notice that it is broken
up into separate asset and code files. Asaconvention, the asset file hasa. am extension. In this
example the asset file is explicitly included viaauses statement, but the asset specifications
could just aswell have been placed in the platform specific asset files. On UNIX, for instance, the
assetsin thefile. an2r ¢ inthe user’ s home directory are read in during application startup.

56 February 25, 1997

AthenaMuse 2.2 Documentation

uses "hell o. anf;

class exitButton : XFbutton

{
upon Construct
{
Pressed = {' Exit, theApp};
}
i
class Greetings : XFtop
{

exi t Button hell o;
} myGreetings;

Figure 3.52 hello.adl Using Assets

cl ass assets Greetings

{

menber assets hello

{
| abel = "Hello, world!”;
hei ght = 40;
wi dt h = 200;

}

hei ght = 40;

wi dt h = 200;

}

cl ass assets exitButton

label = "Exit; // This gets overriden by the nmenber assets above!

Figure 3.53 hello.am

February 25, 1997

57

AthenaMuse 2.2 Documentation

3.28 Program Structure

An ADL program consists of a succession of the following elementsin any order:

» class (including anonymous) definitions

» global variable definitions, including global object definitions with initializor blocks
» globa method definitions

e uses Statements

uses "SlideViewer.cl"; /] defines class SlideVi ewer
cl ass Sl i deShow

SlideVi ewer nyVi ewer;

Figure 3.54 Uses Example

Global variables and globa methods are implicit members of an anonymously declared instance
or subclass of the system-defined application class, theAppClass.

Y ou can use the uses statement to include the contents of afile or files that replace the statement
at parsetime. If multiple uses statements referring to the same file are parsed, thefileis still
included only once. A uses statement has two forms:

uses “fileName” @I i braryNane”;

uses “fil eName”;

Figure 3.55 Uses Statement Forms

In the first form, the statement asks for the file named “f i | eNane” to be loaded from the library
named “I i br ar yNane”. In the second form, it asksfor thefile named “f i | eNanme” to be loaded
from the same library as the file in which the statement occurs. AM2 designates the filesin the
application file' sdirectory to be " AppLi b".

58 February 25, 1997

AthenaMuse 2.2 Documentation

Chapter 4 Using Activities in ADL

Newcomersto AM2 often find theidea of activity management adifficult concept to master. Once
you learn it, however, you will find it one of the most powerful features of the system. In this sec-
tion we provide adetailed guide to activity management.

Activitiesin AM2 provide the basic mechanism by which objects handle events generated by user
actionsin applications. Activities also handle events that occur in AM2 applications due to atimer
or arriving network messages. For example, a standard AM2 button object provides away to
notify other objects when the application user pressesit. In the terminology of activity manage-
ment, the button manages the pressed activity. Similarly, events corresponding to an activity
trigger that activity.

All objects that manage activities maintain alist of things to do when events trigger those activi-
ties. Thisis, in essence, alist of messages that AM2 sends to objects when the triggering occurs.
The ADL programmer can add and delete things from this|list.

We discuss the use of activity management in five stages, each described in a separate subsection:

» Section 4.1, “Using the Pressed Attribute” page 60

* Section 4.2, “Using Notification Request Objects” page 62

» Section 4.3, “Using Other Types of System-defined NRO Classes” page 65
» Section 4.4, “NROs Derived from System-defined NROs” page 69

* Section 4.5, “Creating ADL Classes That Manage Activities” page 70

» Section 4.6, “Creating Customized NROs” page 78

» Section 4.7, “Using Activities for Notification of Subscriptions” page 80

February 25, 1997 59

AthenaMuse 2.2 Documentation

4.1 Using the Pressed Attribute

One of the most common uses of activitiesis the use of button objects. For example, one often
places buttons in a multimedia application that, when pressed by the user, trigger some computa
tion or presentation. This use of buttons is so common that AM2 provides a shortcut to simplify
the general activity mechanism in such cases.

The wrapped class XFbut t on creates a simple button on the screen. (see Section 6.2.9, “XFmes-
sageDlg” page 136 for detailed documentation on the class.) The X Fbutton class provides typical

attributes such as width, height, (x, y) location on the screen, foreground and background colors,

and atext label. For example, the following codeisavery smple ADL program that puts a button
at coordinates (50,50) inside an instance of an object that is a subclass of the XFt op shell class

anonynous: XFt op
{
XFbutton aButton {x=50; y=50; height=100; w dth=200;
| abel =" Push Me”;};
} myApplication {height=300; w dth=400;};

a b wNRE

Figure 4.1 A Simple ADL Application with a Button

In this example, there is asingle instance of a class that inherits from the XFt op wrapped class.
The anonynous keyword in line 1 indicates that this class has no name; only this instance of the
classis named. (In this case, thisinstance is hamed ny Appl i cat i on.) The anonymous class has
a single member, a button object name aBut t on defined in lines 3 and 4.

ThisADL program draws the button on the screen. Clearly, we need away of assigning the trigger
event when the user presses the button. The XFbut t on class supports a special member called
Pressed. You can assign this special member alist that instructs the program to take some
action when the user clicks the mouse on that button. Initssimplest form the Pr essed attributeis
alist that hastwo values: ast r i ng giving the name of the method invoked, and ahandl e to the
object that receives a message when the user presses the button. For example, the assignment

aButton. Pressed = {‘Exit, theApp};

registers the fact that the message Exi t goesto the built-in handlet heApp. Thisisa predefined
message that terminates the program when sent to the application.

The example in Figure 4.2 displays some text information. Suppose we want to have a help button
in an application that displays some text information when pressed. The ADL program below
shows this using an instance of the XFt ext wrapped class which isinitially not visible (done by
setting thevi si bl e attribute to FALSE), and reversing that attribute when the user presses the
button.

60 February 25, 1997

AthenaMuse 2.2 Documentation

1 anonynous: XFt op

2 {

3 XFbutt on hel pButton {x=50; y=50; height=50; w dth=150;
4 reconput eSi ze=FALSE; | abel =" Hel p”; };

5 XFbutton exitButton {x=250; y=50; hei ght=50; wi dth=100;
6 reconput eSi ze=FALSE; | abel ="Exit”;};

7 XFt ext hel pText {x=50; y=100; hei ght =100; wi dt h=200; wor dW ap=TRUE;
8 vi si bl e=FALSE; editabl e=FALSE

9 text="This is an exanple of a help nessage.”;};

10

11 upon Construct

12 {

13 exitButton. Pressed = {‘Exit, theApp};

14 hel pButton. Pressed = {‘BPress, self};

15 }

16

17 on BPress

18 {

19 if (hel pText.visible) {

20 hel pButton. | abel = “Hel p”;

21 }

22 el se {

23 hel pButton.| abel = “Renpve Hel p”;

24 }

25 hel pText.visible =1 hel pText.visible;

26 }

27 } nmyApplication {height=300; w dth=400;};

Figure 4.2 An Example of a Help Button

In this example there are two buttons, one to exit the application and oneto trigger the visibility of
the help text. The specia constructor method named Const r uct automatically receives a mes-
sage when the application starts, and sets the Pr essed attributes for these buttons. The assign-
ment statement in line 14 setsthe Pr essed member so that the message BPr ess goesto the
variablesel f . (Thevariable sel f isan automatically-generated handle that references the
object itself.) Thus when the user presses the button, the BPr ess method that starts on line 17
executes. This method changes the text of the label on the help button and, on line 25, reversesthe
visibility of the text object.

Y ou can also use the Pr essed attribute to send a message to a method that requires one or more
arguments. For example, suppose we wanted to create two buttons which, when pressed, move an
instance of alabel ten pixelsto the right or left respectively. To do this, let’s create a method that
changesthe x attribute of the label by n pixels, where n is an argument to the method. For exam-
ple, if the name of the label object isnmyLabel , then the following method would moveit:

on MovelLabel : integer n

myLabel . x = myLabel . x + n;

February 25, 1997 61

AthenaMuse 2.2 Documentation

If we name the two buttons| ef t But t on and r i ght But t on, we set their Pr essed members as
follows:

| eftButton. Pressed = {{‘ MovelLabel, -10}, self};
rightButton. Pressed = {{‘' MovelLabel, 10}, self};

4.2 Using Notification Request Objects

Using the Pr essed attribute gives rise to some limitations. First, application developers fre-
guently want a button to trigger a number of different actions, yet the Pr essed attribute can send
amessage to asingle method only. If you reset the Pr essed member of abutton, you lose the old
setting. Second, the method that receives a message from the Pr essed method cannot have argu-
ments. This makes it impossible to provide the method receiving the message information such as
the (x, y) coordinates of the mouse at the time the event occurs. In AM2, these more general uses
of activities are supported through the use of Notification Request Objects, or NROs.

There are standard NRO classes provided in AM2.1 Some are system-defined and some are user-
defined (see Section 3.23, “Wrapped Classes” page 44 for adiscussion of classes.) With the
exception of NROs used to handle timer events (described in Section 4.3.2, “Timer NROs” page
67) an NRO is an object that has the following four members:

» Activity name: ast ri ng naming the activity, to satisfy notification requests

» Target object: ahandl e to the object that receives notification when an event triggers the
activity

» Target method: ast ri ng providing the name of the method to receive a message when an
event triggers the activity

» Client data: an arbitrary piece of information that can by of any AM2 datatype.

Note that the second and third of the NRO members on the list above are identical to the members
used in setting the Pr essed attribute of button objects.

The base NRO class is the Nro wrapped class. It has a special constructor named Cr eat e that
takes the four arguments listed above. The following example defines an instance of an NRO for
an activity named MouseDown. This NRO requests that the message But t onDown go to the target
object sel f along with the string “ Cl i ent Dat a” as an argument:

Nro {‘Create, ‘MuseDown, self, ‘ButtonDown, “Client data”} => downNro;

Each object that manages an activity must have at least two methods: Subscri be and
Unsubscr i be. These methods have as their sole argument ahandle to an NRO. The Subscri be
method registers the NRO for notification when an event triggers the activity named in that NRO.
For example, suppose you created an NRO named downNr o as shown above. The following
statement would subscribe that NRO to the button named nyBut t on:

NRO wrapped classes are the only current exception to the conventionthat wrapped class names begin with
two capital letters. The NRO classes could have been given the names NRgeneral, NRtimer, NRmouse --
but they weren't. No one rememberswhy. Instead they bear the slightly more readable names Nro, Tim-
erNro and MouseNro.

62 February 25, 1997

AthenaMuse 2.2 Documentation

{* Subscribe, &JlownNro} => nyButton;

After this statement executes, downNr o isregistered with the MouseDown activity of the button
object. Whenever the user clicks the mouse on that button, the message But t onDown goes to the
object pointed to by sel f .

The Subscri be method actually returns avalue that is often ignored by ADL programmers. This
valueisahandle that indicates whether or not the subscription successfully completed. Thereturn
valueisNULL if the subscription is not performed and a handle to the subscribed NRO otherwise.

The Nro class assumes that the receiving method has three arguments in the following order:
* Anargument of the type any that contains client data

* Ali st that contains strings with the namesfor the information sent by the activity, referred to
asthekeys for the activity

* Ali st that containsthe values for the information sent by the activity

For example, the MouseDown activity (and all other standard activities that describe mouse
events) provides six pieces of information when it sends its message to the target method. These
six itemsin the lists of keys and values are as follows:

1. x:aninteger givingthex location of the mouse when the user presses the mouse button
2. y:aninteger givingthey location of the mouse when the user presses the mouse button

3. button: ani nt eger with the number of the pressed button on the mouse (The interpretation
of this number is platform-dependent.)

4. shift: abool ean that is TRUE if the shift key is down when the user presses the mouse button

5. command: abool ean that is TRUE if the key designated as the command key is down when
the user presses the mouse button (The definition of the key that corresponds to the command
key is platform-dependent.)

6. modifier: abool ean that isTRUE if akey designated asamodifier key is down when the user
presses the mouse button (The interpretation of the key that corresponds to the modifier key is
platform-dependent.)

It isimportant to note that the (x, y) coordinates returned by any mouse activity are given rela-
tive to the upper left corner of the widget where the mouse event occurred.

An example of an ADL program that includes a method with the appropriate arguments follows.
In this example, the method named But t onDown outputs the names and values of the arguments
it receives.

In Figure 4.3, the NRO named downNr o subscribes to the button myBut t on. When the user
presses the mouse button, the method But t onDown receives a message. This method outputs the
client data (in this case, the string“ Cl i ent dat a”) from the NRO and then outputs the name
and value pairs by going through the entries on the list one by one.

February 25, 1997 63

AthenaMuse 2.2 Documentation

1 anonynous: XFt op

2 {

3 XFbutton nyButton {x=50; y=50; height=50; w dth=150;
4 reconput eSi ze=FALSE; | abel ="Press Here”;};

5 XFbutton exitButton {x=250; y=50; hei ght=50; wi dth=100;
6 reconput eSi ze = FALSE; |abel ="Exit”;};

7 Nro {‘Create, ‘MuseDown, self, ‘ButtonDown,

8 “Client data”} => downNro;

9

10 upon Construct

11 {

12 exitButton. Pressed = {‘ Exit, theApp};

13 {* Subscri be, &JlownNro} => myButton;

14 }

15

16 on ButtonDown: any clientData, |ist keys, list val ues
17 {

18 any tenpVal ue;

19 i nt eger count =1;

20 echo(“Client data is” & toString(clientData)+"\n");
21 while (count <= |l ength(keys)) {

22 echo(“Name="+t oString(at (count, keys)) &

23 “Val ue=" + toString(at(count, values))+"\n");

24 count = count+1;

25 }

26 }

27 } nmyApplication {height=300; wi dth=400;};

Figure 4.3 An Example Using an NRO

A typical output from this application is as follows:

Client data is Cient data
Name=x Val ue=27

Nane=y Val ue=24
Name=but t on Val ue=1
Name=shi ft Val ue=TRUE
Name=conmand Val ue=TRUE
Name=nodi fi er Val ue=FALSE

Note that in this example, the shift and control keys are held when the button is pushed down.
Also, the (x, y) coordinates sent when an event triggers the activity are with respect to the upper
left corner of the object managing the activity, which in this case is the button.

64 February 25, 1997

AthenaMuse 2.2 Documentation

4.3 Using Other Types of System-defined NRO Classes

4.3.1 Mouse NROs

Objects can subscribe to any activity using the standard NRO class. There are some cases, how-
ever, where use of special classes makes programming simpler. These special NRO classes are
tailored to a particular activity and usually provide simpler argument lists than the general NRO
class, making it easier to write the target method.

For example, the use of NROs for mouse events is so common that AM2 provides a specia NRO
for these events. This NRO returns the client data and the six relevant items about the event in
separate variables. Thus, the MouseNro wrapped class sends a message that has seven arguments
to the target method:

1. A valueof type any containing the NRO’s client data

Anint eger with the x coordinate where the mouse-related activity occurred

Anint eger withthey coordinate where the mouse-related activity occurred

Ani nt eger with the number of the button that was pressed

A bool ean that is TRUE if the shift key was pressed when the event activity occurred

o g~ W D

A bool ean that is TRUE if the command key was pressed when the event activity occurred
7. A bool ean that is TRUE if the modifier key was pressed when the event activity occurred

It isimportant to emphasize that the use of any of the special NRO formsisentirely optional. Itis
always possible to use the general NRO object described in Section 4.2, “Using Notification
Request Objects” page 62.

The ADL program in Figure 4.4 illustrates the use of special NROs that track the press and
release, and the movement of the mouse on a simple shell widget. To do this, we use three differ-
ent activities: MouseDown, MouseUp and MbuseMove. The example uses one instance of the
MouseNr o class for each activity. The code below shows the compl ete application.

February 25, 1997 65

AthenaMuse 2.2 Documentation

1 anonynous: XFt op
2 {
3 XFl abel reportlLabel {x=10; y=10; hei ght=50; w dth=250;
4 reconput eSi ze=FALSE; |abel ="";};
5 XFbutton exitButton {x=250; y=50; hei ght=50; wi dth=100;
6 reconput eSi ze = FALSE; |abel ="Exit”;};
7 MouseNro {‘ Create, ‘MouseDown, self, ‘MouseTrack,
8 “Down”} => downNro;
9 MouseNro {‘ Create, ‘MouseUp, self, ‘MuseTrack,
10 “Up”} => upNro;
11 MouseNro {‘ Create, ‘MouseMwve, self, ‘MuseTrack,
12 “Move”} => noveNro;
13
14 upon Construct
15 {
16 exitButton. Pressed = {‘ Exit, theApp};
17 {* Subscribe, &JlownNro} => self;
18 {* Subscribe, &upNro} => self;
19 {* Subscribe, &mveNro} => self;
20 }
21
22 on MouseTrack: any clientData, integer xval, integer yval,
23 i nteger button, bool ean shift, bool ean comand,
24 bool ean nodi fier
25 {
26
27 report Label .l abel = “Muse” & clientData + “:x=" +
28 toString(xval) & “y="+toString(yval);
29 }
30 } myApplication {height=300; wi dth=400;};
Figure 4.4 Using MouseNro Objects
66

February 25, 1997

AthenaMuse 2.2 Documentation

4.3.2 Timer NROs

ADL providesageneral purposetimer that you can useto trigger actions at pre-specified intervals.
To use thistimer, subscribe an instance of aclasscaled Ti mer Nr o to the application using the
special handle named t heApp. In aperfect computational environment, the timer activity would
aways occur when scheduled. However the main event loop of AM2 must handle many events,
the duration of which may not be known beforehand. For this reason an actual timer event may be
delayed or even missed. In order to help application devel opers cope with this possibility, Ti m
er Nr o sends amessage withtwo i nt eger argumentsto its clients:

1. Avauecaledl at e that isthe number of milliseconds between the exact time the activity is
scheduled and the time it is actually triggered

2. Avauecaledni ssed that isthe number of successive triggering of timer events missed due
to delays

For example, consider a simple stopwatch that counts seconds from the time you first press the
button until you press it a second time. This clock needs to count intervals of 1000 milliseconds
and trigger an activity after each interval. Y ou can do it in the ADL by subscribing the NRO cre-
ated by the following definition:

TimerNro {‘ Create, 1000, self,'C ockTick, NULL} => clockNro

The first argument of the Create message is the requested interval (in milliseconds) between trig-
gering of the clock activity. The next three arguments are: the target of the activity’s message, the
name of the method to receive the message, and a value that can be any ADL type used for con-
veying client information.

Figure 4.5 shows an ADL program that implements a stopwatch. The example creates three but-
tons: one for starting the watch, one for stopping the watch, and one for exiting the application.
The variable named cl ock counts the number of seconds once the start button is pressed, and a
label displays the elapsed seconds.

The method Cl ockTi ck handlesthe timer activity. The values provided as arguments by the
activity manager give information about the time at which the activity is actually triggered. Line
28in Figure 4.5 uses the value of the m ssed argument to correct the counter of seconds.

February 25, 1997 67

AthenaMuse 2.2 Documentation

1 anonynous: XFt op
2 {
3 XFbutton start {x=5; y=5; height=30; w dth=60;
4 | abel =" Start;};
5 XFbutton stop {x=70; y=5; height=30; w dth=60;
6 | abel =" St op; };
7 XFbutton clear {x=135; y=5; height=30; w dth=60;
8 | abel =" C ear;};
9 XFbutton exit {x=135; y=45; height=30; w dth=60;
10 | abel =" Exit; };
11 XFl abel tinmeValue {x=5; y=45; hei ght=30; w dth=125;
12 bor der Col or =’ r ed; bor der W dt h=1,
13 reconput eSi ze=FALSE; } ;
14
15 TimerNro {‘Create, 1000, self, ‘d ockTick,
16 NULL} =>cl ockNro; integer clock;
17
18 upon Construct
19 {
20 start.Pressed = {‘Start, self};
21 stop. Pressed = {‘ Stop, self};
22 clear.Pressed = {‘Clear, self};
23 exit.Pressed = {'Exit, theApp};
24 ‘Clear => self;
25 }
26
27 on Cl ockTick: any cd, integer late, integer m ssed
28 {
29 clock = clock + 1 + m ssed;
30 ti meVal ue.label = toString(clock);
31 }
32
33 on Start
34 {
35 {* Subscribe, &clockNro} => theApp;
36 }
37
38 on Stop
39 {
40 {* Unsubscri be, &cl ockNro} => theApp;
41 }
42
43 on Cl ear
44 {
45 clock = 0;
46 ti meVal ue. | abel = *0;
47 }
48
49 } top { height = 80; width = 200; title="Timer Deno”;};
Figure 4.5 Example Using A Timer
68

February 25, 1997

AthenaMuse 2.2 Documentation

4.4 NROs Derived from System-defined NROs

AM?2 also comes with alibrary of special-purpose NROs that you can use in ADL programs.
Unlike the system-defined (or wrapped class) NROs described in Section 4.2, “Using Notifica-
tion Request Objects” page 62 and Section 4.3, “Using Other Types of System-defined NRO
Classes” page 65, these library NROs are written in the ADL. They are classes derived from the
Nro wrapped class. Y ou can use them by including thefilenr o. adl inthe standard ADL library.

One such NRO is the vanillaNro class. This NRO sends only the client datain its messages. For
example, suppose we want to simplify our mouse tracking program shown above so that it only
reportsthe type of the last mouse action, not the location. In this case, the (x, y) coordinates of the
mouse activity are not needed. We could instead use three instances of the vani | | aNr o object
defined asfollows:

vanillaNro {‘ Create, ‘MuseDown, self, ‘MouseTrack,
“Down”} => downNro;

vanillaNro {‘ Create, ‘MbuseUp, self, ‘MouseTrack,
“Up”} => upNro;
vanillaNro {‘ Create, ‘MuselMve, self, ‘MuseTrack,

“Move”} => noveNro;

We can then rewrite the MouseTr ack method as show in Figure 4.6.

on MouseTrack: string clientData

{

}
Figure 4.6 New Version of MouseTrack Method Using vanillaNros

A WN PR

report Label .l abel = “Muse” & clientData & “activity”;

An even simpler NRO available in the standard library that sends no arguments when an event
triggers the activity. Thisisthe simpleNro class. Any method that handles an activity subscribed
to using asimpleNro must have no arguments.

For example, we could rewrite the mouse tracking program in Figure 4.6 so that each of the three
activities being subscribed to send a message to a different method. In this case, we could use the
simpleNro class instead of the vanillaNro class, as follows:

simpleNro {‘ Create, ‘MuseDown, self, ‘MusePush,
““} => downNr o;

sinmpleNro {‘ Create, ‘MuseUp, self, ‘MuseRel ease,
““} => upNro;

sinmpleNro {‘ Create, ‘MusehMbve, self, ‘MuseChange,
““} => noveNro;

In this case, the method named MouseTr ack shown in Figure 4.6 would be replaced by three
simpler methods named MbusePush, MouseRel ease and MouseChange, as shown in Fig-
ured./.

February 25, 1997 69

AthenaMuse 2.2 Documentation

on MousePush
report Label .l abel = “Muse down activity”;
MouseRel ease

report Label .1 abel = “Mouse up activity”;

©CoOoO~NOOOUTA,WNPE
o
=}

on MuseChange

10 |
11 report Label .|l abel = “Muse nove activity”;
12}

Figure 4.7 Methods Using simpleNro Objects

4.5 Creating ADL Classes That Manage Activities

When application authors create their own classes, they often want these classes to manage activ-
ities. They can do it in two ways: design the new class so that it inherits from a class that aready
manages activities, or have the new classinherit from awrapped classcalled Act i vi t yManager

that provides the general activity management mechanism to the new class. Thefirst case applies
when the base class you inherit from already manages the activity of interest or when you want to
add anew activity to the base class. The second case gives you the flexibility to define an entirely
new class that manages its own activities. We explore each of these cases below.

4.5.1 Inheriting An Existing Activity From a Class That Manages Activities

The first situation is the creation of a class that inherits from an existing class, such as XFt op,
XFbut t on, XFl abel or any of the other wrapped classes that have built-in activity management.
In this case, the author does not need to do anything special. The inheritance mechanism in AM2
automatically givesthe new class al the activity management capabilities of the classit inherits
from.

Consider creating a subclass of the XFt op shell widget, which has the property that it always dis-
playsthe (x, y) coordinates of the mouse in its upper left corner. This type of widget might be
useful asabuilding block in astill image editor that allows the user to crop and scale photographs.
The ADL classnamed Locat i onTop shown in Figure 4.8 accomplishesthis. Thisnew ADL class
inherits all the activity management capabilities of the XFt op wrapped class. Thus, it accepts
Subscri be and Unsubscri be messages and sends messages to any subscribed target object
when an event triggers an activity. All of these properties are the result of AM2’ s inheritance
capabilities.

The NROsin this class subscribe to both sel f (the handle to the object itself) and the instance of
XFl abel . Thisisnecessary because the XFI abel object can be thought of asthough it were “on
top” of theinstance of Locat i onTop, towhich it belongs. Any mouse-related events on the
label trigger the activities of the label. They are not passed through to the underlying XFt op. If
lines 17 through 19 were removed from the class declaration, the label would act asa“hole”’ inthe
widget; events may trigger the activities of the label, but there are no registered NROs and the
activities of the label would therefore have no effect.

70 February 25, 1997

AthenaMuse 2.2 Documentation

1 cl ass Locati onTop: XFt op

2 {

3 XFl abel reportlLabel {x=0; y=0; height=50; w dth=250;
4 reconput eSi ze=FALSE; alignnent="Ileft; |abel="";};
5 MouseNro {‘Create, ‘MouseDown, self, ‘Muselocation,
6 ““} => downNro;

7 MouseNro {‘ Create, ‘MouseUp, self, ‘MuselLocation,

8 ““} => upNro;

9 MouseNro {‘ Create, ‘MuseMve, self, ‘Muselocation,
10 ““} => nmoveNro;

11

12 upon Construct

13 {

14 {* Subscribe, &JlownNro} => self;

15 {* Subscribe, &upNro} => self;

16 {* Subscribe, &mveNro} => self;

17 {* Subscri be, &JlownNro} => reportlLabel;

18 {" Subscribe, &upNro} => reportLabel;

19 {* Subscri be, &nmoveNro} => reportlLabel;

20 }

21

22 on Mouselocation: any clientData,integer xval,integer yval
23 {

24 reportLabel .l abel = “x="+toString(xval) &

25 “y="+toString(yval);

26 }

27},

Figure 4.8 A Class Inheriting from XFtop Class

February 25, 1997

AthenaMuse 2.2 Documentation

4.5.2 Creating a New Activity

Note: Many AthenaMuse 2 users will not need to create classes that manage activities. This sec-
tion can be skipped without any loss of continuity in the presentation.

In some situations, an application developer using ADL needs to add a new activity to a class that
inherits activity management from a base class. Consider a class that displays a color palette. We
would like such a class to have an activity called Col or Sel ect ed that provides the name of the
chosen color in the message sent when an event triggers the activity. Since our color palette class
inherits from the AM2 wrapped class XFl ayout , which already manages activities, our new class
automatically has the capability to manage any activity. We need only add the new activity and
define what should be done when an event triggers the activity.

Figure 4.9 shows an implementation of the Col or Pal et t e class. ThisADL codeisasimplified
version of amore general color palette provided in the ADL standard library. In the ssimplified ver-
sion the color palette has exactly eight colors, the buttons for these colors are fixed in size, and the
layout of the eight colored buttons in the palette is horizontal. All of these restrictions are relaxed
in the more complete version.

The Col or Pal et t e classinherits from the XFl ayout class, thereby inheriting its members,
methods and activity management capabilities of that class. The member col or Li st intheCol -
or Pal et t e class (defined on lines 5 and 6) provides the names of the colorsin the palette. The
other class member, but t onAr r ay, isan array of lists. After an instance of aCol or Pal ett e is
constructed, each element of thisarray isalist of two handles: ahandle to a button and a handle to
an NRO for that button. Theindex for thisarray isani nt eger between one and eight, and corre-
sponds to the positions of the elementsin thecol or Li st .

The most significant component of this exampleisline 9, which causes the initialization of the
member Act i vi t yl nf o. Thislist isinherited from the base class XFl ayout . The sublist in
Act i vi tyl nf o provides the information about managing additional activities; each entry in the
list corresponds to a different new activity. The general form for the sublistsis:

{<nane of activity> {<keynanel>, <keyname2>, ...}}

Thus, in Figure 4.9 the name of the new activity isCol or Sel ect ed, and the single key provided
to any target of this activity hasasingle entry caled Col or .

The Const r uct method for the Col or Pal et t e class sSimply sets the default height and width of
the palette. The | ni t method for the Col or Pal et t e class starting at line 19 does most of the
work of setting up the buttons and handlesin the class. It uses the new operator to create instances
of buttons and NROs from the heap, and then stores the handles to these buttons and NROs as ele-
ments of the but t onAr r ay. It aso subscribes an NRO to each button, using the background
color in each of the buttons as the client datain the vani | | aNr o instance. Thus, when a user
presses any of the eight buttons, the Col or Chosen method of the Col or Pal et t e receivesa
message with the color of the button as the client data.

72 February 25, 1997

AthenaMuse 2.2 Documentation

1 uses “nro.adl " @StdLi b”;

2 cl ass Col orPal ette: XFl ayout

3 {

4 /* This list provides the colors in the palette. */

5 list colorList = {‘white, ‘black,’ red, ‘blue, ‘green,
6 ‘yellow, ‘tan, ‘gray};

7 [ist buttonArray<integer>;

8 list Activitylnfo = {{"“Col orSel ected”, {“Color”}}};

9

10 upon Construct

11 {

12 hei ght =30; wi dt h=240; border W dt h=1;

13 }

14 /* This nethod creates the buttons and the color patch */
15 on Init

16 {

17 i nteger count=0; handle hButton, hNro;

18 while (count < 8) {

19 hButton = new {‘ Create, self} =>XFbutton {hei ght=30;
20 wi dt h=30; | abel =""; reconputeSi ze=FALSE; };

21 hBut t on- >x = count *30;

22 count = count+1;

23 hBut t on- >background = at(count, colorlList);

24 hNro = new {‘ Create, ‘Pressed, self, ‘Col orChosen,
25 at (count, colorlList)} => vanillaNro;

26 {* Subscribe, hNro} => hButton;

27 buttonArray[count] = {hButton, hNro};

28 }

29 }

30 /* This nethod deletes all allocated instances */

31 on Destroy

32 {

33 i nteger count =1;

34 while (count <= 8) {

35 delete at(1, buttonArray[count]);

36 delete at(2, buttonArray[count]);

37 count = count+1;

38 }

39

40 /*This method handl es cal | back when button is pressed */
41 on Col or Chosen: string cdata

42 {

43 {*TriggerNotification, ‘ColorSelected, {cdata} }=>self;
44 }

45 }; /* end of class ColorPalette */

Figure 4.9 Example of Class With Added Activity

February 25, 1997

AthenaMuse 2.2 Documentation

The Dest r oy method starting on line 36 recovers the memory allocated for buttons and NROs
when an instance of aCol or Pal et t e iscreated. This method automatically receives a message
whenever aCol or Pal et t e isno longer valid or when the del et e operator is applied to a han-
dleto aCol or Pal et t e object. The implementation of this method loops through the array of
buttons and del etes the buttons and their corresponding NROs.

The method named Col or Chosen isthe target for the message sent when a user presses any of
the eight buttons. This method simply callsthe method Tri gger Not i fi cati on, whichisinher-
ited in any class derived from a class that manages activities. It isthis method that then sends mes-
sages to every NRO subscribed to the activity. For example in line 49, the message takes the
form:

{*TriggerNotification, ‘ColorSelected, {cdata} } => self;

Notethat the Tri gger Not i fi cat i on method always takes two arguments: a string giving the
name of the activity that was triggered and alist of values transmitted to the target. In this case,
the activity nameis Col or Sel ect ed, and the list of values has the name of the selected color.

Figure 4.10 illustrates how the Col or Pal et t e class might be used. The most notable aspect of
this program is that once implemented, the activitymanagement capabilities of the Col or Pal -
et t e class are treated exactly the same as the corresponding capabilities of standard wrapped
classes such as XFbut t on and XFt ext .

1 anonynous: XFtop

2 {

3 Col or Pal ette myPal ett e{hei ght =45; };

4 Nro {‘Create, ‘ColorSelected, self, ‘EchoColor, ““} =>
5 sel ect Nro;

6 XFl abel col orLabel {x=10; y=50; hei ght=50; wi dth=200;
7 reconput eSi ze=FALSE; | abel ="";};

8 XFbutton exitButton {y=110; x=10; hei ght=50; wi dth=100;
9 | abel ="Exit”;};

10

11 upon Construct

12 {

13 exitButton. Pressed = {‘ Exit, theApp};

14 {* Subscribe, &selectNro} => nyPalette;

15 }

16

17 on EchoCol or: any cd, list names, list values

18 {

19 col or Label .| abel = “Chosen color is" & at(1l, val ues);
20 }

21} nyApplicaton {hei ght=200; w dth=350;};

Figure 4.10 Example Using the ColorPalette Class

74 February 25, 1997

AthenaMuse 2.2 Documentation

4.5.3 Creating Classes That Inherit From the ActivityManager Class

Note: Many AthenaMuse 2 users will not need to create classes that manage activities. This sec-
tion can be skipped without any loss of continuity in the presentation.

Another situation of interest to the ADL programmer is the need to create a class that manages
activities but does not inherit from a standard wrapped class that manages activities. In this situa-
tion, the programmer inherits from an ADL classcalled Act i vi t yManager which suppliesthe
needed functionality.

TheActi vit yManager classisan example of aclass designed specifically for inheritance pur-
poses. It has the following functionality:

* It provides away to specify alist of activity names to be managed. Thislist is called
Acti vi tyl nf o and is an attribute of the ActivityManager class.?

* IthandlesSubscri be and Unsubscri be messages for the activities it manages.

* It providesamethod called Tri gger Not i fi cat i on that can receive amessage
whenever an event triggers an activity. This method sends all subscribed NROs the

appropriate messages.

Consider a situation where we want to create a general class of movable objects. Any object
inheriting from this class has the property of tracking the motion of the mouse when clicked. In
addition, any object that inherits from the Movabl e class has an activity called Updat e, trig-
gered when the user releases the mouse while moving the object. The values provided when the
event triggers the Updat e activity are the new (x, y) coordinates of the object. This type of
generic class can be combined with specific user interface classes to create specific types of mov-
able classes, such as movable buttons, labels, or text.

Classes such asMovabl e areintended for use as a base class in combination with other classes.
For example, a class might inherit from both the X Flabel wrapped class and the Movabl e class,
thereby inheriting the activities, members and methods of both base classes. Thistype of classis
often referred to as amix-in class.

Figure 4.11 displays the ADL code that implements the Movabl e class. The member

Act i vi t yl nf o declares the name of the new activity (Updat e) and the list of keysfor that
activity. The example uses three instances of the MouseNro class to subscribe to the MouseUp,
MouseDown and MouseMove activities.

The Construct method subscribes the three NROs to the object itself. Note that the Subscr i be
messages in this method on lines 12 through 14 are sent to the handleder i ved: : sel f. The
deri ved keyword in ADL indicates that the message goes to the object that is at the end of the
chain of inheritance (i.e. the member of the “most derived” class).

In future releases of AM2, the Activitylnfo attribute may be implemented asa conmon attribute, i.e. an
attribute that is shared by all members of the class. The value of this attribute should therefore not be
changed.

February 25, 1997 75

AthenaMuse 2.2 Documentation

Thisis necessary because the MouseDown, MouseUp and MouseMove activities are not activities
managed by the Movabl e class. Rather, they are managed by whatever class we mix-in with the
Movabl e class. Sending the Subscribe messageto deri ved: : sel f ensuresthat the NROs are
subscribed to the correct activity manager.

Lines 17 through 22 implement the method named Down that receives a message when the
MouseDown activity istriggered. This method stores the location of the mouse when the button
pressed.

The method Move shown in lines 24 through 29 change the (x, y) coordinates of the object when
the mouse has been moved. Note again that we must use the der i ved keyword before the
attributesx and y because they do not belong to the Movabl e class; they must exist in the class
derived from the Movabl e class.

1 /* generic class for nmovabl e objects */

2 cl ass Movabl e: ActivityManager

3 {

4 list Activitylnfo = { {‘Update, {‘x, ‘vy}} };

5 MouseNro {‘ Create, ‘MuseDown, self, ‘Down, NULL} => downNro

6 MouseNro {‘Create, ‘MuseUp, self, “Up, NULL} => upNro;

7 MouseNro {‘ Create, ‘MouseDrag, self, ‘Mve, NULL} => noveNro;

8 i nteger ol dX, oldy; /* used to store (x,y) of mouse press */
9

10 upon Construct

11 {

12 {* Subscri be, &JlownNro} => derived::self;

13 {* Subscri be, &mveNro} => derived::self;

14 {* Subscribe, &upNro} => derived::self;

15 }

16 /* This method is messaged when the MouseDown activity is triggered */
17 on Down: any cd, integer xval, integer yval, integer button

18 bool ean shift, bool ean conmand, bool ean nodifier

19 {

20 ol dX = xval; /[* store (x,y) coordi nates of npuse press */

21 ol dY = yval

22 }

23 /* This nethod is nessaged when the MuseMwve activity is triggered */
24 on Move: any cd, integer xval, integer yval, integer button

25 bool ean shift, bool ean conmand, bool ean nodifier

26 {

27 derived: : x=derived::x + xval-oldX; /* update x coordinate */
28 derived: :y=derived::y + yval-oldY; /* update y coordinate */
29 }

30 /* This nmethod is nessaged when the MouseUp activity is triggered */
31 on Up: any cd, integer xval, integer yval, integer button,

32 bool ean shift, bool ean conmand, bool ean nodifier

33 {

34 {*TriggerNotification, ‘Update,{derived::x,derived::y}}=>self;
35 }

36 }; /* end of class Myvable */

Figure 4.11 A Class Inheriting from the ActivityManager Class

76 February 25, 1997

AthenaMuse 2.2 Documentation

The last method, Up, triggers the Updat e activity notification by sending the
TriggerNotificationmessage. It providesthenew (x, y) coordinates of the object as part
of them message, and then disarms the object. Figure 4.12 shows a simple case using the class.
Lines 2 through 4 declare anew class named Movabl eLabel that inherits from both the XFlabel

1 /* Create a class of Myvable buttons */

2 cl ass Movabl eLabel : XFl abel, Movable

3 {

4 }; /* end of class Mvabl eLabel */

5

6 /* Create top w ndow */

7 anonynous: XFtop

8 {

9 Movabl eLabel newlLabel {x=20; y=20; hei ght=40;

10 wi dt h=100; | abel =" MoveMe; border W dt h=1;};

11 XFl abel location {x=0; y=200; height=40; wi dth=100; };
12 Nro {‘Create, ‘Update, self, ‘ChangelLocation, NULL} => updateNro;
13

14 upon Construct

15 {

16 {* Subscribe, &updateNro} => newlLabel

17 | ocation.label = “x=" + toString(location.x) &

18 “y=" + toString(location.y);

19 }

20

21 on Changelocation: any cd, list keys, list vals

22 {

23 | ocation.label = “x=" + toString(at(1, vals)) &

24 “y=" + toString(at(2,vals));

25 }

26 } nyTop {w dt h=300; hei ght=250; title="Mvable Label”;};

Figure 4.12 An Example Using the Movable Class

wrapped class and the user-defined Movabl e class. The new class needs no additional methods or
members since it inherits all its useful functions from it base classes.

Lines 7 through 26 declare an anonymous class derived from the X Ftop wrapped class. This class
has an instance of aMbvabl eLabel and aninstance of an XFlabel. The latter of thesetwo is used
to display the (x, y) coordinates of the former. The NRO named updat eNr o subscribes to the
Updat e activity. ThisNRO causes the method ChangeLocat i on to receive a message when the
Updat e activity istriggered. This method, defined in lines 21 through 25, changes the value of
the label named | ocat i on to indicate the new coordinates of Movabl eLabel .

February 25, 1997 77

AthenaMuse 2.2 Documentation

4.6 Creating Customized NROs

Note: Many AthenaMuse 2 users will not need to create NROs. This section can be skipped with-
out any loss of continuity in the presentation.

Some advanced users of AM2 may find it useful to create their own, customized NRO classes. For
example, in the user-defined Col or Pal et t e class shown in Figure 4.9, we use the standard
NRO that provides the usual three arguments (client data, the list of the names of the values
returned and the corresponding list of values). Since all the target message method really needsis
the name of the color selected, most of this information goes unused. Y ou might develop a cus-
tomized NRO that only provides a string containing the name of the selected color asits argu-
ment.

To create specialized NROs, it is necessary to understand how the standard Nro wrapped class
works. This class has a special constructor named Cr eat e that stores its four arguments in mem-
bers of the Nro class. These four members are declared as follows:

string mActivity; // the activity nane®

string mvet hod; // the name of the nethod to receive a
/'l message when the activity is triggered
handl e nCli ent; /1 handle to the client object to receive

/1 a message when the activity is triggered
any nClientData; // any client data

A new class that inherits from the Nro class automatically has these four members.

A second key aspect of the Nro classis the method Handl eAct i vi t y. Thisisthe method that
receives a message whenever an event triggers an activity. It aways receives the list of value
names and the corresponding list of values sent by the activity as its arguments. In the standard
NRO, this method is asfollows:

on Handl eActivity: list keys, list val ues

{

}

The key to writing a new type of NRO is to define a new class that inherits from the standard
NRO but providesanew version of the Handl eAct i vi t y method, which sends the arguments of
interest to the target method. Figure 4.13 shows anew NRO class called Col or Nr o.

{mvet hod, nClientData, keys, values} => nCient;

Note that the Col or Nr o class hasaspecial constructor named Cr eat e that appearsto do nothing
even though its base class, Nro, has the same specia constructor. This is needed because special
constructors are never inherited. The useful work done by this special constructor is accom-
plished by initializing the base class using ADL’s base class initialization feature (the code block
following thei ni t keyword). Inthiscase, the special constructor sends abase classinitialization
message to the Nro class. The Handl eAct i vi t y method in the Col or Nr o class overrides the
method with the same name in the Nro base class. In line 9, the client of the activity (nCl i ent)
receives a message invoking the target method (mvet hod) with the only argument being the first
element on the list of values. This element contains the name of the color.

3 Themember mACt i vi t y isa“read only” attribute. It should never be changed after it isinitialized.

78 February 25, 1997

AthenaMuse 2.2 Documentation

P RPOOO~NOOODWNEER

= O

class ColorNro: Nro

{

upon Create: string act, handle cli, string md, string cd
init {{Create, act, cli, ntd, cd} => Nro}
{1}

on Handl eActivity: list keys, list val ues

{mvet hod, at(1,values)} => nClient;
}
i

Figure 4.13 Example of a Custom NRO

Figure 4.14 shows how the example program in Figure 4.10 can be modified to make use of the
customized NRO.

©CoO~NOOOUTA,WNPE

anonynous: XFtop

{
Col or Pal ette myPal ett e{hei ght =45; };
ColorNro {‘Create, ‘ColorSelected, self, ‘EchoColor, ““} =>
sel ect Nro;
XFl abel col orLabel {x=10; y=50; hei ght=50; wi dth=200;
reconput eSi ze=FALSE; | abel ="";};

XFbutton exitButton {y=110; x=10; hei ght=50; wi dth=100;
| abel ="Exit”;};

upon Construct

{
exitButton. Pressed = {‘ Exit, theApp};

{* Subscribe, &selectNro} => nyPal ette;

}
on EchoCol or: string col or Nane
{
col or Label .1 abel = “Chosen col or is” & col or Nane;
}

} myApplicaton {hei ght=200; w dth=350;};

Figure 4.14 Revised Example Using ColorPalette and Custom NRO

February 25, 1997

79

AthenaMuse 2.2 Documentation

4.7 Using Activities for Notification of Subscriptions

Note: Many AthenaMuse 2 users will not need this feature. This section can be skipped without
any loss of continuity in the presentation.

There are some situations when it isimportant to know if an object has any NROs subscribed to
one or more of its activities. For example, suppose you wanted to develop a new class of buttons
that have the property that the button’ s label is presented in different colors depending on whether
or not any NROs are subscribed to its Pr essed activity. In this situation, AM2 can provide noti-
fication whenever the number of NROs subscribed to an activity changes from zero to one or
more, or vice versa. This capability is astandard feature of al activities.

In AM2, all activities have an associated second activity with the same name as the original fol-
lowed by a question mark (?). Y ou can useit for subscription notification. Thus, if an object hasa
Pr essed activity then it automatically manages an activity named Pr essed? that istriggered
whenever the number of NROs subscribed to the Pressed activity changes from zero to one or
from oneto zero.

80 February 25, 1997

AthenaMuse 2.2 Documentation

Chapter 5 Example ADL Programs

The following sections are designed to provide annotated examples of working ADL programs.

* Section 5.1, “Toggle Button Class” page 81

» Section 5.2, “A Simple Image Viewer Class” page 88
» Section 5.3, “A Picture Button Class” page 92

» Section 5.4, “A Video Viewer Class” page 99

These programs should help those who like to learn by association and example.

5.1 Toggle Button Class

In this example, we develop an ADL class that provides a user interface button that changesits
label when pressed. Each label corresponds to a different value for some variable, thereby allow-
ing any ADL program using the button to set other variables or take some action that depends on
the new value. Since the toggle button has most of the characteristics of aregular XFbut t on
object, it isnatural for the Toggl eBut t on classto inherit from XFbut t on.

A typical situation where such a button is useful is a case where we need a button to set avalue
with two mutually exclusive options. For example, we want to have a button that when pressed
sets avalue that is used to determine if video will be played with or without subtitles. The button
has two possible labels: “ Show Subtitles’ and “Hide Subtitles’. Each time the user presses the
button the label changes from one value to the other, and the value stored by the button shiftsfrom
TRUE to FALSE.

Y ou can configure the button so that you can set the number and contents of possible labels when
the button is created. To do this, the Toggl eBut t on class has two members that are lists. The
first, caled | abel Li st , isalist of character strings corresponding to the set of |abels the button
may display. The second list, called val ueLi st , holds the corresponding values.

The integer member cur r ent Posi t i on stores the number of the currently displayed list ele-
ment. Each time the user presses the button, the value of cur r ent Posi t i on changes. In addi-
tion, amember called but t onVal ue holds the currently active value for the button. Because the
valuescan beof any type(l i st,i nt eger, handl e, etc.), the member of but t onVal ue isof the
ADL typeany.

February 25, 1997 81

AthenaMuse 2.2 Documentation

We also provide the toggle button with default labels“Yes’” and “No”, with corresponding values
of TRUE and FALSE. The defaults are set up so that the initial label isthe string “Yes’ and the ini-
tial value of the button is TRUE. Y ou can override these defaults when using the Toggl eBut t on
class.

5.1.1 ADL Implementation of the ToggleButton Class
Hereisthe ADL code for the Toggl eBut t on class, with detailed comments.

Line 1 declares the class named Toggl eBut t on and indicates that this class
derives from the XFbut t on class.

Line 3 declaresthe member | abel Li st tobeof typel i st and initializesits
valueto alist of two st ri ngs, “ Yes” and “ No” . These strings are the
default labels for the button unless the programmer using the class changes
them.

Line 4 declaresthei nt eger member cur r ent Posi ti on and initializesits
valueto 1. Thisindicates that by default the first string in thelist | abel -
Li st istheinitial label for an instance of aToggl eBut t on.

Line 5 declares an NRO (notification request object) named t oggl eNr 0. Aswith
al NROs, the Nr o class has aspecial constructor caled Cr eat e that has
four arguments:

a string giving the name of the activity (in this case Pr essed)

a handl e giving the target of the notification required (in this case
handl e sel f indicates that the message isto be sent to
Toggl eBut t on)

a string giving the name of the method to be messaged when the
activity occurs (in this case amethod named Toggl e)

arbitrary client data (in this case the handl e value NULL)

Line 6 declares the member val ueLi st to beof typel i st and initializesits
valueto alist of two bool eans, TRUE and FALSE. These are the default
values associated with thelabels“ Yes” and “ No” for the button, unlessthe
programmer using the class changes them.

Line 7 declares the member but t onVal ue to be of typeany. This member
stores the current value associated with the Toggl eBut t on.The values
stored in buttonValue will be entriesfromthel i st val ueLi st. Theuse
of the ADL datatype any allows users of the Toggl eBut t on classto
replace the default val uelLi st withal i st containing any valid data

type.

82 February 25, 1997

AthenaMuse 2.2 Documentation

1 cl ass Toggl eButton: XFbutton

2

3 list labelList = {'Yes, ‘No};

4 i nteger currentPosition = 1;

5 Nro {‘Create, ‘Pressed, self, ‘Toggle, NULL} => toggleNro ;

6 list valueList = {TRUE, FALSE};

7 any buttonVal ue;

8

9 upon Create: handl e hparent

10 init {{*Create, hparent} => XFbutton}

11 {}

12

13 on Init

14 {

15 | abel = at(currentPosition, |abellList);

16 buttonVal ue = at (currentPosition, valuelList);

17 {* Subscribe, &toggleNo} => self;

18

19

20 on ChangeVal ue: any newal ue

21 {

22 any tenp;

23 i nteger counter=1;

24 for tenp in val uelist {

25 i f(get Type(newal ue) == get Type(tenp) && newval ue == tenmp) {

26 buttonVal ue = tenp;

27 | abel = at(counter, |abellList);

28 currentPosition = counter;

29 return;

30 }

31 counter = counter +1;

32 }

33 }

34

35 on Toggle: any cd, list keys, list vals

36 {

37 currentPosition = currentPosition+l;

38 if(currentPosition > length(labellList)) {

39 currentPosition = 1;

40 }

41 | abel = at(currentPosition, |abellList);

42 buttonVal ue = at (currentPosition, valuelist);

43 }

44 }; /* end of class Toggl eButton */

Figure 5.1 ToggleButton Class

Line 9 begins the special constructor method naned Create. Thismethodis

provided so that a user of the Toggl eBut t on class can use the new opera-
tor to create instances of the class Toggl eBut t on on the heap. In ADL,
any object that is drawn on the screen and is created dynamically at run
time needs a special constructor so that it can passahandl e to the parent

February 25, 1997 83

AthenaMuse 2.2 Documentation

of the new widget. Thisis done through the method argument hpar ent .
Note that we do not need a specia constructor for the case where we
declare astatic instance of aToggl eBut t on because the standard, default
constructor Const r uct provided by AM2 is adequate for the task.

Line 10 is a base classinitialization statement, indicated by the keyword i ni t .
This statement ensures that when we create an instance of a
Toggl eBut t on using the new operator, the instance of the class from
which Toggl eBut t on derivesis correctly initialized. In this case, the
ADL statement

{*Create, hparent} => XFbutton

ensuresthat the Cr eat e special constructor for the base XFbut t on classis
called rather than the default Const r uct method. Any user interface wid-
get or subclass of such awidget created from the heap using the new oper-
ator must have its parent widget explicitly set. The default Const r uct
method does this automatically for statically created widgets.

Line 11 isan empty body for the Cr eat e method. There are no additional initial-
izations that we need to perform here.

Line 13 isthe start of an | ni t method. This method automatically receives a mes-
sage whenever an object of this classis constructed. This message is sent
after al the other stepsin the creation of an object, i.e. after the
Const ruct message is sent (or when some other specia constructor is
used), after theinitialization block, (also called an izor) is executed, and
after any asset declarations are applied. The body of thel ni t method is
used to set initial values and to subscribe to the Pr essed activity for the
button.

Line 15 setstheinitial value of thel abel for the button to avalue onthel abel -
Li st. Theinitial label isset to thecur r ent Posi t i on-th element of the
| abel Li st . Thisalowsthe ADL programmer using the Toggl eBut t on
classto set thecur r ent Posi t i on member in anizor block, thereby
changing theinitial value of thel abel .

Line 16 setstheinitial value of the member but t onVal ue. It uses the built-in
function at () to extract avaluefromthelistval ueli st.

Line 17 sendsthe Subscr i be message to the button, registering the NRO named
t oggl eNr o. Thisresultsin the message Toggl e being sent to any mem-
ber of the Toggl eBut t on class whenever the user presses the button.

Line 18 closesthel ni t method.

Lines 20-21 start amethod called ChangeVal ue. We use this method to reset the
value of the Toggl eBut t on to some new value. It provides the ADL
programmer with away to alter the label and corresponding value of the
Toggl eBut t on after it is created. This feature gives the programmer a
way of changing the label without requiring the application’s user to actu-
aly pressthe button. The ChangeVal ue method uses a single argument of

84 February 25, 1997

Line 22
Line 23

Line 24
Line 25

Lines 26-29

Line 29

Lines 32-33
Lines 35

Lines 37-40

Line 41
Line 42

Line 43
Line 44

AthenaMuse 2.2 Documentation

type any because the Toggl eBut t on class allows the elements of the
val ueLi st to beof any valid ADL type, including compound types such
asalist.

declarest enp to be alocal variable of type any.

declaresani nt eger variable named count er and setsitsinitia
valueto 1.

beginsaloop over al thevauesintheval uelLi st .

testsif the value of the argument newval ue equals one of the valuesin
val ueLi st . Note that this comparison is done by first testing if the value
in temp is the same as the value being checked on the list, and then by
checking if the two values are equal. Thisis necessary because the equality
operator (==) cannot be used on values of different types. Even though
both of the variables being compared are declared of type any, the values
they hold have definite ADL types which may not be the same.

execute when the value requested is found in val ueLi st . Thisgroup of
statements sets the variable but t onVal ue, changesthel abel of the but-
ton to the corresponding valuein | abel Li st , setsthe cur r ent Posi -

t i on member appropriately, and returns.

updates the value of count er each time the loop over the elementsin
val ueLi st isexecuted.

close the loop and the method definition respectively.

isthe start of the declaration of the method Toggl e. This method is called
every timethe Toggl eBut t on is pressed.

begin by incrementing the value of thecur r ent Posi ti on by 1. If the
revised value of cur r ent Posi t i on isgreater than the number of ele-
mentsinthel abel Li st (computed by applying the built-in ADL function
Il engt h() tol abel Li st), thenthecurrent Positionisresettol.
This code has the effect of moving through the | abel Li st and wrapping
around to the start of the list when the last value on thelist is reached.

updates the value of the button label.

updates the value of the variable but t onVal ue to correspond to the |abel
now being displayed.

closesthe Toggl e method.
ends the declaration of the Toggl eBut t on class.

February 25, 1997 85

AthenaMuse 2.2 Documentation

5.1.2 An Example of Using the ToggleButton Class

Given the example shown above, we now turn to asimple ADL program that actually usesthe
Toggl eBut t on class. Suppose that we want to have a button on an application that sets the
background color for the main application shell widget. We might have a button that toggles
among several different colors. Each time the user presses the button, the background color of the
XFt op in which the application is running changes. In our example, we allow the user to set the
possible background colors to white, black, red, blue and green.

The ADL program shown here implements this idea.

1 anonynous : XFtop {

2 Toggl eButton myButton {x=50; y=50; height=50; w dth=150;
3 recomput eSi ze=FALSE;

4 | abel Li st ={" White, "Bl ack, ‘Red, ‘Bl ue, * Green};

5 val ueList={‘white, ‘black,‘red, ‘blue, ‘green};};
6
7
8

upon Construct
{
9 background = nyButton. buttonVal ue;
10 myButton. Pressed = {*‘ ShiftBackgroundCol or, self};
11 }

13 on Shi ft Backgr oundCol or

14 {

15 background = nyButton. buttonVal ue;
16 }

18 } myTop {hei ght=400; w dth=400;};

Figure 5.2 ToggleButton Example

Line 1 starts the definition of an anonymous instance (used when one or avery
few instances of the class are needed) of an object that inherits from the
ADL top level shell class, XFt op.

Lines 2-5 declare amember of this anonymous class that is an instance of a
Toggl eBut t on named nyBut t on. The button hasalist of labelsand val-
ues set in an izor block that correspond to the colors we want to use as
options.

Lines7-8 dtart the Const r uct method for the anonymous class. Since thisis a con-
structor, it begins with the upon keyword. This method is automatically
invoked when the object is created.

Line 9 setstheinitial background color of the widget to the value stored in the
but t onVal ue member of the Toggl eBut t on.

86 February 25, 1997

AthenaMuse 2.2 Documentation

Line 10 setsthe value of the Pr essed attribute of myBut t on (corresponding to the
Pr essed activity of the button) toal i st that givesthe name of the
method to be invoked when nyBut t on is pressed, and the target of the
method. In this case, the method Shi f t Backgr oundCol or of the anony-
mous instance that is the shell widget (as indicated by the special handle
sel f, automatically defined for every ADL instance) is messaged when the
button is pressed. Note that this could also be done by declaring an appro-
priate constructed notification request object and then subscribing that
object to myBut t on. We discuss this further in the next subsection below.

Lines 13-16 define the method Shi f t Backgr oundCol or . This method resets the
background color of the shell to the current value stored in nyBut t on.

Line 18 closes the definition of the anonymous subclass of the standard shell wid-
get. It gives the widget the name my Top and uses an izor block to set the
widget’swi dt h and hei ght .

5.1.3 Implementation Options

One of the interesting aspects of button widgets that the toggle button example illustratesis the
use of notification request objects (NROs) and the Pr essed attribute of a button. In the ADL
code for the class Toggl eBut t on, we intentionally use an NRO to register for the Pr essed
activity, while in the ADL program that usesthe Toggl eBut t on class we set the Pr essed
attribute. It is reasonable to ask why we did not use the Pr essed attribute in defining the Tog-
gl eBut t on class.

The answer to this question requires a clear understanding of the Pr essed attribute. Basically,
setting the Pr essed attribute is a shortcut that has the effect of subscribing animplicit NRO to a
button’s Pr essed activity. However, thisway of setting an activity handler has two limitations:
only one method can be registered in thisway, and the method must not require any arguments be
passed when the activity istriggered. If the Pr essed attribute of a button is set more than once,
only the last setting takes effect. All earlier settings are |ost.

Thus, if we set the Pr essed attribute in the class definition for Toggl eBut t on rather than sub-
scribing to the activity using an explicit NRO, we force users of the Toggl eBut t on classto not
use the Pr essed attribute, but rather subscribe an NRO instead. If the users of the

Toggl eBut t on class erroneously reset the Pressed attribute, the Toggl eBut t on will no longer
work correctly. This makesthe Toggl eBut t on class far less useful and leads to hard-to-diag-
nose errors when the classis used incorrectly.

The implementation of Toggl eBut t on could beimproved in several ways. First, we have not
included any error checking to make sure that the number of itemsinval ueLi st isequal to the
number of itemsin| abel Li st . We could rewrite the Const r uct method so that if the lists pro-
vided by the user are of different lengths, the longer of the listsis truncated so that they the lists
actually used by the Toggl eBut t on have the same length.

February 25, 1997 87

AthenaMuse 2.2 Documentation

Another improvement would be to make some of the valuesin the Toggl eBut t on “read only”
from any ADL statement outside the scope of the object class. In ADL, thisis done by defining a
“Set _” method for such variables. For example, it makes sense that the member but t onVal ue
should never be set outside of the class; only the class methods | ni t , ChangeVal ue and

Toggl e should be able to alter this member. To do this, we could add the following method to
the Toggl eBut t on class:

1 on Set_buttonVal ue: any val

2 {}

Figure 5.3 ToggleButton Set_buttonValue Example

This method turns any assignment statement outside the Toggl eBut t on class with the member
val ueBut t on on theleft hand side into a null operation.

5.2 A Simple Image Viewer Class

In the second example we explore the creation of asimpleimage viewer. This class hasthe ability
to display astill image from afile. Itis“reloadable’ in the sense that the same viewer can be used
to display different images, one at atime. We implement the viewer so that the construction of the
viewer is separate from the loading of an image into the viewer, allowing us to create viewers at
the start of an application and load images when needed.

5.2.1 ADL Implementation of the Viewer Class

Line 1 defines the beginning of the Vi ewer class. This classinherits from the
XFt op class.

Line 3 definesthe handl e pi mage. This storesthe handl e to theimage being
displayed.

Line 4 defines an instance of the XFvi sual classnamed scr een. Thisisthedis-

play surface for the image.

Line 5 definesast ri ng named cur r ent | mage. This holds the name of thefile
containing the image to be displayed.

Lines7-10 definethe Const ruct method. This method is the default constructor for
the class. It simply setsthe visibility of the object to FALSE so that it does
not appear on the user’ s display until it isloaded with an image.

Line 12-16 provide an aternative special constructor called Const r uct AndLoad.
Thisis used when the image isto be loaded at the same time aviewer is
constructed. The constructor setsthe visible attribute to FALSE and invokes
the method Loadl mage.

Line 18 beginsthe Loadl mage method. This has a single argument containing a
string with the name of the file where the image to be loaded is stored.

88 February 25, 1997

AthenaMuse 2.2 Documentation

©CoOoO~NOOOUTA,WNPE

class Viewer : XFtop

handl e pi mage;
XFvi sual screen {x=0; y=0; border W dt h=0; hei ght =640; wi dt h=480; };
string currentlmage = "";
/* standard constructor */
upon Construct
{
vi si bl e = FALSE
}
/* special constructor that also |oads inage */
upon Construct AndLoad: string inane
{
vi si bl e = FALSE
{' Loadl mage, inane} => self;

}

/* load a new i mage */
on Loadl mage: string i mageName
{
IOfile inmgeFile;
XFnessageDl g {' Create, self} => openFail D al og
{title="File Open Failed";
nmessage="Attenpt to open file failed:"; dial oglcon="warning";
butt onSet =" ok"; };
/* check if image is already displayed */
i f(currentlmage == i mageNane) {
visible = TRUE
return;
}
/* delete old image */
i f(?pi mage) ({
del et e pi mage,;
}

/* check if new image file can be opened */
{' OpenNative, imgeName, 'ReadOnly} => inmageFile;
i f('Fail=>i mageFile) {
openFai | Di al og. nessage = openFail Di al og. mnessage & i nageNane;
' Post Modal => openFai l Di al og;
return;

}

'Cl ose => i mageFil e;

Figure 5.4 Simple Image Viewer Class

February 25, 1997

89

AthenaMuse 2.2 Documentation

42 /* create new i mage object */

43 pi mge = new {' Construct, {'ME nmage, {' MAfile, imageNane}}}
44 =>MM mage;

45 screen. hei ght = pi mage- >hei ght;
46 screen.wi dth = pi mage->w dt h;

47 /* display the inage */

48 {' Present On, &screen} => pinage,;
49 hei ght = pi mage- >hei ght ;

50 wi dt h = pi mage- >wi dt h;

51 currentl mage = i mageNane;

52 title = i nageNane;

53 visible = TRUE;

54 }

55 on Destroy

56 {

57 i f(pimage != UNSET) {

58 del et e pi nmage;

59 }

60 }

61 }; [/* end of class Viewer */

Figure 5.4 Simple Image Viewer Class

Line 20 defines an instance of the 1Ofile wrapped class. Thisis used to open and
read the file where the image is stored.

Lines 21-24 defines an instance of the XFnessageDl g wrapped class. Thisis used for
simple dialog boxes. In this case, we use it to display warning and error
messages associated with loading the image file.

Lines 26-29 test if thefileisaready loaded into the viewer. If so, then the viewer is
made visible and the method returns.

Lines 31-33 test whether the value of pi mage (the handl e to theimage being dis-
played) isset. If it isalready set, then the image the handl e pointstois

deleted.
Line 35 attempts to open the image file by sending the OpenNat i ve message to
i mgeFil e.

Lines 36-40 test whether the image file was successfully opened. If it was not opened,
then the message in the dialog box is set and the dialog box is posted by
sending it the Post Modal message. The method then returns if the image
file could not be opened.

Line 41 closes the imagefile.

Lines 36-40 test whether the image file was successfully opened. If it was not opened,
then the message in the dialog box is set and the dialog box is posted by
sending it the Post Modal message. The method then returns if the image
file could not be opened.

90 February 25, 1997

Lines 43-44

Lines 45-46

Line 48

Lines 49-50
Lines 51-53

Lines 51-53

Lines 55-60

Line 61

AthenaMuse 2.2 Documentation

use the new operator to construct an image object on the heap by sending
the Const r uct message to the MM nage class. The type of file and the
name of the file are sent as alist argument to the VMM nage class.

set the width and height of the XFvisual on which the image is displayed.

uses the Pr esent On method to cause the image to be displayed on the
visual.

set the height and width of the shell widget containing the viewer.

set the value of thecur r ent | mage, theti t | e of the shell widget and set
the visibility of the entire viewer to TRUE, making it appear on the display.

set the value of thecur r ent | mage, theti t | e of the shell widget and set
the visibility of the entire viewer to TRUE, making it appear on the display.

implement a destructor method named Dest r oy for the class. This method
deletes the image pointed to by pi mage if that valueis set.

ends the definition of the Vi ewer class.

5.2.2 Example Use of the Viewer Class

The table below shows a simple ADL application that makes use of the Vi ewer class. This appli-
cation provides atext field for the user to input the name of the file to be displayed, a button
labelled “Load” to load that file into aviewer, and an exit button to end the application.

{

20}

anonynous: XFt op

XFtextField fil eName {x=5; y=5; height=50; w dth=300;};
XFbutton | oadButton {x=5; y=60; hei ght=50; wi dth=100;
| abel =" Load";};
XFbutton exitButton {x=115; y=60; hei ght=50; wi dth=100;
| abel ="Exit";};
Vi ewer myVi ewer;

upon Construct

{

| oadBut t on. Pressed = {' LoadVi ewer, self};
exitButton. Pressed = {'Exit, theApp};
}
on LoadVi ewer
{
{' Loadl mage, fileNane.text} => nmyVi ewer;
}

nyTop {hei ght=200; w dth=400;};

February 25, 1997

Figure 5.5 Image Viewer Class Example

91

AthenaMuse 2.2 Documentation

Line 1 declares this to be an anonymous instance inheriting from the XFt op class.

Lines 2-7 declare an instance of an XFt ext Fi el d and two buttons, one |abelled
Load and the other labelled Exi t .

Line 8 declares the variable ny Vi ewer to be an instance of the Vi ewer class.

Thisis used to display images.

Lines 10 -14 provide the default constructor for the application. The Const r uct
method sets the Pr essed attributes of the load and exit buttons. When the
load button is pressed, the method LoadVi ewer is messaged.

Lines 16-19 define the method named LoadVi ewer . This method messages the
Loadl nage method of the Vi ewer and providesthe name of thefile given
in the text widget as an argument.

Line 20 closes the anonymous class's definition and uses an initialization (izor)
block to set the height and width of the shell that displays when the appli-
cation starts.

5.3 A Picture Button Class

In this example we create a class, caled Pi ct ur eBut t on, that behaves like a standard AM2 but-
ton but has an image displayed within its borders rather than atext label. This class manages an
activity called Pr essed that accepts subscriptions from standard ADL Notification Request
Objects (NROs).

Aswith astandard ADL button, the Pi ct ur eBut t on class shows a highlighted border when the
mouse is pressed down on it. The button triggers the activity when the mouse is released, but only
if the release occurs while the mouse is still positioned on top of the image. This allowsthe user of
thePi ct ur eBut t on to change hisor her mind after the mouse is depressed by rolling the mouse
cursor outside of the image.

By default, aPi ct ur eBut t on object is sized automatically to the match the size of the image
inside of it. The programmer using the Pi ct ur eBut t on class can change the position in the but-
ton where the image is displayed and can override the default size or the image by cropping or
zooming. Thisis done by resetting any of the following six members of the class:

1. xl oc - Aninteger indicating the starting x position where the upper left corner of theimageis
displayed. This defaultsto O.

2. yl oc - Aninteger indicating the starting y position where the upper left corner of theimageis
displayed. This defaultsto O.

3. cli pW- Aninteger indicating the clipped width of the image that is displayed. The default
value of -1 isused to indicate that the width of the image is not to be clipped.

4. clipH- Aninteger indicating the clipped height of the image that is displayed. The default
value of -1 is used to indicate that the height of the image is not to be clipped.

92 February 25, 1997

AthenaMuse 2.2 Documentation

5. of f set X - Aninteger indicating where along the x dimension in the source image the dis-
played image isto start. Thisvalueis used to clip the left side of the image. The default value
is 0, indicating no clipping.

6. of f set Y- Aninteger indicating where along the y dimension in the source image the dis-
played image isto start. Thisvalueis used to clip the top of the image. The default valueis O,
indicating no clipping.

5.3.1 ADL Implementation of the PictureButton Class

Hereisthe ADL code for the Pi ct ur eBut t on class, with detailed comments on specific lines.

1 cl ass PictureButton: XFvisua

2 {

3 string fnane; /* name of file where image is stored */
4 handl e pi mage; /* handl e to i mage object */

5 bool ean arned = FALSE; /* flag for whether button is arned */

6 bool ean hilighted = FALSE; /* flag for whether button is hilighted */
7 string hilightColor = "LightYellow'; /* highlight color for border */
8 string nohilightCol or = "Bl ack"; /* regular color for border */

9 Nro {' Create, 'MuseDown, self, 'Showbown, {}} => nroDown;

10 Nro {' Create, 'MuseUp, self, 'ShowUp, {}} => nroUp

11 MouseNro {' Create, 'MuseMve, self, 'Showwbve, {} } => nroMve;

12 /* paraneters for image presentation */

13 bool ean defaultSi ze=TRUE;, /* use wi dth and hei ght of image */

14 i nteger x|l oc=0; /* location where inmage is presented */

15 i nteger yloc = 0; /* o

16 i nteger clipW -1; /* the clipping width--default no clip */
17 integer clipH = -1; /* the clipping height--default no clip */
18 i nteger offsetX = O; /* the x offset of source inage */

19 i nteger offsetY = O; /* the y offset of source inage */

20 list Activitylnfo = {{' Pressed, {}}};

21 list Pressed={};

22 Nro {' Create, 'Pressed, NULL, "", TRUE} => nroPress;

Figure 5.6 PictureButton Class

February 25, 1997 93

AthenaMuse 2.2 Documentation

23 /* Construct nmethod for class */
24 upon Construct: string f
25 {
26 {"Startup,f} => self;
27 }
28 /* Create nethod for class */
29 upon Create: string f, handl e hparent
30 init {{'Create, hparent} => XFvisual}
31 {
32 {"Startup,f} => self;
33 }
34 on Startup: string f
35 {
36 fname = f;
37 bor der Col or = nohil i ght Col or;
38 borderWdth = 1;
39 }
40 /* Init nethod to | oad i mage, present, scale imge and regi ster NROs*/
41 on Init
42 {
43 pi mmge = new {' Construct, {'MEi nmage, {' MAfile, fnane}}} =>MM nage,;
44 i f(defaultSize) {
45 hei ght = pi nage- >hei ght - of fsetY;
46 wi dth = pi mage->wi dth - of fsetX;
47 if(clipw> 0) {
48 width = clipWoffsetX;
49 }
50 if(clipH > 0) {
51 hei ght = clipH offsetY;
52 }
53 }
54 el se {
55 {' Zoom toReal (Wi dth)/toReal (pimage->w dth),
56 t oReal (hei ght)/t oReal (pi mage- >hei ght)} => pi mage;
57 }
58 {' PresentClipped, self, xloc, yloc,clipW clipH,
59 of fset X, offsetY} => pimage;
60 {' Subscribe, &nroDown} => self;
61 {' Subscribe, &nroUp} => self;
62 {' Subscribe, &nroMve} => self;
63
Figure 5.6 PictureButton Class
94 February 25, 1997

AthenaMuse 2.2 Documentation

64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80
81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99
100
101
102
103

/* Method call ed when npuse is noved */
on ShowhMbve: any whatever, integer xval, integer yval,
bool ean shift, bool ean command, bool ean nodifier

i nteger nbut,

{
if (armed && xval >=0 && xval < width && yval >=0 && yval <hei ght) {
bor der Col or = hilightCol or;
hilighted = TRUE;
el se if(arnmed &&(xval <0 || xval>=width || yval<0 || yval >=height)) {
bor der Col or = nohil i ght Col or;
hi | i ght ed=FALSE;
}
}
/* Method call ed when nouse is pressed */
on ShowDown: any whatever, list keys, list values
{
armed = TRUE;
hilighted = TRUE;
bor der Col or = hilightCol or;
}
/* Method cal |l ed when nouse is released */
on ShowUp: any whatever, |ist keys, list values
{
if (armed) {
armed = FALSE;
bor der Col or = nohil i ght Col or;
if (hilighted){
{" TriggerNotification, 'Pressed, {}} => self;
if (Pressed !'= {}) {
at(1, Pressed) => at(2, Pressed);
hilighted = FALSE;
}
}
}
/* destructor method for the class */
on Destroy
{
del et e pi mage;
}

}; /* end of class PictureButton */

Figure 5.6 PictureButton Class

February 25, 1997

95

Line 1

Line 3

Line 4

Lines 5-6

Lines 7- 8

Lines 9-11

Line 13

Lines 14-19

Line 20

Line 21

Line 22

Lines 24-27

96

AthenaMuse 2.2 Documentation

declares the beginning of the definition of the Pi ct ur eBut t on class. This
classinherits from the XFvi sual class. The inheritance from the XFvi -
sual class providesthe ability to display an image and manage standard
mouse activities such as MouseDown, MobuseUp and MobuseMbve.

declares the member f name. Thisisastring that is used to hold the name
of the file that stores the image for the button.

declares ahandl e member named pi mage. This stores the handle to the
MM mage object that holds the actual image that appears on the Pi ct ur e-
But t on object.

declaretwo bool ean members. Thefirst of these, called hi | i ght ed, isa
flag that indicates whether the border around the button is highlighted. This
valueis set to TRUE when the mouseis depressed on the Pi ct ur eBut t on.
The second bool ean, ar ned, isset tot r ue when the button isarmed (i.e.
when arelease of the mouse on the image resultsin the Pr essed activity
being triggered.)

declare the membershi | i ght Col or and nohi | i ght Col or. These
strings contain the names of the colors used for the border of the Pi c-

t ur eBut t on. They areinitialized to their default valuesof Li ght Yel | ow
and Bl ack respectively. The programmer using the class can override
these defaults.

declare three NRO members of the class. These three NROs are used to
deal with MouseDown, MouseUp and MouseMove activity. Thefirst two
are instances of the Nr o class. The NRO for the MouseMve activity isan
object of the MouseNr o class because we will use the (x,y) coordinates of
MouseMove eventsin the activity handler method, Showvbve.

declares the boolean member def aul t Si ze. Thisis set TRUE when if the
button is to be sized to match the image displayed within it.

declarethe six i nt eger valuesthat describe the clipping and scaling of
the image to be displayed. They are al initialized to their default values.

declaresal i st named Acti vi tyl nf o. Thislistisused by the ADL
activity manager to determine what additional activities (beyond thosein
the base classes) are to be managed. In this case, the Pr essed activity is
added.

declares the member Pr essed. Thisvalueis set by the user of the Pi c-
t ur eBut t on classto set the target and message to be sent when the button
IS pressed.

creates an NRO that will be used by the Pr essed activity. It isinitialized
with itstarget set to NULL.

define the special constructor Const r uct . This method just invokes the
method named St ar t up.

February 25, 1997

Lines 29-33

Line 34

Line 36

Line 37

Line 38
Line 40

Line 43

Lines 45-46

Lines 47-51
Lines 55 -56

Lines 58-59
Lines 60 -62
Lines 65 -76

Lines 78-83

Lines 85- 98

AthenaMuse 2.2 Documentation

define the special constructor Cr eat e. This method is used when an
instance of the PictureButton class is created from the heap. It send the
base classinitialization message to the X Fvisua base class, informing that
class about the handle to the parent of the widget. It then invokes the
method named St ar t up.

definesthe method called St ar t up. This method isinvoked by both the
Cr eat e and Const r uct methods. Its sole argument isthe name of thefile
containing the image to display.

assignsthe argument f to the member f nanme. This member contains the
name of the file that stores the image.

assigns the default color nohi ghl i ght Col or tothewidget’sbor der -
Col or.

sets the value of the widget’sbor der W dt h to 1.

beginthel ni t method for the class. This method isautomatically invoked
asthe last step in the creation of any object in AM2.

uses the new operator to create an instance of the MM mage object. Con-
st ruct , the special constructor for this object, is messaged with al i st
argument that has a string with the type of the element (MEi mage), and a
l'i st containing apair of values, specifically the type of image storage
(Maf i | e), and the name of thefile that stores theimage (f nane). The
handl e pi mage isassigned the handle returned by the special construc-
tor.

set the hei ght andwi dt h of the Pi ct ur eBut t on to thehhei ght and
wi dt h of theimage if the button is supposed to be sized automatically.

determine the clipped wi dt h and hei ght of the button.

are executed if the image is to be zoomed to a preset size. They invoke the
Zoommethod on the image.

causes the image to be presented in the button.
subscribe the NROs to the object.

implement the Showivbve method that is messaged whenever a Mbuse-
Move activity istriggered. This method checksif the button is armed from
an earlier MouseDown event. If it is, the method turns the highlighting of
the image on and off depending on whether the mouse is located inside or
outside the button. This gives the user visual feedback as to whether releas-
ing the mouse will cause the button to be pressed.

implement the ShowDown method. This method is messaged when the
NRO downNr o istriggered. The method arms and highlights the button.

implement the ShowUp method. This method is messaged when the NRO
upNr o istriggered. The method checksiif the button isarmed. If it is, the
value of ar med and bor der Col or arereset, and the method checks

February 25, 1997

97

AthenaMuse 2.2 Documentation

whether the button is highlighted. If it is highlighted, then it callsthe
TriggerNotification method. This method is part of the activity man-
agement mechanism. In this case, the implementation of Tri gger Not i -
fi cati on isinherited from the XFvi sual baseclass. The

TriggerNoti ficati on method takes two arguments: the name of the
activity and thel i st of valuesto be sent to the target of the activity. In
this case, the Pr essed activity istriggered and the argument list is empty.

The ShowUp method also checks to seeif the Pr essed member of the

Pi ct ur eBut t on class hasbeen set. Thismemberisal i st that can be set
by the user of the class as a shortcut for setting a single action to be taken
when the button is pressed. This mechanism exactly parallelsthe use of the
Pr essed member in standard ADL button widgets.

Lines 100-103 define the Dest r oy method for the class. This method is automatically
messaged whenever an instance of the classisdeleted. Thisoccurs when an
automatic instance of that type goes out of scope or when the del et e
operator is called on an instance created using the new operator. The
Dest r oy method deletes the memory allocated for the MM nage instance
where the image was stored.

Line 104 isthe end of the definition of the class Pi ct ur eBut t on.

5.3.2 An Example Using the PictureButton Class

Given the code shown above, we now turn to asimple ADL program that usesthe Pi ct ur eBut -
t on class. The example puts an instance of aPi ct ur eBut t on on the screen along with atext
label for that button. Pressing the Pi ct ur eBut t on reversesthe visibility of the label. Hereisthe
ADL code.

Line 1 starts the definition of an anonymous instance of an object that inherits
from the ADL top level shell class, XFt op. (Weuse anonynous to create
asingleinstance or very few instances of aclass.)

Lines 3-4 declare amember of thisanonynous classthat is an instance of aPi c-
t ur eBut t on named but t on1. Theimage that is displayed on the button
isinthefiledr agon. gi f. The button has a border that istwo pixels wide
andisat (x,y) coordinates (50, 75).

Line 5 declares an XFl abel at coordinates (120, 300) that has the text label
Pi cture of Dragon.

Lines 6-7 declarean XFbut t on at coordinates (50, 350) that is 45 pixels high and
100 pixels wide. This button has no border and its size is not adjusted
depending on the space needed for the button’ s label. The button contains
thetext Exi t .

Line 9 declares an instance of an Nr o. ThisNRO’s activity isPr essed and it
sends a message to the BPr ess method of sel f when triggered.

98 February 25, 1997

AthenaMuse 2.2 Documentation

1 anonynous: XFt op

2 {

3 PictureButton {‘Construct, “dragon.gif”} => buttonl

4 {borderWdth = 2; x =50; y = 75;};

5 XFl abel nyl abel {x=120;y=300; | abel ="Picture of Dragon”;};

6 XFbutton exitButton {x=50; y=350; hei ght=45; wi dth=100;

7 border W dt h=0; reconput eSi ze=FALSE; | abel ="Exit”;};

8 Nro {‘Create, ‘'Pressed, self, ‘BPress, {}} => nroPress;

9

10 upon Construct

11 {

12 {* Subscribe, &nroPress} => buttonl;

13 exitButton. Pressed = {‘Exit, theApp};

14 }

15

16 on BPress: any cdata, |ist keys, list values

17 {

18 nyl abel . vi si bl e = I myl abel . vi si bl e;

19 }

20 } myTop {hei ght=400; wi dth=500; title="Picture Button Denpn"};
Figure 5.7 PictureButton Class Example

Lines 10-14 define the Const r uct method for the shell object. The body of this
method subscribes nr oPr essed to the Pi ct ur eBut t on and sets the
Pr essed attribute of the XFbut t on named exi t But t on so that the Exi t
message is sent to the application when that button is pressed.

Lines 16-20 define the method BPr ess. Thisisthe method invoked when the Pr essed
activity of Pi ct ur eBut t on istriggered. The body of this method reverses
thevi si bl e attribute of the label.

Line 21 closes the declaration of the shell widget. The hei ght and wi dt h of the

shell widget are set in anizor block.

5.4 A Video Viewer Class

In this example, we create the VCR class using the wrapped class Mvhovi e.

5.4.1 ADL Implementation of the VCR class

The ADL code for the VCR class is given below. Detailed comments on specific lines are below.

{

©CoOoO~NOOOUTA,WNPE

class VCR : XFl ayout

handl e Screen = NULL;

handl e Movie = NULL;

handl e Pl ayButton = NULL;

handl e Rewi ndButton = NULL;
handl e PauseButton = NULL;

handl e Fast ForwardButton = NULL;

February 25, 1997

99

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

handl e St opButton

string MwvieTitle =

AthenaMuse 2.2 Documentation

NULL;

bool ean Paused = FALSE

upon Create : handl e Visual Parent, |ist SizePosition
init { {'Create, Visual Parent} => XFlayout }

{

i nt eger Xpos;

i nteger Ypos;

i nteger Wdth;
i nteger Height;

Xpos = first(SizePosition);
Ypos = at(2, SizePosition);
Wdth = at(3, SizePosition);
Hei ght = at (4, SizePosition);

X = Xpos;

y = Ypos;

wi dth = Wdth;
hei ght = hei ght;

Movi eTitle = I nitial Mvi e;

} // End of Create Method

upon Construct

{

Movi eTitle = "";

} // End of Construct Method

on Init

{

100

i nteger ButtonW dth,;
ButtonWdth = wi dt h/5;

Screen = new {' Create, self} => XFvisual ({
visible = TRUE
x = 0;
y =0;
b

Screen->w dth = wi dth;
Screen- >hei ght = hei ght - 20;

Pl ayButton = new {' Create, self} => XFbutton{
visible = TRUE
| abel = ">";
font Request = {'Helvetica, 14, {'bold},
¥

Pl ayBut t on->x = O0;

Pl ayButton->y = hei ght - 20;

Pl ayBut t on->wi dt h = ButtonW dt h;

Pl ayBut t on- >hei ght = 20;

string Initial Mvie

"roman};

February 25, 1997

AthenaMuse 2.2 Documentation

64 Pl ayButt on->Pressed = {' Play, self};

65

66 Rewi ndButton = new {' Create, self} => XFbutton{

67 vi si bl e = TRUE;

68 | abel = "<<";

69 font Request = {'Helvetica, 14, {'bold}, 'ronman};
70 b

71 Rewi ndButt on- >x = ButtonW dt h;

72 Rewi ndBut t on->y = hei ght - 20;

73 Rewi ndButt on->wi dt h = ButtonW dt h;

74 Rewi ndBut t on- >hei ght = 20;

75 Rewi ndBut t on- >Pressed = {' Rewi nd, self};

76

77 PauseButton = new {' Create, self} => XFbutton{

78 vi si bl e = TRUE;

79 | abel = "||";

80 font Request = {'Helvetica, 14, {'bold}, 'ronman};
81 b

82 PauseButton->x = 2*ButtonW dt h;

83 PauseButton->y = hei ght - 20;

84 PauseButton->w dt h = ButtonW dt h;

85 PauseBut t on- >hei ght = 20;

86 PauseButt on- >Pressed = {' Pause, self};

87

88 Fast ForwardButton = new {' Create, self} => XFbutton{
89 vi si bl e = TRUE;

90 | abel = ">>":

91 font Request = {'Helvetica, 14, {'bold}, 'ronman};
92 1

93 Fast For war dBut t on->x = 3*ButtonW dt h;

94 Fast Forwar dButt on->y = hei ght - 20;

95 Fast Forwar dButt on- >wi dt h = Butt onW dt h;

96 Fast For war dBut t on- >hei ght = 20;

97 Fast Forwar dButt on- >Pressed = {' Fast Forward, self};
98

99 StopButton = new {' Create, self} => XFbutton{

100 vi si bl e = TRUE;

101 | abel = "[1";

102 font Request = {'Helvetica, 14, {'bold}, 'ronan};
103 };

104 St opButt on->x = 4*Butt onW dt h;

105 St opButt on->y = hei ght - 20;

106 St opButton->wi dt h = ButtonW dt h;

107 St opBut t on- >hei ght = 20;

108 St opButt on->Pressed = {' Stop, self};

109

110 {'Set Movie, MvieTitle} => self;

111

112 '} // End of Init Method

113

114 on SetMovie : string NewMovieTitle

115

116 if (isvValid(Myvie)) {

117 del ete Movi e;

February 25, 1997 101

AthenaMuse 2.2 Documentation

118 Movi e = NULL

119 }

120

121 if (NewMovieTitle !'="") {
122 Movi e=new{' Construct, {' MEavi, {' MAfil e, NewMovi eTitl e}}}=> MvVirovi e
123 {' Regi sterOn, Screen} => Mvi e;
124 }

125

126 Movi eTitl e = NewMovi eTitl e;
127 ' Updat eButt ons => sel f;

128

129 } // End of SetMvie Method

130

131 on Updat eButtons

132 {

133 if (isvValid(Myvie)) {

134 Pl ayBut t on- >di sabl ed = FALSE
135 Rewi ndBut t on- >di sabl ed = FALSE
136 PauseBut t on- >di sabl ed = FALSE
137 Fast For war dBut t on- >di sabl ed = FALSE
138 St opBut t on- >di sabl ed = FALSE
139 }

140 el se {

141 Pl ayBut t on- >di sabl ed = TRUE
142 Rewi ndBut t on- >di sabl ed = TRUE
143 PauseBut t on- >di sabl ed = TRUE
144 Fast For war dBut t on- >di sabl ed = TRUE
145 St opBut t on- >di sabl ed = TRUE
146 }

147

148 } // End of UpdateButtons Mt hod
149

150 on Show

151 {

152 visible = TRUE

153 } // End of Show Met hod

154

155 on Hide

156 {

157 visible = FALSE

158 } // End of Hi de Method

159

160 on Pl ay

161 {

162 integer a, b

163 list I|;

164 interval i;

165 if (isvValid(Myvie)) {

166 if (! Paused) {

167 'Present => Mvi e;

168 }

169 el se {

170 ' Resunme => Movi €;

171 }

102 February 25, 1997

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

AthenaMuse 2.2 Documentation

Paused = FALSE;

}
} // End of Play Method
on Rewi nd
{

i nteger a, b;
list I;
interval i;

if (isvalid(Mvie)) {

if (((Movie->position) - 10)
a = (Movie->position) - 10;
}

el se {
a = Mvie->startPosition;

}

if (! Paused) {
b = Myvi e->endPosi tion;

}

el se {

b = a;

}

I = { {TRUE, a}, {TRUE, b}};
i = tolnterval (1);
{'Playlnterval, i} => Mvie;
}

} // End of Rewi nd Method

on Pause

{ .
i nteger a;
list I|;
interval i;

if (isvalid(Myvie)) {
if (! Paused) {

' Pause => Mbvi e;
Paused = TRUE;

}

el se {

' Resune => Mbvi e;
Paused = FALSE;

1}

} // End of Pause Method

on Fast Forward

{

i nteger a, b;

February 25, 1997

> Movi e->start Position)

{

103

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

list

interval i;

AthenaMuse 2.2 Documentation

if (isvalid(Mvie)) {

if (((Movie->position) + 10) < Myvie->endPosition)

a = (Movie->position) + 10;

I »

if (! Paused) {
Movi e- >endPosi ti on;

b =
}

el se {

b =

{'PI

a,

{ {TRUE, a},

e {
Movi e- >endPosi ti on;

{TRUE, b}};

tolnterval (1);

ayl nterval ,

i} => Mvie;

} // End of FastForward Method

on Stop

{

i nteger a;

list

interval i;

if (isvalid(Mvie)) {

'Stop => Movi e;
Paused = FALSE;

{'PI

Movi e- >st art Posi ti on;

{ {TRUE, a},

{TRUE, a}};

tolnterval (1);

ayl nterval ,

i} => Mvie;

} // End of Stop Method

b

/1 End of VCR Class Definition

anonynous : XFtop

104

{

February 25, 1997

AthenaMuse 2.2 Documentation

280 {

281 VCR myVer{x = 10; y = 10; width = 400; hei ght = 300;};
282

283 upon Construct

284 {

285 {'Set Movie, "NAME.avi"} => nyVcr;

286 ' Show => nyVcr;

287

288 } // End of Construct Method
289 } mytop{wi dth = 410; hei ght = 310;};

290

Line 1

Lines 4-13

Line 15

Line 16

Lines 17-20

Lines 22-25

Line 32

Line 34
Line 36

Line 38

Line 39
Line 41

Line 43

*/

declares VCR class as a subclass of XFI ayout . In other words, the VCR
class inherits behavior from the XFI ayout class.

declare internal variables used by the class such as button handles, the title
of the current movie and abool ean value that tracks whether the current
movie is paused or not.

declaresthe"Cr eat e" method as aconstructor using the "upon" key word.
This method will takethree arguments including a visual parent, alist con-
taining the size and position of the VCR and an initial movietitle.

initializes the base class of the VCR by sending the visual parent to the
XFl ayout inherited class.

declaresinternal variablesto be used within the method. These variables do
not exist outside of this method and are used for readability.

assigns each variable the appropriate value from the list which describes
the coordinates and its width and height of the VCR.

savesthefilenamefor theinitial movieto an internal classvariablefor later
use.

ends the declaration of the "Cr eat e" method.

declaresthe "Const r uct " method as a constructor using the "upon” key
word. This method takes no arguments and can only be used when the
"visua parent” of the VCR can be found by asking the windowing system.
Use this method when you statically create a VCR (see application exam-
ple below).

ensures that the "Movi eTi t | e" variableis properly set to the default
value.

ends the declaration of the "Const r uct " method.

begins the declaration of the "I ni t " method. This method is used to ini-
tialize internal variables, to create and position buttons and to initialize the
movieto be played, if any.

declares an internal method variable used to calculate and store the width
of the buttons.

February 25, 1997

105

AthenaMuse 2.2 Documentation

Line 45 calculates the width of all of the buttons based on the width of the VCR.

Line 47 creates a new instance of the "XFvi sual " class and stores the new handle
inthevariable"Scr een".

Lines 48-50 initialize some of the attributes of the newly created XFvi sual , such as
coordinates andvisibility.

Line 52 setsthe width of the"Scr een" to be the same width of the VCR.

Line 53 sets the height of the"Scr een™ to be aslarge as possible but still leave
room for the VCR buttons.

Line 55-59 creates a new instance of the "XFbut t on" class and stores the new handle
in avariable. Some of the attributes of the new button are set including the
"l abel ", vi sibility andfont tobeused.

Lines 60-63 theselines set the other attributes of the newly created button, namely the
coor di nat es andwi dt h and hei ght of the button.

Line 64 this sets the both the method name and object called when the button is
pressed. In this case, the method "Play" will be sent to the"self" i.e. the cur-
rent instance of the VCR class. This completes thedeclaration of the"Play"
button for the VCR class.

Lines 66-108 these lines follow the same format and pattern as Lines 55-64, creating the
"Rewi nd", "Pause", "Fast Forward" and"St op" buttons of the VCR
class. Pay particular attention to the "l abel " attribute of each button and
Lines 75, 86, 97 and 108 which set the appearance of the button and the
response of the button when pressed, respectively.

Line 110 calls the method "Set Movi e" with the argument "Movi eTi t | e" within
the VCR class. This call activates the internal method responsible for |oad-
ing theinitial movie and preparing it for viewing.

Line 112 ends the declaration of the"I ni t " method.

Line 114 begins the declaration of the "Set Movi e" method. The "Set Movi e"
method takes one argument in the form of ast r i ng which contains either
amovie filename or an empty string. This method isresponsible for prepar-
ing amovie to be viewed within the VCR class.

Line 116 this line checksto seeif acurrent, valid movie exists.
Line 117 if avalid movieis currently loaded, delete the "ol d" movie.

Line 118 then, after deletion, reinitialize the "Movi e" handleto NULL. This allows
error checking should the new movietitle be the empty string.

Line 121 thisline checksto seeif the "NewMbvi eTi t | e" isthe empty string.

Line 122 if not, anew instance of Mvirovi e is created using the "Newibvi eTi t | e"
and the handle is stored in the internal variable "Movi e".

Line 123 registers the new movie for display on the"Scr een” of the VCR.

106 February 25, 1997

AthenaMuse 2.2 Documentation

Line 126 stores the new movietitlein theinterna variable "Movi eTi t | e".

Line 127 thisline calls the method "Updat aBut t ons™ within the VCR class. This
method is responsible for enabling and disabling the VCR control buttons.

Line 129 ends the declaration of the "Set Movi e" method.

Line 131 begins the declaration of the "Updat eBut t ons" method. This method
enables or disables the VCR control buttons depending on whether avalid
movie isloaded or not.

Line 133 checks to see of the handle stored in the internal variable "Movi e" isvalid.

Lines 134-138 if it isvalid, al of the buttons are enabled so the user may use them to con-
trol viewing.

Lines 140-145 otherwise, the buttons are disabled so they may not be used.

Line 148 ends the declaration of the "Updat eBut t ons™ method.

Line 150 begins the declaration of the "Show" method. This method displays the
VCR (but does not start a movie playing).

Line 152 setsthe VCR class visibility attribute to TRUE.
Line 153 ends the declaration of the "Show" method.

Line 155 begins the declaration of the "Hi de" method. This method hides the VCR
(but does not stop a movie from playing).

Line 157 setsthe VCR class visibility attribute to FALSE.
Line 158 ends the declaration of the "Hi de" method.

Line 160 begins the declaration of the "Pl ay" method. This method is responsible
for playing avalid movieor unpausing avalid, currently paused move.

Line 163 this line checks to ensure that avalid movie is|oaded.

Line 164 if thereisavaid movie loaded, this line checksto seeif the movieis
paused.

Line 165 if the movieis not paused, it is"Pr esent "-ed which begins playing the

movieon the"Scr een”.
Lines 167-168 if the movieis paused, it is"Resune"-ed which unpaused and continues

the movie.
Line 171 setsthe "Paused" state variable equal to FALSE.
Line 172 thisline endsthe"i f " statement ensuring avalid movie is|loaded.

Line 174 ends the declaration of the "PI ay" method.
Line 176 begins the declaration of the "Rewi nd" method.

Lines 178-180 declare variables to be used within the "Rewi nd" method. These variables
will be used to declare segments of the movie to be displayed.

Line 182 checks to ensure the current movieisvalid.

107 February 25, 1997

AthenaMuse 2.2 Documentation

Line 184 if the current movieisvalid, thisline checks to seeif the movie can be
"r ewound" 10 frames withoutmoving beforethe"st arti ng posi tion"
of the movie.

Line 185 if the current position can be moved back 10 frames, the variable"a" is set

to the current position minus 10.

Lines 187-188 if the current position can not be moved back 10 frames, the variable"a" is
set to the starting position of the movie.

Line 191 thisline checksto seeif the movieis currently paused.

Line 192 if the movie is not paused, the variable "b" is set to the "endi ng posi -
ti on" of the current movie.

Lines 194-195 if the movieis currently paused, the variable "b" is set equal to the variable
"a".

Line 198 thisline setsthe variable"I" equal to alist that is formatted to be converted
into an interval of the moviethat can be displayed. The format saysthat the
variable"a" isthefirst value of the interval and will beincluded within the
bounds of the interval and the variable "b" is the second value of the inter-
val and will also be included within the bounds of the interval.

Line 199 convertsthelist variable"l" into an interval and storesthe value in the vari-
able"i ".

Line 201 displaystheinterval of the movie defined by "i ".

Line 203 endsthe"i f " statement ensuring avalid movie is loaded.
Line 205 ends the declaration of the "Rewi nd" method.

Line 207 begins the declaration of the "Pause" method.

Line 209 checks to make sure avalid movieis currently loaded.

Line 210 if thereisavalid movie loaded, this line checks to see if the movieis cur-
rently paused.

Line 211 if the movie is not currently paused, pause the movie and set the variable

"Paused" equal to TRUE.

Lines 214-216 if the movieis currently paused, unpause the movie and set the variable
"Paused" equal to FALSE.

Line 219 thisline endsthe"i f " statement ensuring avalid movie is|loaded.
Line 221 ends the declaration of the "Pause" method.
Line 223 begins the declaration of the "Fast For war d" method.

Lines 225-227 declare variables to be used within the "Fast For war d" method. These
variables will be used to declare segments of the movie to be displayed.

Line 229 checks to ensure the current movieisvalid.

108 February 25, 1997

AthenaMuse 2.2 Documentation

Line 231 if the current movieisvalid, thisline checks to see if the movie can be
"fast forwarded" 10 frameswithout moving beyond the "endi ng
posi ti on" of the movie.

Line 232 if the current position can be moved forward 10 frames, the variable "a" is
et to the current position plus 10.

Lines 234-235 if the current position can not be moved forward 10 frames, the variable
"a" is set to the endingposition of the movie.

Line 238 thisline checksto seeif the movieis currently paused.

Line 239 if the movie is not paused, the variable "b" is set to the "endi ng posi -
ti on" of the current movie.

Lines 241-242 if themovieis currently paused, the variable "b" is set equal to the variable
"a".

Line 245 setsthe variable "|" equal to alist that is formatted to be converted into an
interval of the movie that can be displayed. The format says that the vari-
able"a" isthefirst value of the interval and will be included within the
bounds of the interval and the variable "b" is the second value of the inter-
val and will also be included within the bounds of the interval.

Line 246 convertsthelist variable "|" into aninterval and storesthe value in the vari-
able"i ".

Line 248 displaystheinterval of the movie defined by "i ".

Line 250 endsthe"i f " statement ensuring avalid movie is loaded.

Line 252 ends the declaration of the "Fast For war d" method.

Line 254 begins the declaration of the "St op" method.

Lines 256-258 declare variables to be used within the "St op" method. These variables
will be used to move the movie back to the beginning.

Line 260 this line checks to seeif the current movieisvalid.

Line 262 if the movieisvalid, stop the movie.

Line 263 resets the "Paused" variable to FALSE. A stopped movieis no longer
paused.

Line 265 setsthe variable "a" tothe"st arti ng posi ti on" of the movie.

Line 266 setsthe variable "|" equal to alist that is formatted to be converted into an
interval of the movie that can be displayed. The format says that the vari-
able"a" isthefirst value of the interval and will be included within the
bounds of the interval and the variable "a" is also the second value of the
interval and will also be included within the bounds of the interval. This
interval defines a point in the movie to be displayed, in this case, the begin-
ning of the movie.

109 February 25, 1997

AthenaMuse 2.2 Documentation

Line 267 convertsthelist variable"l" into an interval and storesthe value in the vari-
able"i ".

Line 269 displays theinterval of the movie defined by "i " effectively showing the
first frame of the movie and stopping.

Line 271 endsthe"i f " statement ensuring avalid movie is loaded.
Line 273 ends the declaration of the "St op™ method.
Line 275 ends the declaration of the VCR class.

Line 277 begins a comment which includes a small, sample application which uses
the VCR class. In order to use the sample application, the programmer will
need to remove the "comment " markers.

Line 278 declares an "anonynous" subclass of the class XFt op. These are often
used as the main windowfor applications.

Line 281 statically declares the creation of a VCR obj ect and sets the values for x,
y,wi dt h and hei ght . In performing this type of object creation, the
"Const ruct " method of the object is called. The name of the VCR object
within the "anonynous" classis"nyVer ".

Line 283 begins the declaration of the "Const r uct " method for the "anonynous™
class.

Line 285 callsthe"Set Movi e" method of the VCR object "myVer " with the argu-
ment "NAME. avi ". The programmer should change "NANME. avi " to an
appropriate, sample. avi file.

Line 286 callsthe "show' method of the VCR object "myVcr " effectively making
the VCR object visible and usable by the user.

Line 288 ends the declaration of the "Const r uct " method for the "anonynous”
class.
Line 289 completes the declaration of the "anonynous" class and creates an

instance of the "anonynous™" class named "yt op™ along with setting the
initial wi dt h and hei ght of the "anonynous" class.

Line 290 this marks the end of the "conmment " markers surrounding the sample
application.

110 February 25, 1997

AthenaMuse 2.2 Documentation

Chapter 6 Wrapped Class Reference

Wrapped classes are C++ classesin AM2 that are visible in the ADL (see Section 3.23,
“Wrapped Classes” page 44). They provide an interface to the AM2 library inthe ADL. Inthe
sections that follow, we describe the following seven types of system-defined wrapped classes, as
well aslist their methods, members, and activities:

» Section 6.1, “Activities and Application Services” page 113
» Section 6.2, “User Interface” page 123

» Section 6.3, “Multimedia” page 171

* Section 6.4, “Input/Output” page 199

e Section 6.5, “External Processes” page 233

» Section 6.6, “Database” page 239

e Section 6.7, “Data Structures” page 255

Y ou can use wrapped classes as is, or create a subclass to add additional features. This chapter
describes the system-defined wrapped classes that come with the ADL. To learn how to create
your own wrapped classes see Section Appendix B, “Creating Wrapped Classes” page 271.

By convention, wrapped classes possess hames that start with two capital letters specifying the
module, followed by one or more concatenated words, all but the first of which are capitalized.
For instance, XFmenuConmand is the wrapped class used to implement menu items that initiate
commands. The initial two letters, “XF”, indicate that this wrapped class belongs to the user inter-
face module along with other classes like XFbut t on and XFt ext Fi el d. The exception to this
convention are the wrapped classes implementing notification request objects (Nr o, MouseNr o
and Ti mer Nr o) and the abstract wrapped classesAct i vi t yManager and At t ri but eManager .

Nothing prevents ADL programmers from following asimilar convention in developing his or her
own classes. In general, preexisting module prefixes should be avoided, except in instances where
the developer is prototyping an ADL classthat he or she intends to replace with asimilarly named
wrapped class at alater date.

February 25, 1997 111

AthenaMuse 2.2 Documentation

The important features of awrapped class are divided into four areas:

Superclasses indicate inheritance, which is akey concept that is critical to fully understand-
ing the behavior of each class. To help in understanding the inheritance relationships within
and between classes, inheritance diagrams will be provided. Asthe legend for each class will
show, black boxes indicate classes and gray boxes indicate abstract classes (see Section 3.24,
“Inheritance” page 47).

Methods are used to provide much of the advanced functionality of the wrapped classes. Y ou
can use methods of wrapped classes exactly like methods of user-defined ADL classes (see
Section 3.21, “Method Definition” page 41).

Constructors are special methods which are distinguished by starting with the keyword upon
rather than the keyword on. Use constructors only when creating instances of objects; if no
default constructor is listed for a class, then you must specify one of the constructors listed
when creating the instance of the class. We do not list the | ni t method and the Dest r oy
method because you should never call them directly.

Attributes are similar to the members of user-defined ADL classes (see Section 3.20, “Class
Definition” page 40). However, attributes of wrapped classes may be designated as “read-
only,” or have side effects when changed. Also, some classes provide easy accessto fre-
guently used activities through special attributes.

In the lists of members, the Access column indicates whether you can set the attribute at cre-
ation time (C), whether you can also set it after creation (S), and whether you can read it (G).
In both the lists of attributes and activities, namesin indicate features that are not yet
implemented.

Activities provide asynchronous notification of events. Y ou can trigger activities by the
mouse, keyboard, network, or other things outside the application. Although there is no direct
equivalent in the ADL, you can write classes in the ADL to provide a similar notification
mechanism. See Chapter 4, “Using Activities in ADL’*for more information.

112 February 25, 1997

AthenaMuse 2.2 Documentation

6.1 Activities and Application Services

The classes included in this section are used by almost every AM2 application, but the ADL user
may often be unaware of their existence. MCappl i cat i on isabase classto every application
class, but the user should not (indeed, can not) declare it explicitly. The Acti vi t yManager and

AttributeManager classes are likewise abstract base classes for any wrapped class that supports
activities (see “Using Activities in ADL” on page 59) or attributes (see “Member Access” on
page 45), and many applications can be written using the Pressed member rather than the under-
lying notification request classes Nr o, MouseNr o, and Ti mer Nr 0. On the other hand, the ser-
vices provided by these classes are fundamental. For example, every ADL program should use the
‘ Exi t message provided by the MCappl i cat i on class. Detailed documentation for the these
classes are provided in the following sections:

» Section 6.1.1, “MCapplication - Abstract” page 115

» Section 6.1.2, “Activity Manager - Abstract” page 116
* Section 6.1.3, “Attribute Manager - Abstract” page 118
» Section 6.1.4, “Nro” page 118

» Section 6.1.5, “MouseNro” page 120

» Section 6.1.6, “TimerNro” page 121

The class inheritance tree for the Activities and Application Services (AAS) of AM2 appearsin
Figure 6.1. Inheritance relationships are shown by the black lines that connect the boxes. Moving
from the top to the bottom of the figure, classes inherit from those where a connection exists and
they become more specific as you go down the tree. Classes with more that one connection to a
superclass are said to have a multiple inheritance relationship

February 25, 1997 113

AthenaMuse 2.2 Documentation

Activity Manager Attribute Manager

PMCapplicatian

ace [(AF)
g #F buttan)

sltimedia (k)
(e.q. MMimage)

DSqueue

DSstack

Legend Abstract Class Mon-Abstract Class

Figure 6.1 Activities and Applications Services Wrapped Classes Inheritance Tree

114 February 25, 1997

AthenaMuse 2.2 Documentation

6.1.1 MCapplication - Abstract

This class serves as theimplicit base of every application class, but should not be used explicitly,
either as the class of any member or the base of a user defined class. That is, the global level of
every ADL application (t heApp Class) inherits from the MCappl i cat i on wrapped class
although its name never appears in the program. This class provides certain application services
that do not fit naturally into any other wrapped class. These include interaction with the event
loop, registration of certain error handling methods for mathematical built-in functions, and sub-
scription for timers and idle time work procedures. In order to invoke MCappl i cati on met h-
ods, the user should send the appropriate message to t he App, an instance of theAppClass.

Superclasses

None

Methods
on Exit

Exit the event loop and terminate the application after returning to the event loop and execut-
ing all queued asynchronous messages and propagating al constraints. This means that any
statement after the method invocation in the calling method executes. 'Exit => t heApp;
UsetheDi e() built-in for emergency exits.

on Sync

Normally attribute updates take effect, asynchronous messages are delivered, and constraints
propagate when an activity callback returns control to the event loop. This method forces
these actions to be taken immediately.

on SetFatalErrors: list errorList

The mathematical built-ins recognize six named types of errors (see page 266). Two of these
arefatal (DOVAI N, SI NG) and the other four (OVERFLOW UNDERFLOW TLGSS, PLOSS) are
ignored by default. Y ou can change this behavior by invoking this method ont heApp. The
single argument in the message should be alist of lists. Each sublist should be apair consist-
ing of astring specifying the name of aner r or typeand abool ean constant (TRUE, FALSE)
indicating whether or not the error isto be treated as fatal.

on SetBypass: integer nEvents

Normally the AM2 event loop follows a strict priority model. High priority 1/0 events are
always processed before timer events, which are processed before normal user interface
events, which are processed before idle time events (work procedure callbacks). But this
strict model can lock out the processing of user interface eventsindefinitely, say during along
stretch of software media decompression. This method inverts the event loop for the process-
ing of one event every nEvents events. Normally, an inverted cycle of the event loop starts
with checking for a user interface event, then atimer event, and finally a high priority 1/0
event. If thewor kPr ocBypass message has been sent to theA pp with an argument of TRUE,
however, then the inverted cycle will start with checking for an idle time notification request
(work procedure) and will only go on to check for user interface events if noneis found.

February 25, 1997 115

AthenaMuse 2.2 Documentation

on WorkProcBypass: boolean includeWorkProc

If thei ncl udeWor kPr oc is TRUE, then an inverted event cycle (see the previous method)
includes checking for idle time notification. Otherwise, it doesnot. Wor kPr ocBypass can be
called repeatedly to toggle the value on and of f .

Attributes
None
Activities
Activity Keys Description
Tick integer late, missed periodic timer notification
Idle none application idle

Figure 6.2: MCapplication Activities

This class supports periodic timers and idle time work procedures viaamechanism that resembles
activities, athough it does not usethe Act i vi t yManager base class. From the point of view of
the devel oper there is no difference. The devel oper should subscribe for the Ti ck activity used by
the Nro or TimerNro classes, which containsan Ext r a member that specifiesthetimer interval in
milliseconds.

Examples

“A Simple ADL Application with a Button” page 60

6.1.2 Activity Manager - Abstract

Thisclassisdescribed for reference only. For further informaiton on how to use activitesin ADL
programs (see Section 4.5.3, “Creating Classes That Inherit From the ActivityManager
Class” page 75).

Superclasses

None

Methods
on Subscribe: handle hNro, handle hTarget return handle

Register for the activity specified in the Nr o pointed to by hNr o, making the object pointed to
by hTar get therecipient of the future notification. This method returnsaNULL handleif the
subscription is refused, otherwise the value of hNr o.

on Unsubscribe: handle hNro, handle hTarget return handle

Unregister the subscription for the object pointed to by hTar get for the activity specified in
the Nr o pointed to by hNr o. Return aNULL handle if the subscription could not be removed
for any reason, otherwise the value of hNr o.

116 February 25, 1997

AthenaMuse 2.2 Documentation

on TriggerNotification : string activityName, list valueList, handle hTarget

Trigger anotification for the activity act i vi t yName sent to the ADL object pointed to by
hTar get . The notification message will have the selector activityName and three arguments:

1) the client data supplied in the subscribed Nr o of type any;
2) alist of strings that supplies the keysfor the activity, drawn from Act i vi t yI nf o member;
3) alist of values, val ueli st , that match the keysin 2.

Themessage Tri gger noti fi cati on isusualy only sent if the programmer has defined a
classwith it's own, non-standard activities. See the examplein section 3.4.2.

on IsAnyoneSubscribed : string activityName, handle hTarget return boolean

Check if the object pointed to by hTar get has subscribed for activity act i vi t yNane.
Return TRUE or FALSE.

Attributes
Attribute Type Description Access
Activitylnfo List This member is normally read-only, unless the user CG
has subclassed ActivityManager to define his or her
own activity. Seethe discussion in section 3.4.2.
Activitylnfoisaspecially formatted list of listsin
which each sublist has the form { activityName,
listOfActivityKeys}.
Figure 6.3: Activity Manager Attributes

Activities

None

Example

Table 4.11, “A Class Inheriting from the ActivityManager Class,” on page 76
Table 4.12, “An Example Using the Movable Class,” on page 77

February 25, 1997 117

AthenaMuse 2.2 Documentation

6.1.3 Attribute Manager - Abstract

This classisan abstract class which manages attributes in the underlying operating or windowing
system so that they appear to the ADL programmer asif they are members of the wrapped classes.
Most of the User Interface (XF) classes inherit from At t ri but eManager because attributes of
the window system components like width or foreground (color) are really maintained by the
underlying window system code and are not stored as actual members of the wrapped user inter-
face classes (see “Wrapped Classes” on page 44).

Superclasses

None

Methods
on Commit

Normally attributes are not updated until after an activity callback returns just before the next
activity is dispatched for processing. The user can force updating of an object’s attributes by
sending a‘Conmi t to the object.

Attributes
None
Activities
None
Example
None

6.1.4 Nro

This class implements a general notification request object that is more efficient than a pure ADL
version. For ageneral discussion of the use of this class, see Chapter 3 “Using Activities in
ADL” page 59, and for a specific discussion of using a generic NRO, see Section 4.2, “Using
Notification Request Objects” page 62 .

Superclasses

None

Methods
upon Create: string activity, handle client, string method, any clientData

Create a notification request object for the specified activity that invokes method on the client
with the argument clientData as the first argument of the callback message.

118 February 25, 1997

AthenaMuse 2.2 Documentation

upon CreateExtra: string activity, handle client, string method, any clientData, any extra
Same as the previous with the exception that it initializes the member Extrato the value extra.
on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in aderived NRO class.
Thismethod is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding datain the
same order.

on Lookup: string key, list keys, list values return any

L ookup up key in the notification attribute-value pairs specified by keys and values and return
the appropriate value. This method should become class conmon, when conmon isimple-
mented.

Attributes
Attribute Type Description Access
mActivity string name of activity for which notification is requested CG
mExtra any extra notification request data CG
mClient handle notification target object CSG
mM ethod string notification target method CSG
mClientData any user-supplied notification argument CSG

Figure 6.4: Nro Attributes?

a. For further explanation, see Section 4.6, “Creating Customized NROs” page 78.

Activities

None except for the actvityName? activities (see “Using Activities for Notification of Subscrip-
tions” on page 80).

Example

Table 4.3, “An Example Using an NRO,” on page 64

February 25, 1997 119

AthenaMuse 2.2 Documentation

6.1.5 MouseNro

This class implements a special notification request object for mouse activities that is more effi-
cient than apure ADL version. ThisNRO isused with all of the supported mouse activitiesin wid-
gets. For afurther discussion of MouseNr o, see Section 4.3.1, “Mouse NROs” page 65.
Superclasses

Section 6.1.4, “Nro” page 118

Methods
upon Create: string activity, handle client, string method, any clientData

Create amouse notification request object for the specified activity that invokes method on the
client with the argument clientData as the first argument of the callback message.

on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in aderived NRO class.
Thismethod is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding datain the
same order. For thelist of attributes corresponding to mouse activities see “Basic Widget
Activities” on page 127.

Attributes

None

Activities

None

Example
Table 4.4, “Using MouseNro Objects,” on page 66

120 February 25, 1997

AthenaMuse 2.2 Documentation

6.1.6 TimerNro

This class implements a special notification request object for timers that is more efficient than a
pure ADL version. ThisNRO is used with the Ti ck activity of MCappl i cat i on base to the
application class (see “MCapplication - Abstract” on page 115). For further information about
the TimerNro, see Section 4.3.2, “Timer NROs” page 67.

Superclasses

Section 6.1.4, “Nro” page 118

Methods
upon Create: integer ival, handle client, string method, any clientData

Create anotification request object for the Ti ck activity that invokes method on the client
every ival milliseconds with the argument clientData as the first argument of the callback

message.
on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in aderived NRO class.
Thismethod is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding datain the
same order.

Attributes

None

Activities

None

Example

“Example Using A Timer” page 68

February 25, 1997 121

AthenaMuse 2.2 Documentation

122 February 25, 1997

AthenaMuse 2.2 Documentation

6.2 User Interface

The class inheritance tree for the User Interface (XF) wrapped classes appearsin Figure 6.5. As
the legend shows, black boxes indicate classes and gray boxes indicate abstract classes. Docu-
mentation for all classesin thistree appearsin this section.

* Section 6.2.1, “XFwidget - Abstract” page 125

» Section 6.2.2, “XFcontainable - Abstract” page 128

» Section 6.2.3, “XFcontainer - Abstract” page 128

» Section 6.2.4, “XFcontainableContainer - Abstract” page 129
e Section 6.2.5, “XFtop” page 129

» Section 6.2.6, “XFlayout” page 131

e Section 6.2.7, “XFvisual” page 133

* Section 6.2.8, “XFhtml” page 134

» Section 6.2.9, “XFmessageDIg” page 136

e Section 6.2.10, “XFsimple - Abstract” page 138

» Section 6.2.11, “XFfontable - Abstract” page 138

e Section 6.2.12, “XFlabel” page 139

* Section 6.2.13, “XFbutton” page 141

» Section 6.2.14, “XFtoggleButton - Abstract” page 142
» Section 6.2.15, “XFcheckBox page 143

* Section 6.2.16, “XFradioButton” page 144

» Section 6.2.17, “XFselectList” page 148

* Section 6.2.18, “XFtext” page 151

* Section 6.2.19, “XFtextField” page 153

e Section 6.2.20, “XFscrollBar” page 156

* Section 6.2.21, “XFmenultem - Abstract” page 159

» Section 6.2.22, “XFmenuLabeledItem - Abstract” page 159
» Section, “” page 160

» Section 6.2.24, “XFmenuCommand” page 161

» Section 6.2.25, “XFmenuSeparator” page 162

» Section 6.2.26, “XFfont” page 164

* Section 6.2.27, “XGPainter” page 167

February 25, 1997 123

AthenaMuse 2.2 Documentation

Activity Manager Aftribute Manager

HFecartainable AR ECHSINEr
wFecontainableContainer
:: F I :EI!II' o t

HWFEwisual

Graphics Support
AEhtml

#Fmessagelly #Ffont

H“Fsimple HGEpainter

H“Ffontable

#Fhutton Menus
#FtogoleButton W Ernenultern

AFcheckBox #FmenuLabeleditem

#FradioButton WEMEnL

AFmenuCommand

HFmenuSeparator

HFtextField

“FscrollBar

Legend Abstract Class Mon-Abstract Class

Figure 6.5: User Interface Wrapped Classes Inheritance Tree

124 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.1 XFwidget - Abstract

XFwidget, the base class for all windowed widgets, defines all common attributes and activities.

Superclasses
Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

None

February 25, 1997 125

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access

X integer x-coord upper |eft outside corner of 0 CGS
widget

y integer | y-coord upper left outside corner of 0 CGS
widget

width integer | widget width (in pixels), including bor- | 100 CGS
der

height integer | widget height (in pixels), including 100 CGS
border

borderWidth integer | width of the border surrounding the 0 CGS

(only on UNIX) widget

foreground string foreground drawing color for the wid- platform CGS

(only on UNIX) get

background string background drawing color for thewid- | platform CGS

(limited on NT) get (unavailable on NT for XFmes-
sageDlg, XFhtml, XFcheckBox,
XFradioButton, XFtext, X FselectList,
XFtextField, XFfont nor any classes
derived from X Fmenultem)

borderColor string color of the border surrounding the platform CGS
widget

visible boolean | Status of the widget relative to the TRUE CGS
screen;
if set to TRUE, the widget is displayed.

disabled boolean | Determinesif widget receives user FALSE CGS
input. When set to TRUE, widget is
disabled and doesn’t receive keyboard
or mouse input.

systemL ook boolean | Specifiesif widget should maintainthe | FALSE CG
look of the platform. Setting thisto
TRUE may override other attributes on
the widget.

Figure 6.6: Basic Widget Attributes
126 February 25, 1997

AthenaMuse 2.2 Documentation

Activities
Activity Keys Description
MouseUp integer x, y, button mouse button rel eased
boolean shift, control,
modifier
MouseDown same mouse button pressed
MouseDblClick same mouse button double-clicked
MouseMove same mouse moved
MouseDrag same mouse moved while button held down
Destroyed none widget destroyed
Shown none widget displayed
Hidden none widget removed from display
Resized integer width, height widget resized
Moved integer X, y widget moved
Focusln none widget gained input focus
(only on UNIX)
FocusOut none widget lost input focus
(only on UNIX)
Refresh integer X, v, widget redrawn
integer width, height
Help none help requested for widget
KeyPressed string character, bool- | key pressed in widget
ean shift,
boolean command,
boolean modifier
K eyRepeat same key held down in widget
Figure 6.7: Basic Widget Activities
Example
None

February 25, 1997

127

AthenaMuse 2.2 Documentation

6.2.2 XFcontainable - Abstract

The XFcont ai nabl e classisan abstract class that defines the interface and behavior of al con-
tainable widgets such as XFbut t ons, XFt ext Fi el ds, and so on. A widget is said to be
“cont ai nabl e” if it can be placed as a child of another widget (the container).

Superclasses
Section 6.2.1, “XFwidget - Abstract” page 125

Methods

None

Attributes
None
Activities
None

Example

None

6.2.3 XFcontainer - Abstract

The XFcont ai ner classisan abstract class that defines the interface and behavior of al con-
tainer widgets such asthe XFt op. A widget is said to be a container if it can contain or hold other
widgets as children.

Superclasses
Section 6.2.1, “XFwidget - Abstract” page 125

Methods

None

Attributes

None

Activities

None

Example

None

128 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.4 XFcontainableContainer - Abstract

TheXFcont ai nabl eCont ai ner classisan abstract classthat definesthe interface and behavior
of all containable widgets which are also containers such as XFl ayout and XFvi sual .
Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Section 6.2.3, “XFcontainer - Abstract” page 128

Methods

None

Attributes

None

Activities

None

Example

None

6.2.5 XFtop

The XFt op classis atop-level widget, most commonly used as a container for other widgets. It
defines the standard appearance for the primary windows of an application. XFt op defines two
basic areas: amenu bar and awork area. The menu bar areais optional and is created only if there
IS amenu attached to the XFt op.

Superclasses

Section 6.2.3, “XFcontainer - Abstract” page 128

Methods
upon Construct

Default constructor.

February 25, 1997 129

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
title string caption to be displayed in the widget's | “XFtop” CGS
title bar
windowsStyle list Specifiesthe style for the widget’sdec- | {“titleBar”, CG
orations. This list should be composed | “resizeCon-
of zero (0) or more of the following trol”, “window-
style names; “titleBar”, “resizeCon- Frame”}
trol”, and “windowFrame’.
menuBar handle defines a handle to the XFmenu object | NULL CGS
associated with this X Ftop
Figure 6.8: XFtop Attributes
Activities
Activity Keys Description
Active none topShell has been activated
Deactive none topShell has been deactivated
MenuCommand string command, amenu command was sel ected
list commandPath
Figure 6.9: XFtop Activities
Example

This code creates an instance of an anonymous class derived from XFt op and assigns appropriate
values for some of the XFt op’s attributes.

oO~NO O WNPER

/1 1n order to use XFtop as a container we use inheritance

anonynous :

{
/1

11

} topsShell

130

XFt op

Sone useful nenbers here ...
We can put other widgets here ...

{ width = 200; height = 300; title = “Mdul eNane”;};

February 25, 1997

AthenaMuse 2.2 Documentation

6.2.6 XFlayout

The XFI ayout class represents a widget that acts as a manager and container for other widgets.
Asamanager, it provides ssimple geometry management for children widgets and does not force
positioning or sizes on them.

Superclasses

Section 6.2.4, “XFcontainableContainer - Abstract” page 129

Methods
upon Construct
Default constructor.
upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

Attributes

None

Activities

None

Example

1 /1l Create a class derived from XFlayout to contain to XFlabel objects
2 cl ass Canvas : XFl ayout

3 {

4 XFl abel screen

5 {

6 x=35; y=20; wi dth=135; hei ght=100; background="steel Bl ue”;

7 [abel = **; borderWdth = 5; borderColor = “darkCOrchid”;

8 b

9

10 XFl abel title

11 {

12 x = 50; y = 150; width = 100; height = 30; label = “Layout”;
13 font Request = {“Helvetica”, 14, {“bold"}, “roman”};

14 b

15 b

16

17 anonynous : XFtop

18 {

19 /1l Create an instance of the XFlayout derived class

20 Canvas | ayout {x=100; y=50; wi dt h=200; hei ght=200; vi si bl e=FALSE;};
21

22 XFbutton controller

23 {

24 x = 100; y = 270; width = 70; height = 40; |abel = “Show;

February 25, 1997 131

AthenaMuse 2.2 Documentation

25 reconput eSi ze = FALSE; background = “grey”;

26 font Request = {“Helvetica”, 14, {“bold"}, “roman”};
27 b

28

29 XFbutton quitButton

30 {

31 x = 230; y = 270; width = 70; height = 40; label = “Quit”;
32 background = “grey”;

33 font Request = {“Helvetica”, 14, {“bold"}, “roman”};
34 b

35

36 /1 This nethod changes the visibility of the XFlayout when call ed
37 /1 Note that because the XFlayout contains another two objects,
38 /1 their visibility al so changes

39 on ChangeVisibility

40 {

41 if (layout.visible) { controller.label = “Show'; }
42 else { controller.label = “Hide"; }

43 | ayout.visible = !'l ayout. visible;

44 }

45

46 on Exit

47 {

48 “Exit” => theApp;

49 }

50

51 upon Construct

52 {

53 controller.Pressed = {“ChangeVisibility”, self };

54 quitButton. Pressed = {“Exit”, self };

55 }

56

57 } top {width = 400; height = 350; background = “grey”;};

132 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.7 XFvisual

The XFvi sual class provides adisplay surface for media objects. Since this class inherits from
XFcont ai nabl eCont ai ner , it can provide very simple geometry management of multiple wid-
get children.

Superclasses

Section 6.2.4, “XFcontainableContainer - Abstract” page 129

Methods
upon Construct
Default constructor.
upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

Attributes

None

Activities

None

Example

1 anonynous : XFtop

2 {

3 /1l Create an XFvisual to display an image

4 XFvi sual screen

5 {

6 X = 40; y = 20; width = 320; hei ght = 200;
7 I

8

9 handl e hPi cture;

10 upon Construct

11 {

12 wi dt h = 300;

13 hei ght = 200;

14 /1l Create the inmage to display

15 hPi cture = new {“Construct”, {“ME mage”,
16 {“MAfile”,"dragon.gif”"}}} => MM mage;
17

18 /1 Add the XFvisual object as the sink for this inmge
19 {“AddSi nk”, &screen} => hPicture;

20 “Show’ => hPicture;

21 ExitButton. Pressed = {“Quit", self };
22 }

23

24 XFbutton ExitButton

February 25, 1997 133

AthenaMuse 2.2 Documentation

25 {

26 X 150;

27 y 240;

28 wi dth = 100;

29 hei ght = 60;

30 | abel = “Quit”;

31 font Request = {“Helvetica”, 18, {“bold"}, “roman”};
32 b

33

34 on Quit

35 {

36 “Exit” => theApp;

37 }

38

39 } topShell { width = 400; height = 320; title = “XFvisual exanple”;};

6.2.8 XFhtml

This class provides adisplay surface for MMhtml objects.

Superclasses
Section 6.2.2, “XFcontainable - Abstract” page 128

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on SetFont: string targetElementType, handle anXFfont

Setsthe font for al elements of tag typet ar get El enent Type inthisHTML display sur-
face; currently, t ar get El enent Type canbe“H1”, “H2", “H3", “H4", “H5", “H6”, “LIST-
ING”, “PLAIN", “ADDRESS’, “FIXED", “ITALIC”, “BOLD”, and “NORMAL".

Attributes

None

134 February 25, 1997

AthenaMuse 2.2 Documentation

Activities
Activity Keys Description
AnchorPressed integer element _id, A hyperlink anchor has been pressed and
string anchor_name, text, | released. The anchor pressed is contained in
href anchor_name.
HTML SubmitForm string href, method, An HTML submit button (for forms) has been
integer attribute_count, pressed and released
list attribute_names,
attribute_values
ImageMapPressed | string image_src, Aninlined HTML image map has been pressed
integer x, y, element _id, and released. The key "image _src" isthe URL of
string anchor_name, theinlined image. "Xx" and "y" are the coordinates
href, text of the user's mouse click within the image map.
"element_id" isfor future extension only.
"anchor_name" is the name of the anchor for this
image map. "href" isthe URL of the object which
contains the mapping information. "text" contains
the hypertext associated with the anchor.
Figure 6.10: XFhtml Activities
Example

The methods XFht M and Mvht i work together (see Section 6.3.12, “MMhtml” page 195).

February 25, 1997

135

AthenaMuse 2.2 Documentation

6.2.9 XFmessageDlg

The XFnessageDl g class defines a ssimple message dialog box, which is normally used to
present transient messages. An XFressageDl g consists of a message symbol, a message, and a
number of push-buttons that are used to respond to the message and dismiss the dialog box.
Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on PostModal: return string

Posts dialog and forces the user to respond or dismiss the dialog.

Attributes
Attribute Type Description Default Access
title string text to be displayed in the widget' stitle | “XFmes- CGS
bar sageDIg”
message string text to be displayed in the dialog. “ CGS
dialoglcon string Symbol to display along withthemes- | “ " CGS

sage: one of “error”, “warning”, “infor-
mation”, or “question”

buttonSet string Set of buttons to be displayed in the “okCancel” CGS
dialog box: one of: “ok”, “okCancel”,
“yesNo”, or “yesNoCancel”

defaultButton string The default button for the dialog box: “ok” CGS
must be one of: “ok”, “cancel”, “yes’,
or “no”. If the specified button is not
part of the button set, this attribute is

ignored.

Figure 6.11: XFmessageDIg Attributes

Activities

None

136 February 25, 1997

Example

AthenaMuse 2.2 Documentation

The following example illustrates the use of XFnessageDl g objects

©CoOoO~NOOOUTA,WNPE

anonynous : XFtop

{
/1

Create a nessage dialog to prevent the user fromquitting

/1 without confirm ng

/1
/1

Note that creating the QuitD al og object does NOT pop up the
di al og box.

XFrmessageDl g Quit Di al og

{

title="Quit”;

nmessage="“Do you really want to exit\nthis great application?”;
di al ogl con="question”;

butt onSet =“yesNo”;

def aul t Butt on="no";

i
XFbutton ExitButton
{
x = 50;
y = 45;
wi dth = 100;
hei ght = 60;
| abel = “Quit”;
font=new {“Create”, “Helvetica”, 18,{“bold"}, “roman”}=> XFfont
i
upon Construct
{
ExitButton. Pressed = {“Quit", self };
}
on Quit
{
/1 Post the dialog in nodal node. After returning fromthis cal
/1 the dialog object still exists and can be posted again
string answer = {“PostMdal”} => QuitDialog;
if (answer == “yes”)

{

}
}

echo(“Quitting...\n");
“Exit” => theApp;

} topShell { width = 200; height = 150; title = “Mddal Messages”;};

February 25, 1997

137

AthenaMuse 2.2 Documentation

6.2.10 XFsimple - Abstract

Theclass XFsi npl e isan abstract class that defines the interface and behavior of ssimple widgets
that cannot contain any other widgets.

Superclasses
Section 6.2.2, “XFcontainable - Abstract” page 128

Methods

None

Attributes

None

Activities

None

Example

None

6.2.11 XFfontable - Abstract

The XFf ont abl e classis an abstract class that defines the interface and behavior of all other
classes for which afont can be set. Some examples of such classes are the XFsel ect Li st
XFl abel , XFbut t on, and XFt ext .

Superclasses
Section 6.2.10, “XFsimple - Abstract” page 138

Attributes
Attribute Type Description Default Access
fontRequest list specifies arequest to use acertain font | {} CGS
to display the text in the widget
font handle real font used to display thetext inthe | platform depen- | CGS
widget dent
Figure 6.12: XFfontable Attributes
Activities
None

138 February 25, 1997

6.2.12 XFlabel

AthenaMuse 2.2 Documentation

The XFI abel class represents a static text label. This, along with the XFbut t on isone of the
most widely used widgetsin GUI-based applications. The XFl abel class definesthe basic behav-
ior and interface to render and manage static text by controlling its color, font, alignment, and
other visua attributes.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

Attributes
Attribute Type Description Default Access
label string text to be displayed in widget “XFlabel” CGS
alignment string label alignment (language, |€eft, center, | “center” CGS
or right)
marginTop integer amount of space between top of label 0 CGS
(only on UNIX) text and top margin
marginBottom integer amount of space between bottom of 0 CGS
(only on UNIX) label text and bottom margin
marginL eft integer amount of space between left of |abel 0 CGS
(only on UNIX) text and left margin
marginRight integer amount of space between right of label | 0 CGS
(only on UNIX) text and right margin
recomputeSize boolean | determines whether the widget resizes | TRUE CGS
itself to accommodate its text
Figure 6.13: XFlabel Attributes
Activities
None
February 25, 1997 139

AthenaMuse 2.2 Documentation

Example

The following example illustrates the use of XFl abel objects.

1 anonynous : XFtop

2 {

3 XFbutton ExitButton

4 {

5 x = 150;

6 y = 120;

7 wi dth = 100; height = 60; label = “Quit";

8 font Request = {“Helvetica”, 18, {“bold"}, “roman”};
9 b

10

11 /] Create a |abel that will have the current time as its text
12 XFl abel tineLabel

13 {

14 wi dt h = 400;

15 hei ght = 100;

16 background = “dar kOrchi d”;

17 font Request = {“Helvetica”, 48, {“bold"}, “roman”};
18 /1 Assign the currentTinme to its |abel attribute
19 | abel = toString(local Tinme());

20 /1 Always be center aligned

21 alignment = “center”;

22 /1 Do not change size after the label is set time by tine
23 reconput eSi ze = FALSE;

24 }s

25

26 /1 Create timer

27 PMcl ock timer; any tinerKey;

28

29 upon Construct

30 {

31 ExitButton. Pressed = {“Qit"”, self };

32 /1 Subscribe for tine notification every second

33 timerKey = {“Subscribe”, 999, “Tick”, {}, self} => tinmer;
34 }

35

36 on Tick : list cd, list ad return bool ean

37 {

38 /1 Assign the current tine to the | abel

39 ti meLabel .1 abel = toString(local Tinme());

40 return TRUE;

41 }

42

43 on Quit

44 {

45 // Renpve tinmer notification

46 {“Unsubscribe”, tinerKey} => tiner;

47 “Exit” => theApp;

48 }

49

50 } topShell { width = 400; height = 200; title = “TineLabel ";};

140 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.13 XFbutton

The XFbut t on class represents a basic interface push-button. Push-buttons are one of the most
widely-used widgets in GUI-based applications. XFbut t on supports activities through which an
application can perform an action in response to some user interaction. The appearance of an
XFbut t on changes to make it look either pressed in when selected or raised when unsel ected.
Superclasses

Section 6.2.12, “XFlabel” page 139

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.

Attributes
Attribute Type Description Default Access
showAsDefault boolean | specifies whether the button should be | FALSE CGS
marked as the default button
Figure 6.14: XFbutton Attributes
Activities
Activity Keys Description
Pressed none button pressed and released in widget

Figure 6.15: XFbutton Activities

February 25, 1997 141

AthenaMuse 2.2 Documentation

Example

The following code creates an instance of a class derived from XFt op which contains an
XFbut t on member. When the button is pressed, the application exits.

1 /]l Create an XFtop to be used as a nodule top-Ievel w dget

2 anonynous : XFtop

3 {

4 /] Lets create a button menber

5 XFbutton ExitButton

6 {

7 x = 50;

8 y = 20;

9 wi dth = 100;

10 hei ght = 60;

11 | abel = “Quit”;

12 b

13 /1 ... Sone other useful nenmbers here ...

14 /1 Constructor for the XFtop

15 upon Construct

16 {

17 /1 Use special XFbutton nember Pressed to subscribe
18 /1 for the Pressed activity When the Pressed actity occurs
19 /1l send the message Quit to this XFtop (self)

20 ExitButton. Pressed = {“Quit"”, self };

21 }

22 /1 Quit Method

23 on Quit

24 {

25 echo(“Quitting...\n");

26 “Exit” => t heApp;

27 }

28

29 } topShell { width = 200; height = 300; title = “Mdul eNane”; };

6.2.14 XFtoggleButton - Abstract

The XFtoggleButton class represents a button widget that is either set or unset. X FtoggleButtons
are most commonly used in groups with either a one-of-many behavior, which means that only
one button in the group can be set at atime, or an n-of-many behavior, which means that any
number of buttons in the group can be set at one time. The XFt oggl eBut t on class defines the
common members, methods, and activities for two more specific classes. see “XFcheckBox™ on
page 143, and “XFradioButton” page 144.

Superclasses
Section 6.2.13, “XFbutton” page 141

142 February 25, 1997

AthenaMuse 2.2 Documentation

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on Toggle
Toggles the state of the XFt oggl eBut t on object.

Attributes
Attribute Type Description Default Access
set boolean | determines whether the XFtoggleBut- | FALSE CGS
ton object is set or not
Figure 6.16: XFtoggleButton Attributes
Activities
Activity Keys Description
StateChange none state of the X FtoggleButton changed
Figure 6.17: XFtoggleButton Activities
Example

For asample program using this class, see specific examples of Toggl eBut t ons “XFcheckBox
and XFr adi oBut t on” see “XFradioButton” on page 144.

6.2.15 XFcheckBox

The XFcheckBox class represents akind of toggle button, a button that is either set or unset, to be
used in groups with an n-of-many behavior (that is, any number of XFcheckBoxes in the same
group may be set at onetime.) It isimportant to note, however, that this behavior is not enforced
by the widget itself, and the application should follow this interface guideline. An XFcheckBox
consists of an indicator (asquare on al platforms) and alabel area. Asits name suggests, the indi-
cator tells whether a particular XFcheckBox IS Set or unset.

Superclasses
Section 6.2.14, “XFtoggleButton - Abstract” page 142

February 25, 1997 143

AthenaMuse 2.2 Documentation

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on Toggle
Toggles the state of the XFcheckBox object.

Attributes

None

Activities

None

Example

For a sample program using this class, see “XFcheckBox and XFr adi oBut t on” see “XFra-
dioButton” on page 144.

6.2.16 XFradioButton

The XFradioButton class represents a kind of toggle button, a button that is either set or unset, to
be used in groups with a one-of-many behavior (that is, only one XFr adi oBut t on in the same
group can be set at atime.) It isimportant to note that this behavior is not enforced by the widget
itself, and that the application should follow this interface guideline. An XFr adi oBut t on con-
sists of an indicator (diamond or circle depending on the platform) and a label area. Asits name
suggests, the indicator tells whether a particular XFr adi oBut t on iS Set or unset.
Superclasses

Section 6.2.14, “XFtoggleButton - Abstract” page 142

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on Toggle
Toggles the state of the XFr adi oBut t on object.

144 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

None

Activities

None

Example

This example of the Toggle Buttons, XFcheckbox and XFr adi obut t on, also shows several
uses of the XFf ont class.

©CoO~NOOOUTA,WNPE

/1 This class defines a NRO for XFradi oGoup activities
class RadioNro : Nro

{
upon Create: string act, handle cli, string md, any cd init
{
{“Create”, act, cli, nmd, cd} => Nro
}
{
}
on Handl eActivity: list keys, list values
{
{m\et hod, nCl i ent Dat a, {“ Lookup”, “Sel ecti on”, keys, val ues}
=>sel f}
=> nClient;
}
I3

/1 This class inplenents the one-of-many behavi or that groups of
/1 XFradi oButtons shoul d follow
cl ass XFradi oG oup : ActivityManager
{
handl e mCurrent = NULL;
/1 Define the activity StateChange
list Activitylnfo = { {“StateChange”,{“Selection”}} };

on AddRadi oButton : handl e hRadi o

{
i f (hRadio->set)
{
if (mCurrent == NULL)
{
mCurrent = hRadi o;
}
el se
{

echo(“\ n***ERROR: ***\ n") ;
echo(“The” & nCurrent->label &
“XFradi oButton is already set\n");
echo(“Can’t have two set XFradi oButtons in the sane group\n”);
di e(“Aborting..");
}

February 25, 1997

145

AthenaMuse 2.2 Documentation

42 /1 Subscribe with the new added XFradi oButton to be

43 /1 notified when its state changes

44 {“Subscribe”, new {“Create”, “StateChange”, self,“Selection”,
45 hRadi o} => Nro } => hRadi o;

46 }

47 on Sel ection : handl e hRadio, list keys, list values

48

49 i f (hRadi o->set)

50 {

51 if (mCurrent !'= NULL)

52 {

53 if (mCurrent != hRadio)

54 {

55 nCurrent - >set = FALSE;

56 }

57 }

58 nCurrent = hRadi o;

59 /1 Notify all dependents that the group state has changed
60 {“TriggerNotification”, “StateChange”, {hRadio}} => self;

61 }

62 }

63 };

64 anonynous : XFtop

65 {

66 anonynmous : XFl ayout {

67 /1l Create group of XFradioButtons to handl e a one-of-nmany behavi or
68

69 XFradi oG oup nmG oupBox;

70

71 XFl abel BaudRat eLabel

72 {

73 x=5; y=10; reconputeSi ze=FALSE; alignment="left”; wi dth=160;
74 | abel =*Baud Rate”; fontRequest={“Helvtica”, 14,{“bold"},“roman”};

75 b

76 /] Create different XFradioButtons

77 XFr adi oButt on baudRat el

78 {

79 reconmput eSi ze = FALSE; x = 10; y = 30; width = 100; height = 30;
80 | abel =*1200"; font Request={“Helvetica”, 12, {“bold"}, “roman”};
81 b

82 XFr adi oButt on baudRat e2

83 {

84 reconmput eSi ze = FALSE; x = 10; y = 60; width = 100; height = 30;
85 | abel =*2400"; font Request={“Helvetica”, 12, {“bold"}, “roman”};
86 b

87 XFr adi oButt on baudRat e3

88 {

89 reconmput eSi ze = FALSE; x = 10; y = 90; width = 100; height = 30;
90 | abel =*4800"; font Request={“Hel vetica”, 12,{“bold"}, “roman”};
91 b

92 XFr adi oButt on baudRat e4

93 {

94 reconput eSi ze = FALSE; x = 10; y = 120; width = 100; height = 30;
95 | abel =*9600”; font Request={“Hel vetica”, 12, {“bold"},“roman”};

146 February 25, 1997

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

AthenaMuse 2.2 Documentation

b

/] Create two XFcheckBoxes
XFcheckBox parity

{
reconmput eSi ze=FALSE; set = !set; x = 160; y=30; w dth=150;
hei ght = 30; |abel = “Check Parity”;
font Request = {“Helvetica”, 12, {“bold"}, “roman”};
i
XFcheckBox carrier
{
reconmput eSi ze = FALSE; x = 160; y = 60; width = 150;
hei ght = 30; label = “Detect Carrier”,;
font Request = {“Helvetica”, 12, {“bold"}, “roman”};
¥
Radi oNro {“Create”, “StateChange”, self, “G oupChange”, {}}=>

gr oupNr o;
upon Construct

/1 Add XFradi oButtons to the group
{“AddRadi oButt on”, &baudRatel} => mG oupBox;
{“AddRadi oButt on”, &baudRat e2} => mG oupBox;
{“AddRadi oButt on”, &baudRat e3} => mG oupBox;
{“AddRadi oButt on”, &baudRate4} => mG& oupBox;
/1 Subscribe for any changes in the group’'s state
{“Subscribe”, &groupNro} => nGroupBox;

}

on Init

{
i f (mGroupBox. mCurrent !'= NULL)

{
echo(m& oupBox. nCur rent - >l abel + “\n”);
}
}
on GroupChange : any cdata, handl e hRadio
{
/1 Print out the label of the selected XFradi oButton
echo(hRadi o- >l abel + “\n");
}
} layout { x = 10; y = 10; width = 300; height = 155; };

XFbutton ExitButton
{
x = 110;
y = 175;
wi dth = 100;
hei ght = 60;
| abel = “Quit”;
font=new“Create”, “Hel vetica”, 18, {“bold"},“roman”}=> XFfont;
Pressed = {“Exit”, theApp};
i
} top {height=250; w dth=320; title="Conmmunications Settings”;};

February 25, 1997

147

AthenaMuse 2.2 Documentation

6.2.17 XFselectList

The XFsel ect Li st class represents awidget that allows selection from alist of different
choices. XFsel ect Li st displays asingle column of text items or choices that can be selected in
avariety of ways, using both the mouse and the keyboard.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods
upon Construct
Default constructor.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on Addltem: string anltem
Appends an item to the end of thelist.
on Insertltem: string anltem, integer aPosition
Inserts an item at the specified position.
on GetltemPos: string anltem return integer

Returns the position of the first ocurrence of the specified itemin the list. If theitemisnotin
thelist, the method returns O (zero).

on GetltemCount: return integer

Returns the number of itemsin thelist.
on GetSelectedCount: return integer

Returns the number of selected itemsin thelist.
on GetSelectedltems: return list

Returns alist of strings containing all selected itemsin thelist. It returns an empty list if no
items are selected.

on GetSelectedPos: return list

Returns alist of integers containing the positions of all selected itemsin thelist. It returns an
empty list if no items are selected.

on IsPosSelected: integer aPosition return boolean

Determinesif the item at the specified position is selected. Returns TRUE if theitem is
selected, FAL SE otherwise.

148 February 25, 1997

AthenaMuse 2.2 Documentation

on SelectAtPos: list thePositions

Selects and highlights the items at the specified positionsin the list.

on DeselectAtPos: integer aPosition

Deselects and unhighlights the item at the specified position in the list.

on Removeltem: string anltem

Removes the first ocurrence of the specified item from the list.
on RemoveAllltems

Removes all items from the list.
on RemoveAtPos: integer aPosition

Removes the item at the specified position from the list.

Attributes
Attribute Type Description Default Access
selectionMode string The mode in which the list should sup- | “single” CGS
port selections. Possible values are:
“single” and “multiple”.
items list the list of choices {} CGS
Figure 6.18: XFselectList members
Activities
Activity Keys Description
Selection none Item selected. This activity is also reported when an
item is deselected in a multiple selection list.
ListAction string item, integer Action initiated on an item. This usually happens
itemPosition when the user double-clicks on an item or presses
return or enter when an item is selected.
Figure 6.19: XFselectList activities
Example

The following code illustrates the use of XFsel ect Li st objects

anonynous : XFtop

{
XFbut t on del et eButt on

{
x = 285; y = 75; width = 100; height = 60;

©CoOoO~NOOOUTA,WNPE

XFbut t on cl ear Button

February 25, 1997

| abel = “Del ete”; background = “steel Bl ue”;
font Request = {“Helvetica”, 18, {“bold"}, “roman”};

149

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

150

AthenaMuse 2.2 Documentation

x = 285; y = 195; width = 100; height = 60;
| abel = “Clear”; background = “steel Bl ue”;
font Request = {“Helvetica”, 18, {“bold"}, “roman”};

b

XFbut t on exitButton

{
x = 285; y = 315; width = 100; height = 60;
| abel = “Quit”; background = “steel Bl ue”;
font Request = {“Helvetica”, 18, {“bold"}, “roman”};

b

XFl abel listTitle

{

x = 10; width = 250; height = 30;

| abel = “List of Itens”; background = “steel Bl ue”;

font Request = {“Helvetica”, 14, {“bold”, “italic”}, “roman”};
I3

/] Create a selectable Iist
XFsel ect Li st itenList
{
x = 10; y = 30; width = 250; height = 335; background = “grey”;
font Request = {“Tinmes”, 12, {“bold”}, “roman”};
/1 Allow multiple selections

sel ecti onMbde = “nultiple”;
¥
XFl abel textTitle
{
x = 10; y = 370; width = 250; height = 30;
| abel = “Add Itenf; background = “steel Bl ue”;

font Request = {“Helvetica”, 14, {“bold"}, “roman”};
¥

XFtextFi el d addField
{

x = 10; y = 400; width = 250; height = 40; background = “grey”;

font Request = {“Tinmes”, 14, {“bold”}, “roman”};

b

/1l Create a NRO for XFtextField s TextAccept activity
Nro {“Create”, “TextAccepted”, self, “Accept”, {}} => AddNro;

upon Construct
{
exitButton. Pressed = {“Qit”, self };
del eteButton. Pressed = {“Delete”, self };
clearButton. Pressed = {“Clear”, self };
/1 Subscribe for notification on XFtextField s TextAccept activity
{“Subscribe”, &AddNro } => addFi el d;

}

February 25, 1997

AthenaMuse 2.2 Documentation

64 on Cl ear

65 {

66 /1 Clear the list

67 “RenpoveAl | Itens” => itenlist;

68 }

69

70 on Del ete

71 {

72 /1 1f there are any itens selected, delete them
73 list selection = “GetSel ectedltens” => itenList;
74 string item

75 for itemin selection

76 {

77 {“Removeltent, item} => itenlist;

78 }

79 }

80

81 on Accept : list clientData, |ist keys, list val ues
82 {

83 I/ If atext was entered in the textField, add it to the list of itens

84 if (addField.text = *")

85 {

86 {“Addl tent, addField.text } => itenList;
87 addField.text = “*;

88 }

89 }

90

91 on Quit

92 {

93 “Exit” => theApp;

94 }

95

96 } topShell { width
97 backgr ound

400; hei ght = 450;
“steelBlue”; title = “Add List”;};

6.2.18 XFtext

The XFtext class represents a multiple line text widget that allows text to be inserted, deleted,
modified, and selected.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods
upon Construct
Default constructor.
upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

February 25, 1997

151

AthenaMuse 2.2 Documentation

on ScrollText: integer lines

If linesis positive it scrollsthe text upward. If it is negative it scrolls the text downward.

Attributes
Attribute Type Description Default Access
text string text to be displayed “r CGS
cursorPosition integer position of cursor in text string 0 CGS
horizontal ScrollBar | boolean | determines whether the widget has a TRUE CGS
(only on UNIX) horizontal scrollBar or not
vertical Scrol|Bar boolean | determines whether the widget has a TRUE CGS
(only on UNIX) vertical scrollBar or not
editable boolean | determines whether the text is read- TRUE CGS
only or not
wordWrap boolean | determines whether the widget should | FALSE CGS
break lines automatically between
words.
Figure 6.20: XFtext Attributes
Activities
Activity Keys Description
TextChange none text in widget has been changed
Figure 6.21: XFtext Activities
Example

The following code illustrates the use of XFt ext objects:

1 anonynous : XFtop
2 {
3 XFbutton ExitButton
4 {
5 x = 150;
6 y = 255;
7 wi dth = 100;
8 hei ght = 60;
9 | abel = “Quit”;
10 font Request = {“Helvetica”, 18, {“bold"}, “roman”’}};
11 b
12
13 /1l Create an editable text w dget
14 XFt ext editor
15 {
16 y = 30;
17 wi dt h = 400;
18 hei ght = 220;
19 background = “steel Bl ue”;
152

February 25, 1997

AthenaMuse 2.2 Documentation

20 /1l Break lines automatically

21 wor dW ap = TRUE;

22 font Request = {“Tinmes”, 12, {“bold”}, “roman”};
23 b

24

25 XFl abel editorTitle

26 {

27 wi dth = 400;

28 hei ght = 30;

29 | abel = “Sinple Text Editor”;

30 background = “dar kOrchi d”;

31 font Request = {“Helvetica”, 14, {“bold”, “italic”}, “roman”};
32 b

33

34 upon Construct

35 {

36 ExitButton. Pressed = {“Quit", self };
37 }

38

39 on Quit

40 {

41 “Exit” => theApp;

42 }

43

44 '} topShell { width = 400; height = 320; title = “Text Editor”;};

6.2.19 XFtextField

The XFt ext Fi el d class represents a single-line text widget that allows text to be inserted,
deleted, modified, and selected. Asasingle-line text editor, the XFt ext Fi el d hasasubset of the
functionality of the XFtext wi dget .

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods
upon Construct
Default constructor.
upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

February 25, 1997 153

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
text string text to be displayed “r CGS
cursorPosition integer position of cursor in text string 0 CGS
editable boolean | determines whether the text is read- TRUE CGS
only or not
Figure 6.22: XFtextField Attributes
Activities
Activity Keys Description
TextChange none text in widget has been changed
TextAccepted none text in widget has been accepted
Figure 6.23: XFtextField Activities
Example

The following code illustrates the use of XFt ext Fi el d objects

1 anonynous : XFtop

2 {

3 XFbutton ExitButton

4 {

5 x = 150;

6 y = 255;

7 wi dth = 100;

8 hei ght = 60;

9 | abel = “Quit”;

10 font=new{“Create”, “Hel vetica”, 18, {“bol d"}, “roman”}=> XFfont;
11 b

12

13 /]l Create the formwi th XFtextField and XFl abel objects
14

15 XFl abel nanelLabel

16 {

17 x = 10; y = 10; width = 80; height = 30;

18 | abel = “Name :"; background = “steel Bl ue”;

19 al i gnment = “l anguage”;

20 font Request = {“Helvetica”, 14, {“bold"}, “roman”};
21 b

22

23 XFtext Fi el d nane

24 {

25 x = 100; y = 10; width = 280; height = 40;

26 background = “steel Bl ue”;

27 font Request = {“Tinmes”, 12, {“bold”}, “roman”};

28 b

29 XFl abel ssLabel

30 {

154 February 25, 1997

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

AthenaMuse 2.2 Documentation

14, {“bold"}, “roman”};

x = 10; y = 55; width = 200; height = 30;
| abel = “Social Security :";
alignment = “left”;
background = “steel Bl ue”;
font Request = {“Hel vetica”,

i

XFtext Fi el d soci al

{

X = 220; vy

backgr ound

“steel Bl ue”;

font Request = {“Tinmes”, 12,

55; width = 160; height = 40;

{“bold"}, “roman”};

b
XFl abel enpl Nane
{
x = 10; y = 100; width = 100; height = 30;
| abel = “Enployer :”; background = “steel Bl ue”;
alignment = “left”;
font Request = {“Helvetica”, 14, {“bold"}, “roman”};
i
XFt ext Fi el d enpl oyer
{
x = 120; vy 100; width = 260; height = 40;

backgr ound

“steel Blue”;

font Request = {“Tinmes”, 12,

{“bold"}, “roman”};

14, {“bold"}, “roman”};

b
XFl abel addNarme
{
x = 10; y = 145; width = 200; height = 30;
| abel = “Address :”;
background = “steel Bl ue”;
alignment = “left”;
font Request = {“Hel vetica”,
i
XFt ext address
{
x = 120; vy

backgr ound

“steel Blue”;

font Request = {“Tinmes”, 12,

b

upon Construct

{

145; width = 260; height = 80;

{“bold"}, “roman”};

ExitButton. Pressed = {“Quit"”, self };

}
on Qui
{

t

“Exit” => theApp;

}
} topShell { width = 400; height

February 25, 1997

title = “Fornt;};

320; background = “steel Bl ue”;

155

AthenaMuse 2.2 Documentation

6.2.20 XFscrollBar

The class XFscr ol | Bar provides awidget to control the scrolling of the viewing areain other
widgets. It allows usersto view data that are too large to be displayed all at once, and is usually
adjacent to the widget that contains the data for viewing.

Superclasses

Section 6.2.10, “XFsimple - Abstract” page 138

Methods
upon Construct
Default constructor.
upon Create: handle hParent

Alternate constructor; hPar ent isahandle to its container widget.

156 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
minimum integer the minimum value of the slider 0 CGS
maximum integer the maximum val ue of the slider 100 CGS
position integer the dlider’s position 0 CGS
increment integer amount the position changesduetothe | 1 CGS
user’s moving the thumbl increment
pagel ncrement integer amount the position changes due to 10 CGS
user’smoving thumb 1 page increment.
orientation string direction the scrollbar is displayed. “vertical” CG
Values are “vertical” and “horizontal”.
Figure 6.24: XFscrollBar Attributes
Activities
Activity Keys Description
Increment integer position Thumb'’s position incremented by one.
Decrement same Thumb'’s position decremented by one.
Pagel ncrement same Thumb'’s position incremented by one page.
PageDecrement same Thumb's position decremented by one page.
ThumbTrack same The position of the thumb changes while being
dragged.
ThumbPosition same Thumb has changed position.
Figure 6.25: XFscrollBar Activities
Example
1 uses “nro.adl ”@StdLi b”;
2 cl ass col orLabel : XFl abel
3 {
4 upon Create: string bg
5 {background=bg; | abel =bg; x=0; y=0 wi dt h=80; hei ght=50;}
6 1
7 cl ass Sequence : XFl ayout
8 {
9 col orLabel {“Create”, “darkOrchid”} => purple { x =0; };
10 col orLabel {“Create”, “lightBlue”} =>lightBlue { x = 80; };
11 col orLabel {“Create”, “pluni} => plum { x = 160;};
12 col orLabel {“Create”, “orange”} => orange { x = 240;};
13 col orLabel {“Create”, “red"} = red { x = 320;};
14 col orLabel {“Create”, “yellow'} => yel | ow { x = 400;};
15 col orLabel {“Create”, “green”} => green { x = 480;};
16 col orLabel {“Create”, “royal Blue”"} => royalBlue { x = 560;};
17 list colors={“darkOrchid”,”lightBlue”,”plunf,”orange”,
18 "red”,"yell ow', “green”, "royal Bl ue"};
19 b

February 25, 1997

157

AthenaMuse 2.2 Documentation

20 anonynous: XFt op

21 {

22 Sequence sanples { x = 30; y = 195; width = 640; height = 50; };
23 /1l Create a horizontal scrollbar that acts as a slider

24 XFscrol | Bar slider

25 {

26 orientation = “horizontal”;

27 x = 30; y = 245; width = 640; height = 30;

28 /1 Set the scroll range

29 m nimum = 1; maxi rum = 8§;

30 b

31 /1l Create a notification request object to subscribe for

32 /1 the XFscrollBar’s ThunbPosition activity

33 vanillaNro {“Create”, “ThunmbPosition”, sel f,“ChangeCol or”, {}}
34 => col or Nro;

35 XFl abel col or Sanpl e

36

37 | abel = *“*; x =60; y = 30; width = 580; height = 120;
38 borderWdth = 3;

39 b

40 XFbutton ExitButton

41 {

42 x = 300; y = 290; width = 100; height = 60;

43 | abel =“Quit”;

44 font Request ={“Hel vetica”, 18, {“bold”}, “roman”};

45 };

46 on ChangeCol or : list unused

47 {

48 /1 \Whenever slider’s thunb changes because of user input change
49 /1 | abel s background color to the appropriate color in sequence
50 col or Sanpl e. background = at(slider.position, sanples.colors);
51 }

52 on Exit

53 {

54 “Exit” => theApp;

55 }

56 upon Construct

57 {

58 {“Subscribe”, &olorNro } => slider;

59 /1 Initialize the color sanple to the first in the sequence
60 {“ChangeCol or”, {}} => self;

61 ExitButton. Pressed = {“Exit”, self };

62 }

63 } colors { width = 700; height = 360; title = “Col or Sequence”;};

158 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.21 XFmenultem - Abstract

The class XFrrenul t emis an abstract class that represents all the different kinds of items that can

be placed in amenu such as XFrrenuSepar at or s, XFnenuConmmands, and XFnenus.

Superclasses
Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

None

Attributes
None
Activities
None

Example

For a sample program, see “XFnenu, XFnenuConmand, and XFnenuSepar at or ”
(“XFmenuSeparator” page 162).

6.2.22 XFmenuLabeledltem - Abstract

The class XFnenuLabel edl t emis an abstract class that represents labeled items that can be
placed in a menu such as XFmenuConmands and XFrenus.

Superclasses
Section 6.2.21, “XFmenultem - Abstract” page 159

February 25, 1997

159

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
enabled boolean | Defines whether the menu itemis TRUE CGS
enabled or not
label string text to be displayed in the menu item Defined by sub- | CGS
label. class
mnemonic string Defines the key that can be used in ‘o CGS
(only on UNIX) conjunction with amodifier key to post
a PullDownMenu. Platforms that sup-
port this attribute underline the charac-
ter in the label string that matches the
mnemonic. This attribute isignored on
the Mac platform

Figure 6.26: XFmenuLabeledltem Attributes

6.2.23 XFmenu

The class XFrrenu represents a logical menu that can be instantiated into a physical menu such as
amenu bar, a pull-down menu or a pop-up menu, on demand. Applicationstypically create differ-
ent menu systems by creating an instance (or instances) of this class and attaching them to other
objects. For example, to create a menu bar, an application can create an XFmenu object (or
objects) and attach it to an existing XFt op object.

Superclasses

Section 6.2.22, “XFmenuLabeledltem - Abstract” page 159

Methods
upon Construct
Default constructor.
upon ConstructTop
This constructor should be used when the XFrenu object to be created is the top-most menu.
upon Create: handle hContainer

Alternate constructor; hCont ai ner isahandleto its container menu.

160 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
tearOff boolean | Defines whether the menu isatear-off | FALSE CGS
(only on UNIX) menu or not. This attribute works as a
hint to the platforms that support this
kind of menus
Figure 6.27: XFmenu Attributes
Activities
None
Example

For a sample program, see “XFnenu, XFnenuConmand, and XFnenuSepar at or”
(“XFmenuSeparator” page 162).

6.2.24 XFmenuCommand

The class XFmenuConmmand represents menu items that initiate some command as they are
selected.

Superclasses

Section 6.2.22, “XFmenuLabeledltem - Abstract” page 159

Methods
upon Construct
Default constructor.
upon Create: handle hContainer

Alternate constructor; hCont ai ner isahandleto its container menu.

February 25, 1997 161

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
accel erator string Defines the key that can be used in “ CGS
(onlyon UNIX) conjunction with the command key
(Command or Ctrl) as adirect shortcut
to invoke amenu item without popping
up its menu pane. Platforms display a
readabl e representation of this key
sequence to the right of the item in the
menu.
Figure 6.28: XFmenuCommand Attributes
Activities
None
Example

For a sample program, see “XFnenu, XFnenuConmand, and XFnenuSepar at or”
(“XFmenuSeparator” page 162).

6.2.25 XFmenuSeparator

The class XFnmenuSepar at or represents a menu item that separates other items in a menu by
drawing a horizontal line between them.

Superclasses
Section 6.2.21, “XFmenultem - Abstract” page 159

Methods

None

Attributes

None

Activities

None

162 February 25, 1997

AthenaMuse 2.2 Documentation

Example

1 /1 Create a subclass of XFnenu to include several nenultens

2 cl ass XFtopMenu: XFrmenu

3 {

4 upon Construct

5 init { “ConstructTop” => XFrmenu }

6 {

7 }

8 i

9

10 anonynous: XFt op

11 {

12 /1l Create the logical menu structure

13 anonynous: XFtopMenu

14 {

15 anonynous: XFmenu

16 {

17 XFmenuComand qui t { label = “Quit”; accelerator = “Q"; };
18 } fileMenu { label = “File”; menonic = “F"; },;

19 anonynous: XFnenu

20 {

21 XFmenuComand add { label = “Add”; accelerator = “A"; };
22 XFmenuCommand reset { label = “Reset”; accelerator = “R"; };
23 XFmenuSepar at or separ at or;

24 XFmenuComand removeCnd { | abel =" Renpve”; accel erator="v"; };
25 } testMenu { label = “Test”; menonic = “T"; tearOf = TRUE};
26 } mai nMenu;

27

28 Nro {“Create”, “MenuConmand”, sel f, “MenuCommand”, {}}=> menuCndNr o;
29

30 on Init

31 {

32 /1 Attach the logical nmenu to an XFtop menuBar

33 menuBar = &mai nMenu;

34 /1 Subscribe for any nenuConmand in the physical XFtop's menu
35 {“Subscribe”, &renuCmdNro} => self;

36 }

37

38 /1 This nethod gets called when a command is sel ected

39 on MenuCommand: any clientData, |ist keys, list val ues

40 {

41 string command = at (1, val ues);

42 /1 Call the conmand net hod

43 command ?=> sel f;

44 }

45

46 on Quit

47 {

48 “Exit” => theApp;

49 }

50

51 on Add

52 {

February 25, 1997 163

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

AthenaMuse 2.2 Documentation

/1 Add was sel ected do sonething
echo(“Add selected \n");

on Reset
/1 Reset was sel ected do sonething
echo(“Reset selected \n");

on Renove

/1 Renmpbve was sel ected do sonet hing
echo(“Remove selected \n");

}

} top { width = 100; height = 100; };

6.2.26 XFfont

The XFf ont class represent font objects that are commonly used with other XF classes such as
XFl abel , XFt ext and so on. This class provides constructors to create fonts from explicit infor-
mation including the font name, size, style, and encoding.

Superclasses

None

Methods

upon Create: string fontName, integer size, list style, string encoding

FontName: the name of the font, such as ‘helvetica, ‘times, ‘fixed, ‘symboal, ‘ courier. Other
generic font names are defined on the Macintosh platform and will soon be defined on the
other platforms. These generic names are: “ applicationFont”, “textFont”, “typewriterFont”,
and “systemFont”. To ensure better font handling across the different platforms, system con-
figurations, and languages, use of these generic names is recommended.

Size: size of the font.

Style: alist of types, which may contain any of: ‘bold, ‘italic, ‘underline, ‘underlineDouble,
‘underlineDotted, ‘ superscript, ‘ subscript, ‘ outline, *small Caps.

Encoding: one of ‘roman, ‘japanese, ‘arabic, ‘ hebrew, ‘greek, ‘symbol.

This special constructor creates a font object from the given information. AthenaMuse 2
attempts to find the best match for the font requested; the members described below can be
examined to see exactly what font is being used.

164 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Default Access
fontName string current font name platform G
size integer current font size platform G
style list list of stylesfor current font platform G
encoding string current font encoding platform G
Figure 6.29: XFfont Attributes

Activities

None

Example

The following example shows severa uses of the XFf ont class.

1 uses “nro.adl " @StdLi b";

2

3 anonynous : XFtop

4 {

5 /1 Create different fonts to include in selection I|ist

6 XFfont{“Create”, “Tinmes”,12,{},“roman”} => Ti mesl2;

7 XFfont{“Create”, “Tines”, 14,{},“roman”} => Ti mesl4,

8 XFfont{“Create”, “Tinmes”, 24,{},“roman”} => Ti mes24,

9 XFfont{“Create”, “Times”, 14,{“bol d"}, “roman”} => Ti nesBol d;

10 XFfont{“Create”,“Tines”, 14, {“italic"},“roman”} => Tinesltalic;

11 XFfont{“Create”, “Tines”, 14, {“bol d”,”"italic"}, “roman”}=>Ti mesBl tali c;

12 XFfont{“Create”, “Hel vetica”, 12, {}, “roman”} => Hel v12;

13 XFfont{“Create”, “Hel vetica”, 14, {}, “roman”} => Hel v14;

14 XFfont{“Create”, “Hel vetica”, 24, {}, “roman”} => Hel v24;

15 XFfont{“Create”, “Hel vetica”, 36, {}, “roman”} => Hel v36;

16 XFfont{“Create”, “Hel vetica”, 14, {“bold"},“roman”} =>Hel vBol d;

17 XFfont{“Create”, “Hel vetica”, 14, {“italic”"},“roman”}=>Hel vltalic;

18 XFfont{“Create”, “Synbol ", 14, {}, “synbol”} => Synbol;

19

20 list fonts={&Tinmesl2, &Tinmesl4, &Tinmes24, &TinesBold, &Tinmesltalic,

21 &Ti mesBltalic, &Helv12, &Helv14, &Helv24, &Hel v36, &Hel vBol d,

22 &Hel vlitalic, &Symbol};

23

24 XFl abel font Sanpl e

25 {

26 y = 230; width = 450; height = 100;

27 | abel = “The quick brown fox”;

28 background = “steel Bl ue”;

29 reconput eSi ze = FALSE;

30 b

31

32 XFsel ect Li st fontLi st

33 {

34 X =75, y = 15;

February 25, 1997 165

AthenaMuse 2.2 Documentation

35 wi dt h = 300;

36 hei ght = 200;

37 items = {“Times 12", “Times 14", “Times 24", “Times Bold”,
38 “Times Italic”, “Tines Bold & Italic”,

39 “Hel vetica 12”,“Hel vetica 14", "“Hel vetica 24", "“Hel vetica 36",
40 “Hel vetica Bold”,"Helvetica Italic”, “Symbol font”};

41 /1 Setting the fontRequest attribute creates an XFfont object
42 /1 that is then assigned to the font attribute

43 font Request = {“Helvetica”, 12, {“bold"}, “roman”};

44 b

45

46 XFbutton ExitButton

47 {

48 x = 175;

49 y = 355;

50 wi dth = 100;

51 hei ght = 60;

52 | abel = “Quit”;

53 //Set the button’s font to be Helvetica, 18 points, and bol d.
54 //Create the font dynanmically and then assign it to

55 //the font attribute which expects a font handl e.

56 font=new {“Create”, “Helvetica”, 18, {“bold"}, “roman”}=>XFfont;
57 b

58

59 /1l Create a notification request object for the

60 /1l XFselectList’s Selection activity

61 vanillaNro {“Create”, “Sel ection”, self “ChangeFont”,{}}=>FontNro;
62

63 upon Construct

64 {

65 ExitButton. Pressed = {“Qit"”, self };

66 {“Subscribe”, &FontNro } => fontlList;

67 }

68

69 on ChangeFont : list clientData

70 {

71 string item

72 i nteger position = 1;

73 list selection = “GetSel ectedltens” => fontList;

74 if (!isEnpty(selection))

75 {

76 position = {“GetltemPos”, at(1,selection) } => fontlList;

77 font Sanpl e.font = at(position, fonts);

78 }

79 }

80

81 on Quit

82 {

83 echo(“Quitting...\n");

84 “Exit” => theApp;

85 }

86

87 } topShell { width = 450; height = 450;

88 background = “steel Blue”; title = “Fonts”;};

166 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.27 XGPainter

The XGpai nt er interface provides asimple set of operations and represents the necessary state

to perform 2D drawing. Many of the methods described use lists as the representation for points
with the idea that it can be used for both 2D and 3D graphics. For instance if we were to draw a
line from (1,2) to (10,10) we would make a call similar to:

{"DrawLi ne", {1,2}, {10,10} } => myPainter;

Superclasses
Section 6.2.11, “XFfontable - Abstract” page 138

Methods
upon Construct
Default constructor. This should set the membersinto a useful default.
upon Create: handle hParent
Alternate constructor; hPar ent isahandle to its container widget.
on ClearDrawingArea
Clears (erases) the entire drawing area.
on DrawPoint: list point
Draws the given point with the current penW dt h and col or .
on DrawPoints: list points
Draws the given points with the current penW dt h and col or .
on DrawL.ine: list pointl, list point2
Draws aline from pointl to point2 with the current penW dt h and col or .
on DrawPolyL.ine: list points

Draws aline segment from the first point to the second point, then from the second point to
the third, and so on.

on DrawRectangle: list origin, integer width, integer height

Draws the outline of arectangle with the current penW dt h and col or .
on FillRectangle: list origin, integer width, integer height

Fills the specified rectangle with the current col or .
on DrawEllipse: list origin, integer width, integer height

Drawsthe outline of an ellipse specified by its bounding rectangle with the current penW dt h
andcol or.

February 25, 1997 167

AthenaMuse 2.2 Documentation

on FillEllipse: list origin, integer width, integer height
Fills the ellipse specified by its bounding rectangle with the current col or .
on DrawPolygon: list points

Draw the outline of the polygon specified by thelist of poi nt s, using the current penW dt h
and col or.

on FillPolygon: list points

Fills the specified polygon with the current col or .
on DrawCircle: list center, integer radius

Draws the outline of the specified circle using the current penW dt h and col or.
on Fill Circle: list center, integer radius

Fills the specified circle of the given cent er and r adi us with the current col or .
on DrawText: list startPos, string text

Drawsthe specified t ext starting at st ar t Pos using the current f ont .

Attributes
Attribute Type Description Access
drawingArea handle current drawing area. CSG
Thisisahandleto an XFvisual object.
penWidth integer current width of the pen used to draw CSG
fontRequest list font requested to be used for text operations CSG
font handle current font used for text operations CSG
color handle Thisisthe current color to be used in graphic CSG
operations. Thisisahandleto an MMcolor
object. Specifiesthe raster operation or logical
function to be used. Logical functions control
how the source pixel values generated by a
graphics request are combined with the destina-
tion pixel values already present on the screen.
These operations are: copy, and, or, and xor.
Figure 6.30: XGpainter Attributes
Activities
None

168 February 25, 1997

AthenaMuse 2.2 Documentation

Example

This example using the XGpai nt er createsaclasscaled Pol ygon. The anonynous instance
derived from XFt op after the Pol ygon class definition then uses the Pol ygon classto create a
filled square (in black) and a unfilled triangle in yellow.

1 XGpai nter painter;

2

3 /1 Class for a Pol ygon

4 cl ass Pol ygon

5

6 gl obal XGpai nter painter;

7

8 list points = {}; /[11ist of vertices in form{ {x1,y1}, {x2,y2} ...}
9 i nteger |ineWdth=1; /1 width of drawing |line

10 handl e col or Handl e; /1 handle to Mvtol or object

11 string drawCol or='bl ack; // default color

12 handl e drawPar ent; /] parent wi dget to draw on

13 bool ean fill =FALSE; /1 indicator for filled Polygon
14

15 // Constructor has parent w dget for Polygon as argunent
16 upon Construct: handle p

17 {

18 drawParent = p;

19 col or Handl e= new {' Creat eNarme, drawCol or} => M\tol or;
20

21 }

22

23 /] Destructor deletes the allocated Mol or object

24 on Destroy

25 {

26 del et e col or Handl e;

27 }

28

29 /] Method to reset the draw ng col or

30 on Set_drawCol or: string color

31 {

32 del et e col or Handl e;

33 dr awCol or =col or;

34 col orHandl e = new {' Creat eNane, drawCol or} => M\tol or;
35 pai nter.col or = col or Handl e;

36 }

37

38 // Method that draws the Pol ygon

39 on Draw

40 {

41

42 list full Points = points;

43

44 pai nt er. drawi ngArea = drawParent;

45 pai nter.penWdth = |ineWdth;

46 pai nter.col or = col orHandl e;

47

48 if(fill) |

February 25, 1997 169

AthenaMuse 2.2 Documentation

49 {"FillPolygon, points} => painter;

50 }

51 el se {

52 full Points << first(points);

53 {' DrawPol ygon, full Points} => painter;
54 }

55 }

56

57 }; /* end of class Polygon */

58

59 // Anonynous instance derived from XFtop that uses Pol ygon cl ass
60 anonynous: XFt op {

61

62 XFvi sual vis {x=30; y=30; height=200; w dth=400;};

63 /1 drawi ng surface

64 Pol ygon {' Construct, &vis} => triangle

65 {poi nts={{100, 100}, {100, 200}, {200, 100}};

66 drawCol or=' Green; |ineWdth=4;};

67 Pol ygon {' Construct, &vis} => filledSquare

68 {poi nts={{10, 10}, {100,10}, {100,100}, {10,100}};

69 drawCol or =' Bl ack; fill=TRUE; };

70

71 XFbutton quitButton {x=250; y=30; l|label="Quit";};

72 /] The following NROis used to Subscribe for refresh events on XFvi sual
73 Nro {'Create, 'Refresh, self, 'RedrawRefresh, NULL} => redraw\ro;
74

75 upon Construct

76 {

77 {" Subscribe, &redrawNro} => vis;

78 qui tButton. Pressed = {' Exit, theApp};

79 "Draw => fill edSquar e;

80 'Draw => triangl e;

81 }

82 // This nethod handl es refresh on the XFvisual by redraw ng Pol ygons
83 on RedrawRefresh: any cd, list nanmes, list vals

84 {

85 "Draw => fill edSquar e;

86 'Draw => triangl e;

87 }

88

89 } nyTop {x=100; y=100; hei ght=300; w dt h=500;};

170 February 25, 1997

AthenaMuse 2.2 Documentation

6.3 Multimedia

Multimedia applications should be thought of as the juxtaposition and presentation of media ele-
ments to users through the user interface. The ADL contains two key features which enhance an
application designer’ s ability to manage and control multimedia presentations more efficiently.

1.

Multiple presentations of a single media element can be created and controlled independently.
Thisis more efficient than duplicating a media element in order to make and manipulate mul-
tiple presentations of it. Each presentation request for a media element returns a special type
of handle called a presentationID, which can be passed as an argument to specify which pre-
sentation of amedia element to control. Each presentation exists as long as the media element
that created it exists, or until the particular presentation is removed, at which time the
presentationID handleis madeinvalid. Inthe media classes, there are frequently two alter-
native forms of a method. The form without a handle will perform the specified action on al
presentations of a media element, while the method (s) named “methodID” with a handle will
perform the action on the specified presentation|D.

The reusability of application interfaces through the interchangeability of multimediawas a
key design goal of AM2. The Mvbr oker adds a subtle capability which helpsthe ADL pro-
grammer to achievethisgoal. It allows applications to access media elements without needing
to be aware of their actual format. This makesit much easier to construct interchangeabl e sets
of media. For further explanation of the use of Mvbr oker , see Section 6.3.5, “MMbroker”
page 182.

The classes which are essential for supporting the above features are described in the first two
sections of this section, followed by descriptions of how the specific media classes take advantage
of these capabilities for different forms of media:

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174
Section 6.3.3, “MMtemporal - Abstract” page 176
Section 6.3.4, “MMaudioControl - Abstract” page 180
Section 6.3.5, “MMbroker” page 182

Section 6.3.6, “MMcolor” page 183

Section 6.3.7, “MMimage” page 184

Section 6.3.8, “MMdigitalAudio” page 187

Section 6.3.9, “AVwaveForm” page 189

Section 6.3.10, “MMmovie” page 191

Section 6.3.11, “MMvidDiscPlayer (only on UNIX)” page 193
Section 6.3.12, “MMhtml” page 195

The class inheritance tree diagram for the Multimedia (MM) wrapped classes of AM2 appearsin
Figure 6.31.

February 25, 1997 171

AthenaMuse 2.2 Documentation

Activity Manager Attribute Manager

MPAbroker

MMy iz al

MMimage

Mtemporal

MM audio Contral
MM digitalAudio

AvfaveForm

MM idDiscPlayer

flhAhtml

LEHE“d Ahstract Class Clazs Mame Mon-Abstract Class Clazs Mame

Figure 6.31: Multimedia Wrapped Classes Inheritance Tree

172 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.1 MMbase - Abstract

An abstract class can not be directly created within an ADL program or used as a base of a user-
defined ADL class, so utilization of the Mvbas e methods, members and activities must be through
the fully-derived wrapped media classes. However, all fully derived media classes inherit from
Mvbase, so they share the generic methods, members and activities listed below.
Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

Although the “Pr esent ” and “Di smi ss” methods described below are available to all derived
media classes, they exhibit different behavior for different mediatypes. For this reason, these
methods are repeated in the more media specific abstract classes (i.e. MWi sual , MM enpor al
and Mvaudi oCont r ol). The “Renpve” methods exhibit similar behavior across al classes, so
they are only described here and will not be repeated el sewhere.

on Present

Presents al existing presentations for a media element using the current settings for each
individual presentation request of the element. The entire element is presented. Activities
triggered: Depends on the actual element’s Pr esent activities.

on Presentld: handle presentationID

Presents the element’ s specified presentation request. Activities triggered: Depends on the
actual element’s Pr esent activities.

on Dismiss

Dismisses all presentation requests for an element. A dismissed presentation is not removed
nor is the loaded data destroyed. An element that is dismissed may be thought of as being off-
stage ready to be presented again. A visual element’sDi smi ss method hides the element.
Activities triggered: Depends on the actual element’ s activities.

on Dismissld: handle presentationID

Dismisses the element’ s specified presentation request. Activitiestriggered: Depends on the
actual element’ s activities.

on Remove

Removes all presentations of an element, which can not be presented again without creating
new presentations. Di smi ss iscalled on the element’ s presentations before they are removed.
Activities triggered: Depends on the actual element’ s activities.

on Removeld: handle presentationlD

Removes the element’ s specified presentation request. Activities triggered: Depends on the
actual element’ s activities.

February 25, 1997 173

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access
name string a user or application defined element name CSG
Figure 6.32: MMbase Attributes
Activities
Activity Keys Description
DataReady none media data available
Present none element is presented
Dismiss none element is dismissed
Destroyed none element is destroyed
Figure 6.33: MMbase Activities
Example
None

6.3.2 MMvisual - Abstract

Any visual element typeis derived from the MWi sual class.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

The following apply to al of the following methods:!

handle hVisual -- ahandle to the XFvi sual

integer X,y -- thelocation on the XFvi sual where theimage is presented
integer clipwW -- the clipping width of the presented image, -1 - don’t clip
integer clipH -- the clipping height of the presented image, -1 - don’t clip
integer offsetX -- the x offset from the origin of the source image

integer offsetY -- they offset from the origin of the source image

The newer Present| D, RegisterID and Removel D methods should be used instead of “on AddSink: handle
hXFvisual return handle presentationID”” (where image is placed at 0.0, no clipping) and ”on RemoveSink:
handle hXFvisual™ (stops the X Fvisual from displaying all presentations of the image, if clearModeis
TRUE the image is cleared). While these older methods remain available to older applications, it is highly
recommended that the newer and more powerful methods be used whenever possible.

174 February 25, 1997

AthenaMuse 2.2 Documentation

on Present
Registers and automatically shows all existing presentations of a media element.
on PresentID: handle presentationID
Pr esent registers and automatically shows the specified presentation.
on PresentOn: handle hVisual return handle presentationID
on PresentAt: handle hVisual, integer x, integer y return handle presentationlD
on PresentClipped: handle hVisual, integer X, integer y, integer clipW, integer clipH,
integer offsetX, integer offsetY return handle presentationlD
on Register
Registers all existing presentations of the media element but does not show the presentations.
on RegisterID: handle presentationlD
Registers the specified presentation but does not show the presentation of specified handle.
on RegisterOn: handle hVisual return handle presentationlD
on RegisterAt: handle hVisual, integer x, integer y return handle presentationlD
on RegisterClipped: handle hVisual, integer X, integer y, integer clipW, integer clipH,
integer offsetX, integer offsetY return handle presentationlD
on Show
Maps all of the elements existing presentations onto their specified XFvi sual s.
on ShowlID: handle presentationID
M aps the presentation onto the specified XFvi sual at the location specified.
on Hide
Hides all presentations of theimage, if cl ear Mode is TRUE, the areas are cleared.
on HidelD: handle presentationID

Unmaps the specified presentation, the pr esent at i onl Dis not removed, and the media ele-
ment is not unloaded. Show methods may be called after aHi de method.

on Dismiss

The element stops presenting all presentations of itself, any screen updates are stopped and, if
the element is temporal, no new frames are presented. If clearMode is TRUE the images are
cleared. Thepresent ati onl Ds are till valid.

on DismissID: handle presentationlD

Screen updates are stopped and, if the element is temporal, no new frames are presented. If
cl ear Mode isTRUE theimage is cleared. The pr esent at i onl Disstill valid.

February 25, 1997 175

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access
width integer width of image G
height integer height of image G
clearMode boolean clears presentation from the screen automatically if CSG
presentation is hidden or removed, default TRUE
Figure 6.34: MMvisual Attributes
Activities
Activity Keys Description
DataReady none After aload is complete
Figure 6.35: MMvisual Activities
Example
None

6.3.3 MMtemporal - Abstract

MMt enpor al isabase classfor any element that has atemporal or sequential nature. In most
cases, positions within the data stream are addressable and the media data is presented as a series
of positions. All wrapped classes that are derived from MM enpor al share the same methods,
members and activities. For some of the derived classes the methods may have different results or

no action, for example currently you may not change the playback rate of digital audio.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

Note that some temporal methods behavior depends on the type of the specification provided:

* time - Play from current position for the amount of time.

* interval - Play the range specified within the interval (See PlaylInterval).

* integer - Play at the specified Positions per second.
* real - Play at the requested rate.

176

February 25, 1997

If either side of the interval is open, use the sequence’ s start or end position.

AthenaMuse 2.2 Documentation

on Present

“Pl ay” sall current presentations from start to end using the current settings. Activities
triggered: Pl ay and Rat eChange.

on Presentld: handle presentationID
on Play: any specification (only on UNIX)

Behavior of this method is controlled by the type of specification provided (see note above).
Activitiestriggered: Pl ay and Rat eChange, Posi t i onChange if seek to new location.

on Playld: handle presentationID, any specification
on PlayAll
on PlayAllld: handle presentationID (only on UNIX)

Play the entire media element at the default or requested rate. Activitiestriggered: Pl ay and
Rat eChange, Posi t i onChange if seek to new location.

on PlaylInterval: interval range
on PlaylIntervalld: handle presentationID, interval range (only on UNIX)

Play the range specified within the interval, if either side of the interval is open use the
sequence’ s start or end position. Interval values may be either timestamps or positions and
may be mixed. Please note many media types do not support playing backwards. Activities
triggered: Pl ay and Rat eChange, Posi t i onChange if seek to new location.

on PlaySeq: integer start, integer end
on PlaySeqld: handle presentationID, integer start, integer end (only on UNIX)

Play the sequence of positions starting at “start” and stopping at “end” at the default or
requested rate. Please note may mediatypes do not support playing backwards. Activitiestrig-
gered: Pl ay and Rat eChange, Posi ti onChange if seek to new location.

on PlayUntil: value val (only on UNIX)

on PlayUntil: value val return handle presentationID (only on UNIX)
on Pause

on Pauseld: handle presentationID (only on UNIX)

If the element is being presented, it pauses. A paused media element may be resumed.
Activitiestriggered: Rat eChange.

on Resume
on Resumeld: handle presentationID (only on UNIX)

If the element is paused, presentation continues from where it was paused. Activitiestrig-
gered: Rat eChange.

February 25, 1997 177

AthenaMuse 2.2 Documentation

on Stop
on Stopld: handle presentationID

If the element is being presented or paused it is stopped, a stopped element may not be
resumed. The element is not unloaded and may receive new presentation or play commands,
but by default it starts at the beginning again. Activitiestriggered: St op and Rat eChange.

on Seek: any location, boolean present
on Seekld: handle presentationID, any location, boolean present (only on UNIX)

Seeks to location specified by the value location. Location is relative to the beginning of the

sequence. Location may be either an integer, which is used as a media specific frame or posi-
tion, or atime value, which is used as the number of millisecondsinto the sequence. If present
iISsTRUE and element isavisual type present the frame. Activities triggered: PositionChange

on GoStart
on GoStartld: handle presentationID (only on UNIX)

Seeks to start of sequence. Visual elements display first frame. Triggered: PositionChange
on GoEnd
on GoEndld: handle presentationID (only on UNIX)

Seeks to the end of sequence. Visual elements display last frame. Triggered: PositionChange
on Jump: any location, boolean present
on Jumpld: handle presentationID, any location, boolean present (only on UNIX)

Jumpsto location (an offset of the number of images from the current position). If pr esent is
TRUE and the element is a visual type, present the frame. Triggered: PositionChange

on GoPPS: integer positionsPerSecond
on GoPPSId: handle presentationID, integer positionsPerSecond (only on UNIX)
Presents the media at the specified positions per second. Activities triggered: Rat eChange
on GoRate: real rate
on GoRateld: handle presentationID, real rate (only on UNIX)

Attempts to present the media at the specified r at e based on default PPS = 1. 0.
Activitiestriggered: Rat eChange

on ToPosition: time duration returns integer

Does not affect the media element but convertsat i me value into an element specific native
position, or number of positions. Positions are calculated using the default PPS.

on ToTime: integer position returns time

Does not affect the media element but converts an integer posi t i on, into an element specific
timestamp or duration. Timeis calculated using the default PPS.

178 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access

startPosition integer start position relative to start of media data CSG

endPosition integer end position relative to start of media CSG

position integer current position relative to start of sequence SG

timestamp time current position from start of sequence calculated SG
using default datarate

PPS integer current Positions per Second, native media frame SG

rate real current rate calculated using default data rate SG
1.0 isthe default rate.

length integer length of the sequence in positions CSG

duration time length of the sequence in time, calculated based on CSG
default rate

Figure 6.36: MMtemporal Attributes
Activities
Activity Keys? Description

Play see footnote playing started

Start see footnote element starts, also on resume

Stop see footnote stopped, also on pause

RateChange see footnote on any rate change

StartChange see footnote after creation if the beginning location is changed

EndChange see footnote after creation if the end of sequence is changed

PositionChange

see footnote

seek, not called during normal movement

Figure 6.37: MMtemporal Activities

a. Note: The activity data returned from many temporal activitiesis a MDtemporal State
value. Returned are: M Dstatus status, integer position, integer PPS

February 25, 1997 179

AthenaMuse 2.2 Documentation

6.3.4 MMaudioControl - Abstract

Mvaudi oCont r ol dealswith audio gain, channel selection, and input/output selection. All
wrapped classes that are derived from Mvaudi oCont r ol share the same methods, members and
activities. For some of the derived classes, the methods have different results or no action.
Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods
on Present
on Presentld: handle presentationld

Presents the entire sound element using the current output gain and device. Activitiestrig-
gered: Pl ay and Rat eChange.

on PresentSequence: integer start, integer end, real volume return handle presentationlD

Creates, registers ad presents an audio presentation request. Thest ar t position, end position
and volume are set to the specified Ivalues. The pr esent at i onl Dis returned.

on PresentVVolume: real volume return handle presentationID (only on UNIX)

Creates, registers and presents an audio presentation request. The volume is set to the
specified level, thest art and end positions default to beginning and end of data, and the
present ati onl Disreturned.

on RegisterSequence: integer start, integer end, real volume return handle presentationlD

Creates and registers an audio presentation request. The st art position, end position and
volume are set to the specified lvalues. The pr esent at i onl Disreturned.

on RegisterVolume: real volume return handle presentationID (only on UNIX)

Creates and registers an audio presentation request. The volume is set to the specified level,
thest art and end positions default to beginning and end of data, and the pr esent at i onl D
is returned.

on Seek: any location, boolean present

Seeksto the location specified by thevaluel ocat i on, the specified positionisrelative to the
beginning of the sequence. Locat i on may be either ainteger which is used as a media spe-
cific frame or position, or aUTt i me which is used as the number of milliseconds into the
sequence. Note: An audio position is not presented upon Seek since asingle sampleis not
useful. Activitiestriggered: Posi t i onChange.

180 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access
numChannels integer number of channel currently supported CSG
gain real sets output gain for all channels CSG
gainA real sets output gain for channel A (left) CSG
gainB real sets output gain for channel B (right) CSG
level real level isthe current signal value for all channels
Figure 6.38: MMaudioControl Attributes
Activities
Activity Keys? Description
AudioChanged none gain for any channel changed
AudioAChanged none gain for channel A changed (left)
AudioBChanged none gain for channel B changed (right)
Figure 6.39: MMaudioControl Activities
a. Note: The activity data returned from many audio activitiesis a M DaudioState value.
Returned are: MDstatus status, integer channels, real channel A, real channelB
Example
None
February 25, 1997 181

AthenaMuse 2.2 Documentation

6.3.5 MMbroker

The multimedia broker acts as a media object factory. It isolates the ADL from having to declare
and call aspecific constructor for the actual dataformat of the requested media element. The ADL
deals with abstract element types (such asimage, audio, and movie) but the actual object created
by the wrapper must be the fully derived media element class that supports the specific data type
(MEgi f, MELI f f, MEj peg, etc.). The MVor oker , if given ageneric element type, tests the media
data to determine the actual C++ class that must be constructed. Since the broker may construct
any mediatype, specification of the media element type may be supplied by external or run-time
data. The Mvbr oker parses media object descriptor lists. These lists define media elements and
the element’ sinternal objects. The format of an object descriptor list is asfollows:

» Thefirstitem in thelist must be a string that is the name of the requested C++ mediaclass. A
base class name may be used if it is possible to derive the actua class of the media element
from the remaining arguments, or the media element’ s data.

» Additional itemsin the list may include object descriptor lists for objects which are used as
members of the requested object, or an argument list.

An argument list has the following format:
* Thefirst item must be the string “ar gunent s”

* Additional itemsin the list are name/value lists with the first item an attribute name, and the
second item the value. Currently the individual name/value lists only have two items.

File access may be specified through an MaAf i | e descriptor list, MAf i | e descriptor lists follow
the same format as any other object descriptor list, but in addition support a short list form:

{“MAfile",”pathnanme”} The short form must be alist of two strings.

Superclasses
Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods
on MakeElement: list mediaDescription return handle

The “mediaDescription” isalist which matches the format specified above. A media element
is created and a handle to it is returned.

on LoadColorNames: string filePath

L oads colors defined within the file as the color database colors. Deletes all colors currently in
the default color database. See /usr/1i b/ rgb. txt for fileformat.

on AppendColorNames: string filePath

Appends colors defined in the file to the color database. All colors currently in the default
color database remain. Multiple entries may have the same name and or color values, searches
of the database usually return the first ‘match’ found. See /usr/lib/rgb.txt for file format.

182 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

None

Activities

None

Example

None

6.3.6 MMcolor
MMcolor allows a user to define and control either RGB or HVS colors.

Superclasses

None

Methods
on construct

Default constructor. Nameis‘none’, col or isall zeros (Black).
on createName: string colorname

Creates a color name. If the default color database contains the name of the RGB, values are
set to match the name’ s values, else they are set to zero (Black).

on createRGB: integer green, integer red, integer blue

Createsacol or of the specified RGB settings. If the default color database contains a color
with matching RGB values, nane is set to match the found color name, elseisset to ‘none’.

on createHVS: real hue, real value, real saturation

Creates a color of the specified HVS settings. If the default color database contains a color
with matching RGB values nane is set to match the found color nane, elseisset to ‘none’.

on createNamedRGB: string colorname, integer green, integer red, integer blue

Creates a color of the specified name with the specified RGB settings. Color database is not
checked.

on createNamedHVS: string colorname, real hue, real value, real saturation

Creates a color of the specified name with the specified HVS settings.

February 25, 1997 183

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access
color handle A representation of the packed RGB valuesin a CSG
32 bit integer
red integer This setsthe level of red in a RGB color specifica CSG
tion.
green integer This setsthe level of green in a RGB color specifi- CSG
cation.
blue integer This setsthe level of bluein a RGB color specifica- CSG
tion.
hue real This sets the huein an HVS color specification. CSG
Rangeis 0.0 to 360.0
value real This sets the brightnessin an HV S color specifica- CSG
tion. Range is 0.0 to 100.0
saturation real This sets the saturation in an HV'S color specifica- CSG
tion. Range is 0.0 to 100.0
name string Specifies a user or applicaiton defined color. CSG
Figure 6.40: MMcolor Attributes
Activities
None
Example
None

6.3.7 MMimage

Any type of image that is not a sequence of images that may be controlled, or indexed. Currently
supported image classes; MEpbm MEgi f , MEt i f f, MEj peg, MExbmand MEphot oCD only on the
Sun platform. In addition a special image class MEvideo supports alive analog video stream. The
MEvi deo classis supported by MM mage since the only controlsfor the video stream areits place-

ment and visible state.

Superclasses
Section 6.3.1, “MMbase - Abstract” page 173
Section 6.3.2, “MMvisual - Abstract” page 174

Methods

upon Construct: list description

Default constructor. Requires access descriptor to image. Description should be of the form
{<type> {‘MAfile, <filenane>}},where<type> isthetype of theimage (one of:

184

February 25, 1997

AthenaMuse 2.2 Documentation

‘MEgif, ‘MEj peg, ‘MEpbm ‘MEphot oCD, ‘MEt i f f, ‘“MExbm or ‘MEI mage to auto-detect),
and <fil ename> isthe name of the image file. An example of aconstructor follows:

'Construct, { ‘MEimage, { ‘MAfile, "bigcat.gif"}}
on List: returns list

Returns an object descriptor list, which may be used to re-create the object. Thereturned listis
formatted to be used as the list argument to the Mvbr oker to MakeEl enent or to theclass's
Construct method which has a list argument.

on Load: return integer
L oads the image into memory. Returns zero on success.
on Unload: return boolean

Unloads any media data, closes the elements data file, stops the refreshing of the image and
returns TRUE when complete. The media element is not deleted or destroyed so it is possible
to redisplay the image with another present command. Note: all existing presentations are
removed and made invalid. If you plan on hiding and showing the image thisis not the method
to call since the mediadatawill have to be reloaded and a new presentation requested.

on SetSize: integer width, integer height
Set theimageto a new size.
on Zoom: real scaleX, real scaleY

Zoomchangesthe size of all presentations created from this element, currently the image must
be Zoomed before the image is presented. To present the same image with different scale fac-
tors, another instance of the MMimage isrequired. Thiswill change in the future. If aclip
region is not specified, the presented image is the size of the image after the Zoom

Attributes
Attribute Type Description Access
width integer width of image G
height integer height of image G
clearMode boolean clear on remove sink automatically, default false CSG
Figure 6.41: MMimage Attributes
Activities
Activity Keys Description
DataReady none after aload is complete

Figure 6.42: MMimage Activities

February 25, 1997 185

AthenaMuse 2.2 Documentation

Example

1 gl obal assets

2 {

3 {' SetLibrary, "Exanples", "/usr/lib/Exanmples"} => self;
4 }

5 anonynous: XFtop

6 {

7 XFvi sual visual { x=10; y=10; w dth = 640; height = 480;
8 backgr ound="bl ack";

9 b

10 XFbutton binmgl { x=200; y=500; wi dth= 100; height = 30;
11 | abel ="1 nage 1";

12 background="whi te"; foreground="bl ack";
13 b

14 XFbutton binmg2 { x=350; y=500; width= 100; height = 30;
15 | abel ="1 nage 2";

16 background="whi te"; foreground="bl ack";
17 1

18 XFbutton bQuit { x=620; y=500; w dth= 50; height = 30;
19 background="white"; foreground="black"; |abel="Quit";
20 f ont Request ={"Hel vetica", 12,{"bold","italic"}, "roman"};
21 b

22

23 handl e hl nmage;

24 upon Construct

25 {

26 bi ngl. Pressed = { 'Ingl, self};

27 bi ng2. Pressed = { 'Ing2, self};

28 bQuit.Pressed ={ 'Qit, self};

29 hl mage = NULL,;

30 }

31 on Ingl

32

33 if (hlmage !'= NULL) { del ete hlnage; }

34 hl mage = new {' Construct, { "ME mage",

35 { "MAfile", "bigcat.gif"@Exanples" }}} =>
36 MM mage;

37 {"PresentAt", &visual, 0, 0} => hlnage;

38 }

39 on 1 ng2

40 {

41 if (hlmage !'= NULL) { del ete hlnage; }

42 hl mage = new {' Construct, { "ME mage",

43 { "MAfile", "dragon.gif" @ Exanples" }}}
44 => MM nage;

45 {"PresentAt", &visual, 0, 0} => hlnage;

46 }

47 on Quit

48 {

49 del et e hl mage;

50 "Exit => theApp;

51 }

52 }top {x=20; y=20; wi dth=680; height=540; background='Sl at eBl ue; };

186 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.8 MMdigitalAudio

Any type of digital audio, supported file formatsinclude WAV, Sun au, and .SND.
MWi gi t al Audi o isderived from the abstract classes Mvbase, MM enpor al , and
Mvaudi oCont r ol . All base class methods and activities are supported.
Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.3, “MMtemporal - Abstract” page 176

Section 6.3.4, “MMaudioControl - Abstract” page 180

Methods
upon Construct: list description

Default constructor; Description list should follow this format where <f i | ename> isthe
name of the datafile:

‘Construct {‘MEdigital Audio, {‘ MAfile, ‘filenane},
{*argunents,{‘gainA, 1.0}, {'gainB, 0.0}}}
on List: returns list

Returns an object descriptor list, which may be used to re-create the object. Thereturned listis
formatted to be used as the list argument to the Mvbr oker to MakeEl enent or to theclass's
Const ruct method which has alist argument.

on Load: return boolean

L oads the media data and confirms that audio services are connected. Activities triggered:
Dat aReady.

February 25, 1997 187

AthenaMuse 2.2 Documentation

Attributes
Attribute Type Description Access
name string symbolic name associated with the element CGS
source string access path, must be set prior to loading CGS
masterGain real sets system output gain for all channels GS
fileFormat string returns the current file format CGS

(only on UNIX)

Figure 6.43: MMdigitalAudio Attributes

Activities

None

Example

1 gl obal assets

2 {

3 {' SetLibrary, "Exanples", "/usr/lib/Exanmples"} => self;
4 }

5

6 anonynous: XFt op

7 {

8 XFbutton bimgl { x=10; y=10;

9 wi dt h= 100; hei ght = 30;

10 | abel =" Sound 1";

11 background="bl ack"; foreground="white"
12 b

13

14 XFbutton bimg2 { x=130; y=10;

15 wi dt h= 100; hei ght = 30;

16 | abel =" Sound 2";

17 background="bl ack"; foreground="white"
18 b

19

20 XFbutton bQuit { x=300; y=10;

21 wi dt h= 50; height = 30;

22 background="bl ack"; foreground="white"
23 | abel ="Quit";

24 font Request = {"Helvetica", 12, {"bold",
25 “italic"}, "roman"};

26 b

27

28 handl e hAudi o;

29

30 upon Construct

31 {

188 February 25, 1997

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

bi ngl. Pressed
bi ng2. Pressed
bQuit. Pressed

AthenaMuse 2.2 Documentation

{ 'Soundl, self};
{ 'Sound2, self};

{ "Qit, self};

hAudi o = NULL;

}

on

{

Sound1l

if (hAudio !'= NULL) { del ete hAudio; }
hAudi o = new {' Construct, {'MEdigital Audi o,
{ ' MAfile,

"Violin_Concerto_in_E Mjor.au"@audiobDir"},

{ "arguments, {'gainA, 1.0}}
}} => MMigital Audi o;
{' Present Vol une, 1.0} => hAudi o;

}
on Sound2
{
if (hAudio !'= NULL) { del ete hAudio; }
hAudi o = new {' Construct, {'MEdigital Audi o,
{ "MAfile, "wolf-2. au"@audioDir"},
{ "arguments, {'gainA, 1.0}}
}} => MMigital Audio ;
{' Present Vol une, 1.0} => hAudi o;
}
on Quit
{
del et e hAudi o;
"Exit => theApp;
}

}top {x=20; y=20; w dth=360; hei ght=50; background='Sl at eBl ue;};

6.3.9 AVwaveForm

AVwaveFor mis a specialized class which visually represents a sound wave form, which may be
presented as an image.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173
Section 6.3.2,
Section 6.3.3,
Section 6.3.4,
Section 6.3.7,
Section 6.3.8,

February 25

“MMuvisual - Abstract” page 174
“MMtemporal - Abstract” page 176
“MMaudioControl - Abstract” page 180
“MMimage” page 184
“MMdigitalAudio” page 187

, 1997

189

AthenaMuse 2.2 Documentation

Methods
on SetRecord: handle hAudioPresID, integer rate, integer mseconds return handle

Initializes the audio stream.The audio Pr esent at i onl d defines the audio stream to be
recorded. The frequency is set. Returns an audio pr esent at i onl D.

on Process: handle hAudioPresID

Begins the recording process. Audio stream, duration and frequency are set within the
presentation ID.

on MakeFreqlmage: handle hAudioPresID, integer width, integer height return handle

If the Pr ocess method has not been called it is started, after Pr ocess complets the recorded
audio is converted into an image.Sound represented as a frequency graphic of given width and
height. Handle returned isa MM nage.

on MakeWavelmage: handle hAudioPresID, integer width, integer height return handle

If the Pr ocess method has not been called it is started, after Process complets the recorded
audio is converted into an image. Sound represented as an amplitude wave of given wi dt h
and hei ght . Handle returned isan MM nage.

on BlankProcess: handle hAudioPresID

CallsProcess, but no image is produced.

Attributes
Attribute Type Description Access
number ToSum integer default value CSG
xJump integer sets the height of wave to be represented visually CSG
freqdump integer sets the width of wave to be represented visually CSG
minConsecutive integer sets the minimum consecutive points to be repre- CSG
sented as a smooth curve
tooClose integer x value of height too small to be registered visually CSG
yTooClose integer y value of width too small to be registered visually CSG
minVol integer the minimum volume of sound to be registered visu- CSG
aly
Figure 6.44: AVwaveForm Attributes
Activities
None
Example
None

190 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.10 MMmovie

Mvhovi e provides the interface to al animated visual elements. If a movie element does not sup-
port audio, the audio methods perform no functions.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Section 6.3.3, “MMtemporal - Abstract” page 176

Section 6.3.4, “MMaudioControl - Abstract” page 180

Section 6.3.7, “MMimage” page 184

Section 6.3.8, “MMdigitalAudio” page 187

Methods
upon Construct: list description

Default constructor. Requires access descriptor to image. Description should be of the form
{<type> {‘MAfile, <filenane>}},where <type>isthetype of the movie (one of:
‘MEmpeg, ‘MEavi , ‘MEj peg, ‘MEf | i, ‘MEQt Or ‘MEnDVi e to auto-detect), and <f i | ename>
isthe name of theimagefile. Thefollowing isan example of a construction for an MMmovie:

"Construct, {‘MEanim {‘argunents, {‘gain, 0.3}}, { MAfile, "claylzrd.avi"}}
on List: return list

Returns an object descriptor list, which may be used to re-create the object. The returned list
isformatted to be used as the list argument to the Mvbr oker to MakeEl emrent or to the
class'sConst r uct method which has alist argument.

on Load: return integer

L oads the image into memory; returns zero on SUccess.

Attributes

None

Activities

None

Example

1 gl obal assets

2 {

3 {' SetLibrary, "Exanples", "/usr/lib/Exanmples"} => self;
4 }

5 anonynous: XFtop

February 25, 1997 191

AthenaMuse 2.2 Documentation

{

XFvi sual visual { x=10; y=10;

wi dth = 640; hei ght = 480;
backgr ound="bl ack";

b

XFbutton bStart { x=200; y=500;
wi dt h= 50; height = 30;
| abel ="Start";
background="whi te"; foreground="bl ack";

b

XFbutton bQuit { x=620; y=500;
wi dt h= 50; height = 30;
background="whi te"; foreground="bl ack";
| abel ="Quit";
font Request = {"Hel vetica", 12, {"bold","italic"}, "roman"};

b
handl e hMbvi e;

upon Construct
{
bStart. Pressed
bQuit. Pressed
hMovi e = NULL;
}

{ "Start, self};
{ "Qit, self};

on Init
{
hMovie = new {' Construct, { "Meanini, {"argunments", {"gain", 0.3}},
{ "MAfile", "claylzrd.avi"@novieDir" }}} =>

Mvhovi e;
}
on Start
{
{"Present At", &visual, 0, 0} => hMovie;
}
on Quit
{
del ete hMovi e;
"Exit => theApp;
}

}top {x=20; y=20; w dth=680; hei ght=540; background='Sl ateBl ue;};

192 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.11 MMvidDiscPlayer (only on UNIX)

MWi dDi scPl ayer isaclassthat controls ageneric video disc device. While some of its meth-
ods are similar to those of MMiovi e, the classis not a media element but a device controller.

The media class model expects that devices are managed by the media elements requesting their
services. The player was made available to ADL mainly for testing and to allow run time specifi-
cation of configuration information via the asset manager.

Note: The video disc player does not display the video, but only makes the analog signal avail-
able. The media element MEvi deo provides an interface to show a‘live video stream’ the
MEvi deo classis represented in the ADL as atype of MM mage since thereis no control of the
video stream but only its placement and mapping.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Section 6.3.4, “MMaudioControl - Abstract” page 180

Methods
upon Construct: list objectdescriptor

Constructsthe Mwi dDi scPl ayer object from an object descriptor list. For the video player,
this requires device type information, serial line specification and configuration, and an
optional video disc specification.

on List: returns list

Returns an video disc object descriptor list, which may be used to re-create the object. The
returned list isformatted to be used as the list argument to the Mvbr oker to MakeEl enent or
to the class's Const r uct method which hasalist argument. The following is an example:

list objectList =

{* Mevi dDi scSeq,
{*argunents,{‘start, 12345},{‘'end, 14500},{‘ gai nA, 1.0},{‘ gainB, 0.0}},
{* MAvi dDi scVol, {‘argunents, {‘vol Nane,’ Louvre_2}}}

3

on Load

If adiscisinthedrive, it spins up the drive and positions the head to frame 1.
on Unload

Spins down the drive and, if supported, gjects the video disc.
on Mount

Unmounts any current disc, if it is not busy, loads the current disc, and updates the
videoDiscAgents volume list.

February 25, 1997 193

AthenaMuse 2.2 Documentation

on Unmount
Removes the disc from the videoDiscAgent’ s volume table.
on PlaySeq: integer positionl, integer position2, real rate

Plays the disc from positionl to position2, at a frame rate cal culated based on the default rate
(30 PPS). Depending on the state of video, audiol & audio2 each analog signal may be output.

on Pause: time duration
Stops the disc and ignores duration.
on Scan: integer speed
on Seek: integer offset, integer relativeTo

on Step: integer size

on Stop
Attributes
Attribute Type Description Access
position any Set: integer, real or UTtime Get: integer SG
PPS integer current Positions per Second, native media frame SG
rate real SG
video boolean video output enabled CSG
audiol boolean audio 1 output on/off CSG
audio2 boolean audio 2 output on/off CSG
index boolean frame index displayed on video CSG
Figure 6.45: MMvidDiscPlayer Attributes
Activities

Note: These activities are normally only reported to the media element which may broadcast a
notify event.

Activity Keys Description
DataReady loaded
RateChange disc current speedchanged
Start special rate change
Stop special rate change
AudioAChanged channel’ s state changed
AudioBChanged channel’ s state changed

Figure 6.46: MMvidDiscPlayer Activities

194 February 25, 1997

AthenaMuse 2.2 Documentation

Example

None

6.3.12 MMhtml
An HTML. media object.

Superclasses
Section 6.3.1, “MMbase - Abstract” page 173

Methods
upon Construct: list description

Default constructor. Descriptionisof theform{‘ MEht m , {‘ MAfile, <filenanme>}} or
{*MEhtm, {‘URL, <url>}},where<fil ename> isthe name of the HTM file and
<ur | > isthe URL address of the HTML document.

upon ConstructFromString: string text (only on UNIX)
Constructs an HTM. object using the given text.
upon ConstructFromStream: handle hStream (only on UNIX)

Constructs an HTML object using the data extracted from hSt r eam As of the current release,
hSt r eammust be a handle to an instance of an | OaebSt r eamsubclass.

on Load: return integer

L oads the HTML document into memory; returns zero on SUCCesS.
on Unload: return boolean

Unloads the HTML document from memory; returns TRUE 0N SUCCESS.
on AddSink: handle hSink

Addsasink onwhich the HTML document should be displayed; hSi nk should be ahandle to
an XFht m or a subclass thereof.

on RemoveSink: handle hSink

Stops displaying the HTML document on a sink.
on Show

Displays the HTML document on whichever sinks have been added using AddSi nk.
on Hide

Stops displaying the HTML document on al sinks.

February 25, 1997 195

AthenaMuse 2.2 Documentation

on GoToAnchor: string anchor_name return boolean

Displays the part of the HTML document referenced by anchor _nane at the top of the
HTML display surface; returns TRUE on success.

on GetHTMLSrc: return string

Returnsthe HTML document as an HTML formatted string. Please note that the HTML docu-
ment must be loaded before this method is called, otherwise an empty string is returned.

on GetURL.: return string

Returns the URL address of thisHTML document. If thisHTML document contains a BASE
tag with an HREF attribute value, this method returns the URL contained in the BASE tag.

on GetTitle: return string

Returns the title for thisHTML document; if thereis no title, this method returns an empty
string.

Attributes

None

Activities

None

Example

1 uses “nro.adl " @StdLi b";

2 anonynous: XFt op

3 {

4 handl e hdoc = NULL;

5 XFhtm hyper

6 {

7 wi dth = 700; hei ght=650;

8 borderCol or = “Sl ateG ay”;

9 borderWdth = 2;

10 }

11 upon Construct

12 {

13 handl e h = &hyper;

14 wi dth = 700;

15 hei ght = 650;

16 background = “gray”;

17 {*Set_Current, “http:///test-map.htm "} => sel f;
18 }

19 on Init

20 {

21 {* Subscribe, new {‘Create, ‘AnchorPressed, self,
22 “ Anchor Sel ected, {}} => nro} => hyper;
23 {* Subscribe, new {‘Create, ‘InmageMapPressed, self,
24 ‘ MapSel ected, {}} => nro} => hyper;

25 }

196 February 25, 1997

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

AthenaMuse 2.2 Documentation

/1 Gven a new href, get the corresponding htm text from
//the array, and display it in the XrFhtm

I e
on Set_Current: string newCurrent
{
if (! (hdoc == NULL))
{
del et e hdoc;
}
hdoc=new {‘ Construct, {‘MeEhtm, {'URL, newCurrent}}} => Mvhtm ;
{* AddSi nk, &hyper} => hdoc;
‘ Show => hdoc;
}
I e
/1 Anchor Pressed activity handl er
I e L T
on AnchorSel ected: list clientData, |ist keys, list val ues
{

nro mynro;
string hRef = {‘Lookup, ‘href, keys, values} => nynro;

string ref Text = {‘Lookup, ‘text, keys, values} => nynro;
string anchor_name={‘ Lookup, ‘ anchor _nan®e, keys, val ues}=> nynro;

echo (“\nAnchorPressed Activity invoked!!!\n");
echo (“anchor_nanme is “ + anchor_name + “\n");
echo (“href is “ + hRef + “\n");
echo (“reftext is “ + refText + “\n");
i f (anchor_nane == “quit”)
{ echo (“Good-Bye.\n");
‘Exit => theApp;

on MapSel ected: list clientData, list keys, list values

nro mynro;
string i mage_src={‘'Lookup, ‘image_src, keys, values }=> nynro;
string anchor_name={‘ Lookup, ‘ anchor _nan®e, keys, val ues}=> nynro;
string hRef = {‘Lookup, ‘href, keys, values} => nynro;

string ref Text = {‘Lookup, ‘text, keys, values} => nynro;
integer x = {'Lookup, ‘x, keys, values } => nynro;

integer y = {'Lookup, 'y, keys, values } => nynro;

echo (“\nl mageMapPressed activity invoked!!!\n");

echo (“image_src is “ + image_src + “\n");

echo (“x is “ + toString (x) + “\n");

echo (“y is “ + toString (y) + “\n");

echo (“anchor_nanme is “ + anchor_name + “\n");

echo (“href is “ + hRef + “\n");

echo (“reftext is “ + refText + “\n");

February 25, 1997

197

AthenaMuse 2.2 Documentation

198 February 25, 1997

AthenaMuse 2.2 Documentation

6.4 Input/Output

The purpose of the | nput / Qut put (1 O) wrapped classes are to alow different operations
that include file access, network access (f t p and ht t p) and supports different notification of
| Ostreams. Documentation for the following classes appear in this section:

* Section 6.4.1, “IOactNotify” page 201

* Section 6.4.2, “IOnwNotify” page 201

» Section 6.4.3, “IOstream - Abstract” page 202

» Section 6.4.4, “IOfile” page 205

* Section 6.4.5, “IOfileSpec” page 206

» Section 6.4.6, “IOpipe” page 207

» Section 6.4.7, “IOurl” page 208

* Section 6.4.8, “IOweb - Abstract” page 211

* Section 6.4.9, “IOftp” page 212

» Section 6.4.10, “IOhttp” page 215

* Section 6.4.11, “IOwebRequest - Abstract” page 218
* Section 6.4.12, “IOftpRequest” page 219

* Section 6.4.13, “IOhttpRequest” page 220

* Section 6.4.14, “IOwebEntity - Abstract” page 221
* Section 6.4.15, “IOftpEntity” page 222

» Section 6.4.16, “IOhttpEntity” page 222

* Section 6.4.17, “IOwebStream - Abstract” page 223
» Section 6.4.18, “IOftpStream” page 225

* Section 6.4.19, “IOhttpStream” page 227

* Section 6.4.20, “XNstream” page 229

The class inheritance tree diagram for the | nput / Qut put (1 O) wrapped classes of AM2
appearsin Figure 6.47.

February 25, 1997 199

AthenaMuse 2.2 Documentation

Activity Manager Aftribute Manger

Legend Abstract Class

Figure 6.47: Input/Output Wrapped Classes Inheritance Tree

200 February 25, 1997

AthenaMuse 2.2 Documentation

6.4.1 IOactNotify

This class allows natification on file stream events. It is used in combination withthel Ofi | e
object. There must be one instance of this class for each activity.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods
upon CreateFromStream: handle hStream

Creates an instance to monitor the specified stream (hSt r eamshould be a handle to an
instance of class1 Ofi | e).

on IsValidActivity: string actName return boolean
Returns TRUE if actName is avalid activity, FAL SE otherwise.

Attributes
None
Activities
Activity Keys Description
ReadReady none datais ready for reading from port
WriteReady none OK to send datato port
ExceptionReady none exception encountered
Figure 6.48: I0actNotify Activities
Example
None

6.4.2 10nwNotify

This class allows notification on network stream events. It is used with a network stream object,
such as XNst r eam There needs to be one instance of this class for each activity.
Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

February 25, 1997 201

AthenaMuse 2.2 Documentation

Methods
upon CreateFromPort: integer port

Creates an instance to monitor the specified network port. This constructor is used when you
first waits for connection request from other AM2 application without blocking. This con-
structor isused in combination with Connect Ready activity. Y ou cannot use this constructor
for ReadReady activity.

upon CreateFromStream: handle hStream

Creates an instance to monitor the specified stream (hSt r eamshould be a handle to an
instance of class XNst r eam). This constructor is used together with ReadReady activity.

on IsValidActivity: string actName return boolean
Returns TRUE if act Nane isavalid activity, FAL SE otherwise.
on AcceptXN: return handle
Like Accept, but returns a handle to an instance of class XNst r eaminstead.

Attributes
None
Activities
Activity Keys Description
ConnectReady none connection regquested
ReadReady none dataisready for reading from port (after connection
established)
WriteReady none OK to send data to port (after connection established)
ExceptionReady none exception encountered
Figure 6.49: IOnwNotify Activities
Example
None

6.4.3 |Ostream - Abstract

This abstract class serves as a foundation class which contributes to the functionality of the sub-
classes| Ofi | e and | Opi pe.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

202 February 25, 1997

AthenaMuse 2.2 Documentation

Methods
on Good: return boolean

Returnstrueif the file is open and ready to be accessed. Thisreturnsfalseif the file was not
opened successfully, has been closed, or an error has occurred.

on Bad: return boolean
Returns true if the object does not contain a valid open file reference.
on Fail: return boolean

Returns true if the previous action was not successful. If this returns true then all operations
fail until Cl ear iscalled.

on Ready: return boolean

Returnstrueif an input or output operation (as appropriate for the type of fileinitially opened)
does not block.

on Eof: return boolean
Returns true if the file was opened in an input mode and the end of the file has been reached.
on SendBoolean: boolean val
on SendInteger: integer val
on SendReal: real val
on SendString: string val
on SendList: list val
on SendlInterval: interval val
on SendTime: time val
on SendAny: any val
Writes specified value to the stream. These methods also accessable via ADL << operator.
on ReceiveBoolean: return boolean
on Receivelnteger: return integer
on ReceiveReal: return real
on ReceiveString: return string
on ReceiveL.ist: return list
on Receivelnterval: return interval
on ReceiveTime: return time
on ReceiveAny: return any

Readsavalue of specified type from file. These methods al so accessable via ADL>>operator.

February 25, 1997 203

AthenaMuse 2.2 Documentation

on Oct /on Dec / on Hex

Sets output mode for numbers to the specified radix (octal, decimal, or hexadecimal, respec-
tively).

on Endl

Writes an end-of-line character to thefile.
on Flush

Flushes the output stream. This has no effect on read only files.
on Text

Setsthefile to text mode. In this mode, all datais converted to text before being written and
converted from text when read. If conversion cannot be performed (i.e., the following datain
thefileis not of the correct format for the type being read), the operation fails.

on Binary

Setsthe file to binary mode. In thismode, al datais output in binary form, and input is
assumed to be in binary form. Thisformat is not recommended, asit is not portable. Sending
and receiving lists and intervals in binary mode fails, as does ReceiveAny.

on Tagged

Setsthefile to tagged mode. In thismode, dataiswritten asin binary mode, but preceded by a
single byte tag which determines the format of the data. Strings are proceeded by an additional
length tag. Input data is assumed to be in tagged format. Any discrepancy between expected
and received datais reported as an error.

on Word

On subsequent string input, whitespace is used as delimiters, and non-whitespace character
sequences returned.

on Line

String output is followed by a platform dependent end of line sequence, and string input
returns all characters until the next end of line, and discard the end of line sequence.

on NoDelim

String input returns all available text as a single string.
on WordDelim: string delim

Sets the whitespace characters for Word mode to the charactersin delim.
on LineDelim: list delimsegs

Sets the end of line sequences for Line mode to the stringsin the list given. Thefirst string in
the list is used as the line terminator in Line mode. The list must contain only strings.

204 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
None
Activities
None
Example
None

6.4.4 10file

This class providesfile input and output. It may be in either native or portable mode, written as
t ext, bi nary, ort agged data.

Superclasses

Section 6.4.3, “IOstream - Abstract” page 202

Methods
upon OpenConstruct: string fName, string mode

Opensthefilef Name. All text written out is converted to a portable format (Unicode); binary
datais not changed. The mode argument must be one of 'ReadOnl y, 'ReadWi t e,
'WiteTrunc,and'Wit eAppend.

upon OpenNativeConstruct: string fName, string mode

Opensthe file fName. All text written out is in the machine's native encoding format. The
mode argument must be one of 'ReadOnly, 'ReadWrite, 'WriteTrunc, and "WriteAppend.

on Open: string fName, string mode
on OpenNative: string fName, string mode

Same as OpenConstruct and OpenNativeConstruct, except not constructors. To be used to
open adifferent file once theinitial one has been closed.

on Close
Flushes and closes the file. Any further reads or writes fail until another file is opened with
Open or OpenNative.

Attributes

None

Activities

None

February 25, 1997 205

AthenaMuse 2.2 Documentation

Example

1 anonynous : XFtop

2 {

3 IGFile file_stream

4 string |line;

5 upon Construct

6 {

7 {* OpenNative, “tenp.txt”, ‘ReadOnly } => file_stream
8 if (‘Good => file_stream

9 {

10 ‘Line => file_stream

11 while (! ‘Eof => file_stream)
12 {

13 line = ‘ReceiveString => file_stream
14 echo(line + “\n\n”);

15 }

16 ‘Close => file_stream

17

18 el se {echo(“Invalid File \n");

19 }

20 }

21} top;

6.4.5 10fileSpec

Thisisawrapped class for file name specification. Each AM2-supported platform specifies files
in adifferent way: the syntax for using pathnamesis different, or discouraged as on the Macintosh
platform. 1 OfileSpec isolates these problems in one class and, to some extent, provides automatic
conversion between different ways of specifying afile. Thereis no requirement that the specified
file actualy exist. 10fileSpec aso performs some operations on closed files, like DeleteFile.
Superclasses

None

Methods
upon CreateFileSpec: string fName
Constructor with afile name, or afull or partial path.
on DeleteFile: return integer
Deletes the specified file.
on FileEXxists: return boolean
Returns TRUE if afile of this name exists, FAL SE otherwise.
on GetName: return string

Returns the file name without a path.

206 February 25, 1997

AthenaMuse 2.2 Documentation

on GetNameLength: return integer

Returnsthe length of the name that is being used in the path specification. If apath isused, the
length of the path isincluded in the returned result. The result is not only platform-dependent,
but also depends on how the file was specified to the constructor.

on GetPath: return string

Returns the file name together with the path with which the file was specified. On platforms
that do not use pathnames internally, afull path nameis created for this function and returned.

Attributes

None

Activities

None

Example

1 anonynous : XFtop

2

3 handl e fil e_object;

4 string fil enane;

5 string path;

6

7 upon Construct

8 {

9 filenane = “tenp.txt”;

10

11 file_object = new { ‘CreateFileSpec, filenane } =>
12 | Ofi |l eSpec;

13

14 if (‘"FileExists => file_object)

15 {path = ‘GetPath => file_object;

16 echo(“This is the path: “ + path + “ \n\n"); }
17

18 el se

19 {echo(“Fil enane: “ + filenane + “ does not exist.\n\n"); }
20 }

21} top;

6.4.6 10pipe

This class represents an input stream from and an output stream to an external process. The inter-
face isthe same as that of the |Ofile class (described on page 205) except that there are no public
constructors and the Close method is as noted here.

February 25, 1997 207

AthenaMuse 2.2 Documentation

Superclasses
Section 6.4.3, “1Ostream - Abstract” page 202

Methods
On Close: return integer
Closes the pipe and waits for the external process to finish.

Note that this call can block indefinitely. Returns O if the process terminated normally, and a
machine dependent non-zero value otherwise.

Attributes
None
Activities
None
Example
None

6.4.7 10url

This class provides a Uniform Resource Locator (URL) object for parsing and constructing URL
strings formatted for the World-Wide Web.
Superclasses

None

Methods

upon Construct
Default constructor.

on ExtractAccessMethod: string url return string
Returns the access method in the url string. Example
access methods are http, ftp, etc.

on ExtractAnchorName: string url return string

Returns the anchor name in the url string. According to the URL format, the anchor name is
marked by "#" in aURL string.

208 February 25, 1997

AthenaMuse 2.2 Documentation

on IsAnchorReference: string url return boolean

Returns TRUE if this url string matches the format of arelative URL which references an
internal anchor within an HTML document. According to the current URL format, an anchor
reference URL begins with the "#" mark. This method does not verify the validity of the
anchor reference.

on MakeAbsolute: string partial_url, string base_url return string

Expands partial_url into its full form in the context of base url. Returns the expanded URL.
The internal anchor in partia_url is kept in the returned full form. However, the anchor in
base url isnot.

on Escape: string str return string
Returns the escaped str from unacceptable characters using%.
on UnEscape: string str return string
Returns the unescaped str which was previously escaped using%.
on ExtractHost: string url return string
Returns the hostname extracted from the url.
on ExtractPort: string url return integer

Returns the port number extracted from the URL. Returns -1 if no port was found. (Currently
this method returns -1 if adefault port was found in the URL).

on ExtractPath: string url return string

Returns the path string extracted from the url.

Attributes

None

Activities

None

Example

Given aUniform Resource Locator, IOURL provides methods to extract different componentsin
the URL string.

string url1;
string url 2;
string base_url;
string canon_url;
handl e hURL;
string str;

i nteger port;

©CoO~NOOOUTA,WNPE

upon Construct

February 25, 1997 209

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

210

AthenaMuse 2.2 Documentation

e e

/] Construct an | Curl
e e

hURL = new ‘ Construct => | Qurl;
e e
/[lchild_ url is a relative URL to be interpol ated

/1using the base_url

e e
url 1 = “cgi-bin/search?nane=Dol e depart nment =CE";
url2 = “ sipb/sipb. htm #Students “;

base url="http://ww. nit.edu/nt-activities.htm #Conputers “;

url2 = {"StripwiteSpace, url2 } => hURL;
= {'StripWwhiteSpace, base_url } => hURL;

base_ur

echo (“\nParti al
echo (“\nParti al
echo (“Base URL is

URL 1 is D" +urll + “\n");
URL 2 is D" +url2 + “\n");
+ base_url + “\n"); echo (“\n");

e e
/1 Gven a parent url, expand the partial url to an

/[absol ute url

using a base url.

e e

canon_url = {‘MakeAbsolute, urll, base_url} => hURL;
echo (“Expanded URL1 is : “ + canon_url + “\n");
canon_url = {'Escape, canon_url} => hURL;

echo (“Escaped URL1 is “ + canon_url + “\n");

\n");

canon_url = {‘'MakeAbsol ute, url2, base url} => hURL
echo (“Expanded URL2 is : “ + canon_url + “\n");
echo (“Expanded URL2 has the foll owi ng Conponents:
€Cho (M---mmmmm
e e

// Extract different conponents in the parent URL
e e

str = {'Extract AccessMet hod, canon_url} => hURL;
echo (“ACCESS METHOD: “ + str + “\n");

str = {'Extract Host, canon_url} => hURL;

echo (“HOSTNAME:
port = {‘ExtractPort, canon_url} => hURL;

echo (“PORT NUMBER: “); echo (port); echo (“\n");
str = {'ExtractPat h, canon_url} => hURL;

echo (“PATH OBJECT REFERENCE: “ + str + “\n");
str = {' Extract Anchor Nane, canon_url} => hURL;
echo (“ANCHOR *
echo (“Good-Bye.\n");

“Exit

=> t heApp;

“ 4+ str +u\nn);

+ str + “\n\n");

\n");

February 25, 1997

AthenaMuse 2.2 Documentation

6.4.8 I0Oweb - Abstract

This abstract class provides client-side World-Wide Web protocol support. It manages a network
connection to a Web server. Its subclasses include | Ohttp and 10ftp.

Superclasses

None

Methods
on Connect: string hostname, integer port

Establishes a connection with the server process on the specified host and port. You should
call thismethod only after you use the default Constructor. Y ou should call SendRequest to
send arequest.

on SendRequest: handle hRequest

Sends hReguest to the server. Y ou should use this method if you had previously used the
default Constructor and called Connect. "hRequest" must be a handle to an instance of an
| OwebRequest subclass.

on Request

Sends arequest to the server. It is assumed that the request info was previously specified in a
constructor such as ConstructFromURL or ConstructFromRequest.

on GetResponse: return integer

Waitsfor the server to return aresponse in blocking mode. It returns the server response status
code, or -1 on failure.

on GetEntity: return handle

If the response contains a data entity, this method returns a handle to an instance of a
subclass of 10webEntity. Otherwise, it returnsaNULL handle. It should be noted that
|OwebEntity mainly allows you to access the entity headers (i.e., metainformation about a
data entity). If an entity body is returned from the server, you should construct an instance of
an |Owebstream subclass from the |OwebEntity in order to read the data body.

on Close

Closes the connection with the server. Note: If you had constructed an |0OwebStream to
extract data from this connection, you must not close this |Oweb until you are done reading
from the data stream.

on GetURL.: return string

Returns the URL string associated with this Connection session. For HT TP connections, if
AutoRedirected is TRUE, this method returns the new URL used for this connection object.

on Good: return boolean
Returns TRUE if the connection is usable and that the last operation succeeded.

February 25, 1997 211

AthenaMuse 2.2 Documentation

on Fail: return boolean

Returns TRUE if the last operation failed. The connection may still be ok.
on Bad: return boolean

Returns TRUE if something iswrong and the connection is unusable.
on Disconnected: return boolean

Returns TRUE if the connection is not active.

Attributes
None
Activities
None
Example
None

6.4.9 10ftp

This class provides client-side FTP protocol support. It manages a network connection to an FTP
server. It isasubclass of 10web.

Superclasses

Section 6.4.8, “1Oweb - Abstract” page 211

Methods
upon Construct

Default constructor.Y ou must call Connect, SendRequest, and GetResponse later.
upon ConstructFromURL.: string url

Given a URL string, connects to the appropriate server. After this constructor, you can call
Reguest to send arequest to the server. It is assumed that the URL string contains sufficient
information to send arequest. The request defaultsto GET. If you wish to specify methods
other than GET in your request, use ConstructFromRequest.

upon ConstructFromRequest: handle hRequest

Given an HTTP request, connects to the appropriate server. After this constructor, you can
call Request to send arequest to the server. "hRequest” must be a handle to an instance of an
| OftpRequest or its subclass thereof.

on GetProtocolName: return string
Returnsthe string "FTP".

212 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes
None
Activities
None

Example
This program illustrates all FTP-related classes.

1 string url;

2 handl e connecti on;

3 handl e request;

4 handl e entity;

5 handl e stream

6 string data;

7 string content_type;

8 i nteger content_|Ien;

9 i nt eger response_st at us;

10 string response_reason;

11 upon Construct

12 {

13 url = “ftp://ceci.mt.edu/ pub/”;

14 e I
15 /] Construct an FTP request fromthe URL

16 e I
17 request = new {‘ Construct, url} => 10O tpRequest;
18 e I
19 /] Construct an |Oftp and connects to the server
20 e I
21 connection = new {‘ Construct FronRequest, request} => | Otp;
22 {* Check_Status, “connection”} => self;

23

24 {"Getlt, request} => self;

25 ‘Cl ose => connection;

26 echo (“Cl osed FTP connection and stream Good-Bye.\n");
27 “Exit => theApp;

28 }

29 on CGetlt : handle aRequest

30 {

31 e I
32 /1 Send the request

33 e I
34 echo (“Connected!! Sending request...\n");

35 { ‘SendRequest, aRequest} => connecti on;

36 {* Check_Status, “sent request”} => self;

37 e I
38 /1 Get the response

39 e I
40 echo (“Requst sent. Wiiting for Response...\n");
41 response_status = ‘' CetResponse => connecti on;

42 {* Check_Status, “get response”} => self;

February 25, 1997 213

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

214

AthenaMuse 2.2 Documentation

/] Get the Data Entity
e e

entity = ‘GetEntity => connection;

if (entity == NULL)

{ echo (“Sorry no data entity returned in the response.\n");
Exit => t heApp;

content _type = ‘Get Content Type => entity;

/] Caution: connection object nust be active for streamto work
stream = new {‘ Construct FronConnecti on, connection, entity } =>
| Oft pStream
if (‘Fail => stream

{

echo (“Error opening FTP stream\n”");

/11f we have plaintext, directory, or HTM., get the data.
e e
if (content_type == “text/plain” ||
content _type == “text/ftp-directory” ||
content _type == “text/htm ")
{ data = ““;
while (! ‘Eof => strean)
{ data = data + ‘ReceiveStringLine => stream+ “\n”; }
echo(“Received ftp Data is:\n”); echo(data); echo(“\n");
}
el se
{ echo (“lgnore + content _type +
“ type in this test program\n”);

}
}

‘Cl ose => stream
del ete stream
} //end of method Getlt

I R
/| Check_St at us
I e I
on Check_Status : string where
{
if (‘Fail => connection)
{ echo (“Sorry “ + where + “ failed. Good-Bye.\n");
‘Cl ose => connection;
del et e connecti on;
‘Exit => theApp;
}
}

February 25, 1997

AthenaMuse 2.2 Documentation

6.4.10 IOhttp

Thisclass provides client-side HTTP/1.0 protocol support. It manages a network connection to an
HTTP server. It isasubclass of 10web.

Superclasses

Section 6.4.8, “1Oweb - Abstract” page 211

Methods
upon Construct

Default constructor. Y ou must call Connect, SendRequest, and GetResponse | ater.
upon ConstructFromURL.: string url

Given a URL string, connects to the appropriate server. After this constructor, you can call
Request to send arequest to the server. It is assumed that the URL string contains sufficient
information to send arequest. The request defaultsto GET. If you wish to specify methods
other than GET in your request, use ConstructFromRequest.

upon ConstructFromRequest: handle hRequest
Given an HTTP request, connects to the appropriate server. After this constructor,
you can call Request to send arequest to the server. “hRequest” must be a handle
to an instance of an |OhttpRequest or its subclass thereof.
on AutoRedirected: return boolean
TRUE if we have been automatically redirected to another URL.
on ResponseReason: return string

Returns the response reason returned from the server. The reason string usually explains
why an HTTP request was not fulfilled by the server.

on GetProtocolName: return string
Returnsthe string "HTTP".

Attributes

None

Activities

None

February 25, 1997 215

AthenaMuse 2.2 Documentation

Example

This programillustrates all HITP-rel ated cl asses.

1 string url;

2 handl e connecti on;

3 handl e request;

4 handl e entity;

5 handl e stream

6 string data;

7 string content_type;

8 i nteger content_I|en

9 i nt eger response_st at us;

10 string response_reason

11 I e
12 /] Construct or

13 I e
14 upon Construct

15

16 //substitute this URL to your favorite http url for testing.
17 url = “http://abelard.nt.edu/”;

18

19 e I
20 /] Construct an HTTP request fromthe URL

21 e I
22 request = new {‘ Construct, url} => |ChttpRequest;
23

24 /1 The default nethod is GET, but you can set the
25 //method to sonething else, e.g. HEAD, by doing this:
26 /1{"Set Met hod, “HEAD'} => request;

27

28 //Let’s see what our request line |ooks l|ike..

29 echo (“Full HTTP Request line is \n");

30 echo (‘' RequestlLine => request);

31

32 e I
33 /] Construct an | Chttp and connects to the server
34 e I
35 connection = new {‘ Construct FronRequest, request} => | Chttp;
36

37 /Il Check if we have successfully connected

38 {* Check_Status, “connection”} => self;

39

40 e I
41 /1 Send the request

42 e I
43 echo (“Connected!! Sending request...\n");

44 ‘ Request => connecti on;

45

46 [/ Check if request has been sent successfully

47 {* Check_Status, “sent request”} => self;

48

49 e I
50 /1 Get the response

216 February 25, 1997

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

AthenaMuse 2.2 Documentation

e I
echo (“Requst sent. Wiiting for Response...\n");
response_status = ‘ GetResponse => connecti on;

{' Check_Status, “get response”} => self;

response_reason = ‘ResponseReason => connecti on;
echo (“Response Status Code: “ + response_status + “ \n");
echo (“Response Reason: “ + response_reason + “ \n");

/] Get the Data Entity
e e
/11f we got a response, get the Data Entity
entity = ‘GetEntity => connection;

/1it's possible that the response does not contain any entity
if (entity == NULL)

{ echo (“Sorry no data entity returned in the response. \n");
‘Exit => theApp;

/1 CGet sone netainformation on this data entity
content _type = ‘Get Content Type => entity;
content _len = ‘GetContentlLen => entity;

echo (“Content Type: “ + content_type + “ \n");

echo (“Content Length: “); echo (content_len); echo (“\n");

if (! (*HasBody => entity))

{ echo (“Sorry, no data body included in the response.\n");
‘Cl ose => connection;
‘Exit => theApp;

/] Caution: connection object nust be active for streamto work
stream = new {‘ Construct FronConnecti on, connection, entity }
=> | Ohtt pStream

if (‘Fail => stream

{
echo (“Error opening HTTP stream\n”);
}
el se
e e
/[11f we have plaintext or HTM,, get the data.
e
if (content_type == “text/plain” ||
content _type == “text/htm™”)
{ data = ““;

February 25, 1997 217

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

6.4

AthenaMuse 2.2 Documentation

while (! ‘Eof => strean)
{

data = data + ‘ReceiveStringLine => stream+ “\n";

if (‘Eof => stream
{ echo (“end of stream\n”); break; }

}

echo(“Received HTTP Data is:\n"); echo(data); echo(“\n");

else //ignore any other types of data in this test program

{

echo (“lgnore data of “ + content_type +

‘ type in this test program\n”);
}
}

‘Cl ose => stream
‘Cl ose => connecti on;

echo (“C osed HTTP connection and stream Good-Bye.\n");
‘Exit => theApp;

}
e i
/| Check_St at us
e i
on Check_Status : string where

{

if (‘Fail => connection)
{ echo (“Sorry “ + where + “ failed. Good-Bye.\n");
‘Cl ose => connecti on;
‘Exit => theApp;
}
}

.11 I0webRequest - Abstract

This abstract class represents a client-side request to a World-Wide Web server. Its subclasses

incl

ude 10httpRequest and 10ftpRequest.

Superclasses

None

Methods

on SetMethod: string method

Use this method to specify the request operation. For HT TP request, the methods
may be GET, POST, or HEAD. For FTP, the only supported operation in this release
is GET, which is the default. No validity checking of the method is performed.

If not set, the default method is GET.

218 February 25, 1997

AthenaMuse 2.2 Documentation

on GetMethod: return string
Returns the name of the request method contained in this request structure.

on SetEntity: handle hEntity
Use this method to specify the data Entity you wish to send to the server as
part of the request. Thisis necessary for HT TP method such as POST -- mostly
used for sending HTML fill-out form content to the server. "hEntity" should
be a handle to an instance of an | OwebEntity subclass.

on GetURL.: return string
Returns the URL string used to construct this request object.

on GetHost: return string

Returns the hostname as specified in this request structure. The hostname is

usually extracted from the URL string from which this request was constructed.

on GetPort: return integer
Returns the port number specified in this request structure. The port number is
usually extracted from the URL string of this request. If no port number
is specified in the URL, a default port number (80 for HTTP) is used.

Attributes

None

Activities

None

Example

None

6.4.12 IOftpRequest

Represents an FTP request structure to an FTP server. This classis a subclass of |0webRequest.

Superclasses
Section 6.4.11, “l1OwebRequest - Abstract” page 218

February 25, 1997

219

AthenaMuse 2.2 Documentation

Methods
upon Construct: string url

Default constructor which constructs an FTP request using the specified URL.

Attributes

None

Activities

None

Example

For a sample program using this |OftpRequest see “10ftp” on page 212.

6.4.13 IOhttpRequest

Represents an HTTP/1.0 request structure. This class allows you to construct an HT TP request
based on aURL string. In particular, it allows you to specify various HT TP request header fields.
A request header isnot sent if its value is not set. This classis a subclass of |OwebRequest.

Note: If you want to send an HTTP POST request, you should construct an instance of this class,
and set the method to POST. Y ou should also construct an |OhttpEntity which contains the POST
data, and then use SetEntity method in this classto enclose the Entity as part of the POST request.
Superclasses

Section 6.4.11, “l1OwebRequest - Abstract” page 218

Methods
upon Construct: string url

Default constructor which constructs an HTTP request using the specified URL.
on SetUserAgent: string agentName

Use this method to specify the user agent originating the request. The default value for this
field is"Experimental-HTTP-Client". Please refer to HTTP/1.0 specification for detail.

on GetUserAgent: return string
Returns the value of the User Agent header field.
on SetFrom: string fromAddress

Sets the From header field which contains an Internet email address of the user who controls
the requesting user agent. Please refer to HTTP/1.0 specification for detail.

220 February 25, 1997

AthenaMuse 2.2 Documentation

on GetFrom: return string
Returns the value of the From field.
on RequestLine: return string

Returns the full request linein HTTP/1.0 format. This method is mainly for debugging
purposes and is subject to changes by final release.

on RequestHeaders: return string

Returns the formatted request header fields (not including the Entity headersin HTTF/1.0
format. Thismethod is mainly for debugging purposes and is subject to changes.

Attributes

None

Activities

None

Example

For an example using | OhttpRequest see “10http” on page 215.

6.4.14 IOwebEntity - Abstract

Represents a World-Wide Web data entity. An |OwebEntity can be enclosed within a Web
request as part of the request data. It can also be part of a Web response data returned from the
server. Its subclasses include 1 OhttpEntity and 1OftpEntity.

Superclasses

None

Methods
on SetContentType: string type

Use this method to specify the content type of this entity. This method is only meaningful if
thisentity isto be included as part of a\Web request. The content type string should follow the
MIME content type format, e.g., text/plaintext, text/html, and image/gif, and so forth. Note:
For POST HTML form data, the content type is usually set to application/x-www-form-urlen-
coded.

on GetContentType: return string

Returns the content type of this entity.

Attributes

None

February 25, 1997 221

AthenaMuse 2.2 Documentation

Activities

None

Example

None

6.4.15 IOftpEntity

Represents an FTP data entity. Currently, an |OftpEntity can only be part of the response data
from the server. It cannot be part of arequest structure, since we do not yet support "put” for FTP.
This classis a subclass of |OwebEntity.

Superclasses

Section 6.4.14, “I1OwebEntity - Abstract” page 221

Methods
upon Construct

Default constructor.

Attributes

None

Activities

None

Example

For a sample program using the | OftpEntity class, see “10ftp” on page 212.

6.4.16 IOhttpEntity

Representsan HT TP dataentity. An entity consists of entity headers (metainformation) and entity
body (content). An HTTP entity may be enclosed within an HTTP request or an HTTP response
message. If the entity isto be part of an HTTP request, you can set both the entity headers and
data content. If the entity is part of an HTTP response from a network connection, this class
allows you to get the entity headers, but not the entity body. Y ou must construct an | OhttpStream
from this entity in order to retrieve data from the network connection. This classis a subclass of
|OwebEntity.

Superclasses
Section 6.4.14, “I1OwebEntity - Abstract” page 221

222 February 25, 1997

AthenaMuse 2.2 Documentation

Methods
upon Construct
Default constructor.
on GetContentLen: return integer
Returns the content length of this Entity.
on SetContentString: string content

Use this method to specify the data content of this Entity. This method is only meaningful if
this Entity isto be included as part of an HTTP request. Use |Ourl Escape method to encode
your data. This method is considered experimental, and is subject to changes by the final
release.

on HasBody: return boolean
Returns TRUE if this Entity has an Entity Body; otherwise, FALSE. (Use this method to
check whether you should construct an OhttpStream to access the Entity Body.)
Attributes

None

Activities

None

Example

For a sample program using | OhttpEntity, see “l1Ohttp” on page 215 .

6.4.17 I0webStream - Abstract

This abstract class represents an input data stream from a World-Wide Web connection. Its sub-
classes include 10httpStream and | OftpStream. Normally a Web stream contains media-specific
data, and should be given to an appropriate media element to load the data. However, it isalso
possible to use the various receive methods below to get the data directly at the ADL level. (Note:
these receive methods are experimental and are subject to changes.)

Superclasses

None

February 25, 1997 223

AthenaMuse 2.2 Documentation

Methods
on OpenFromURL.: string url

Given aURL, establishes aconnection, sends arequest, and gets aresponse from the server.
The default request to the server isto "get" or "retrieve”" the document referenced by the URL.

on OpenFromRequest: handle hRequest

The action of this method is equivaent to OpenFromURL, except that you can specify amore
complicated request structure via"hRequest". For example, inthe case of an HTTP request, it
ispossible to set the HTTP method to POST or HEAD in hRequest. "hRequest” must be a
handle to an instance of an |OwebRequest subclass.

on OpenFromConnection: handle hConnection, handle hEntity

This method is used when you had previously established a connection and obtained avalid
response from a server using an instance of IOweb subclass. "hConnection” must be ahandle
to an instance of an 10Oweb subclass. "hEntity" must be a handle to an |OwebEntity subclass.

on GetURL.: return string

Returns the URL string associated with this data stream. If URL redirection was performed
(HTTP only), this method returns the final URL used to retrieve the data at hand.

on Close
Closes this http data stream.
on Good: return boolean
Returns TRUE if the stream is usable and that the last operation on the stream succeeded.
on Fail: return boolean
Returns TRUE if the last operation on the stream failed. The stream may still be usable.
on Bad: return boolean
Returns TRUE if the stream is unusable.
on Eof: return boolean
Returns TRUE if end-of-file flag is set on the stream.
on ReceiveBoolean: return boolean
on Receivelnteger: return integer
on ReceiveReal: return real
on ReceiveStringLine: return string
on ReceiveStringWord: return string
on ReceiveL.ist: return list

on ReceiveAny: return any

224 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

None

Activities

None

Example

None

6.4.18 IOftpStream

This class represents an input data stream from an FTP connection. It is a subclass of
|OwebStream.

Superclasses

Section 6.4.17, “10OwebStream - Abstract” page 223

Methods
upon Construct

Default constructor. Constructs an | OftpStream without opening the stream. Y ou must call
OpenFromURL, OpenFromRequest, or OpenFromEntity to open the stream.

upon ConstructFromURL.: string url

Given aURL string, constructs and opens an FTP data stream. This constructor is equivalent
to calling Construct and then OpenFromURL.

upon ConstructFromRequest: handle hRequest

Given ahandle to an FTP request, constructs and open an FTP data stream. This constructor
isequivaent to calling Construct and then OpenFromRequest.hRequest must be a handle to
| OftpRequest or its subclass thereof.

upon ConstructFromConnection: handle hConnection, handle hEntity

Given ahandle to an FTP connection and an FTP Entity, constructs an FTP data stream to
access the body of the Entity from the connection. This constructor is equivaent to calling
Construct and then OpenFromConnection. "hConnection™ must be a handle to an instance of
an 10ftp or its subclass thereof. "hEntity" must be a handle to an instance of an | OftpEntity or
its subclass thereof.

on GetContentType: return string

Returns the media type of the FTP data Entity contained in this stream. If the data at hand
contains directory information, the content type is text/ftp-directory. This method is experi-
mental and is subject to changes.

February 25, 1997 225

AthenaMuse 2.2 Documentation

on ReceiveDirectory: return list

This method reads and parses the directory information contained in the FTP stream. | returns
the parsed directory listing asalist. The returned list consists of sublists, each of which repre-
sents an entry/item in directory listing. Each sublist contains the following components:

(1) astring to indicate the item type, which can be "dir", "link", or "file";

(2) astring to indicate item or file name; and (3) an integer to indicate item or file size.

Attributes

None

Activities

None

Example

1 string url;

2 handl e stream

3 string data;

4 string content_type;

5 i nteger content_|Ien;

6

7 upon Construct

8 {

9 //substitute this url to your favorite ftp url for testing
10 url = “ftp://ceci.mt.edu/ pub/”;

11 e e LR
12 /] Construct an FTP stream wi thout opening it

13 e e LR
14 stream = new ‘ Construct => | OFtpStream

15

16 e e LR
17 /1 Open the streamby giving it a URL. OpenFronmJRL will connect
18 //to the server, sends a request to, and gets a response back.
19 e e LR
20 {" OpenFronmJRL, url} => stream

21

22 e e LR
23 /] Check the status.

24 e e LR
25 if (‘Fail => stream

26 {

27 echo (“Failed in opening FTP stream\n");

28 ‘Exit => theApp;

29 }

30 content _type = ‘ CGetContent Type => stream

31

32 e e

33 /1if we have a plaintext or htm, use

34 /] ReceiveStringLine to get the data...

226 February 25, 1997

AthenaMuse 2.2 Documentation

35 e R T

36 if (content_type == “text/plain” ||

37 content _type == “text/ftp-directory” ||

38 content _type == “text/htm ")

39 { data ="*;

40 while (! ‘Eof => strean)

41 { data = data + ‘ReceiveStringLine => stream+ “\n"; }
42 echo (“Received FTP Data is:\n”); echo (data); echo (“ \n");
43 }

44 ‘Cl ose => stream

45 echo (“Closed FTP stream Good-Bye.\n");

46 ‘Exit => theApp;

47 }

6.4.19 IOhttpStream

This class represents an input data stream from an HT TP connection. It is a subclass of
|OwebStream.

Superclasses

Section 6.4.17, “10OwebStream - Abstract” page 223

Methods
upon Construct

Default constructor. Constructs an | OhttpStream without opening the stream. Y ou must call
OpenFromURL, OpenFromRequest, or OpenFromEntity to open the stream.

upon ConstructFromURL.: string url

Given aURL string, constructs and opens an HTTP data stream. This constructor is
equivaent to calling Construct and then OpenFromURL.

upon ConstructFromRequest: handle hRequest

Given ahandleto an HTTP request, constructs and open an HT TP data stream. This construc-
tor is equivalent to calling Construct and then OpenFromRequest. hRequest must be a handle
to |OhttpRequest or its subclass thereof.

upon ConstructFromConnection: handle hConnection, handle hEntity

Given ahandleto an HTTP connection and an HTTP Entity, constructs an HTTP data stream
to access the body of the Entity from the connection. This constructor is equivalent to calling
Construct and then OpenFromConnection. "hConnection™ must be a handle to an instance of
an 10http or its subclass thereof. "hEntity" must be a handle to an instance of an |OhttpEntity
or its subclass thereof.

on GetContentType: return string
Returns the mediatype of the HTTP data Entity contained in this stream.

February 25, 1997 227

AthenaMuse 2.2 Documentation

on GetContentLen: return integer

Returns the expected size of the Entity (or data) body contained in this stream. The return
result of this method should be used with caution, as not all HTTP data streams have the
content length field set. A return result of zero should be interpreted as either that the stream
Is unavailable or that the content length field is not specified.

Attributes

None

Activities

None

Example

1 string url;

2 handl e stream

3 string data;

4 string content_type;

5 i nteger content_|Ien;

6

7 upon Construct

8 {

9 //substitute this url to your favorite http url for testing
10 url = “http://abelard.nmt.edu/”;

11

12 I e
13 /] Construct an HTTP stream wi t hout opening it

14 I e
15 stream = new ‘ Construct => | ChttpStream

16

17 I e
18 /1 Open the streamby giving it a URL. OpenFronJRL will connect
19 //to the server, sends a request to, and gets a response fromit.
20 I e
21 {" OpenFronmJRL, url} => stream

22

23 I e
24 /] Check the status. For HTTP streams, it is a failure if there is
25 //no data entity body in the response fromthe server.

26 I e
27 if (‘Fail => stream

28 {

29 echo (“Failed in opening HTTP stream\n”");

30 ‘Exit => theApp;

31 }

32 e e

33 /1 Check the content type and content |ength

34 /1of the data entity in this stream

35 e e

36 content _len = ‘GetContentlLen => stream

228 February 25, 1997

AthenaMuse 2.2 Documentation

37 content _type = ‘ Get Content Type => stream

38

39 echo (“Content-Type : “ + content_type + “\n”);

40 echo (“Content-Len : “); echo (content_len); echo (“ \n");
41 e

42 /1if we have a plaintext or htm, use

43 /] ReceiveStringLine to get the data...

44 e

45 if (content_type == “text/plain” ||

46 content _type == “text/htm ")

47 { data = *"";

48 while (! ‘Eof => strean)

49 {

50 data = data + ‘ReceiveStringLine => stream + “\n”;
51 if (‘Eof => stream

52 { echo (“end of stream\n"); }

53 }

54 echo(“Received HTTP Data is:\n"); echo(data); echo(“\n");
55 }

56 ‘Cl ose => stream

57 echo (“Closed HTTP stream Good-Bye.\n");

58 ‘Exit => theApp;

6.4.20 XNstream

This classis a network input/output stream object with XDR data representation.

Superclasses

None

Methods
upon Construct
Default constructor.
upon ListenConstruct: integer port
Waits for connection on specified port.
upon ConnectConstruct: string host, integer port
Attempts to make a connection to the specified port on the specified host.
on Listen: integer port
on Connect: integer port, string host
Same as ListenConstruct and ConnectConstruct, but not constructors.
on SendBoolean: boolean val
on SendInteger: integer val

on SendReal: real val

February 25, 1997 229

AthenaMuse 2.2 Documentation

on SendString: string val
on SendList: list val
on SendAny: any val
Writes the specified value to the network connection.
on ReceiveBoolean: return boolean
on Receivelnteger: return integer
on ReceiveReal: return real
on ReceiveString: return string
on ReceiveL.ist: return list
on ReceiveAny: return any
Reads a value of the specified type from the network connection.
on Close
Closes connection.
on Good

Returns a status of stream. If TRUE, stream is healthy and connection is alive.

Attributes

None
Activities
None

Example 1

This program demonstrates receiving alist from a network stream. The applications ends when
the list has been received.

1 uses “nro.adl " @StdLi b";

2 cl ass Message : ActivityManager

3 {

4 i nteger port Numnber;

5 vanillaNro {‘Create, ‘ConnectReady, self, ‘GetMessage, FALSE} =>
6 connect Nr o;

7 /1* used to notify object when message arrives

8 handl e hNet Not i fy;

9 handl e hMessageStream /* used to send and receive nessages */
10 list Activitylnfo = {{'Recei veMessage, {“message”}}};

11

12 upon Construct: integer port

13 {

14 port Nunmber = port;

230 February 25, 1997

AthenaMuse 2.2 Documentation

15 hNet Noti fy = new {‘' CreateFronPort, portNunber} => | OnwNotify;
16 {* Subscri be, &connectNro} => hNetNotify;

17 }

18

19 on Get Message: bool ean cd

20 {

21 any nessage;

22 hMessageStream = * Accept XN => hNet Not i fy;

23 {* Unsubscri be, &connectNro} => hNet Notify;

24 del ete hNet Noti fy;

25 nmessage = ‘ Recei veAny => hMessageStream

26 ‘Cl ose => hMessageStream

27 del et e hMessageStream

28 hNet Noti fy = new {‘' CreateFronPort, portNunber} => | OnwNotify;
29 {* Subscri be, &connectNro} => hNetNotify;

30 {*TriggerNotification, ‘ReceiveMessage, {nessage}}=> self;
31 }

32

33 on Destroy

34 {

35 {* Unsubscri be, &connectNro} => hNet Notify;

36 del ete hNet Noti fy;

37 }

38 };

39

40 upon Construct

41 {

42 i nteger portnum = 8900;

43 Message {‘ Construct, portnun} => nyMessage;

44 nro{‘ Create, ‘'ReceiveMessage, self, ‘GetMessage, TRUE}=> nessNro;
45 {* Subscribe, &nmessNro} => myMessage;

46 {' Get Message, TRUE} => nyMessage;

47 '}

48 on Get Message: any cd, list names, list vals

49 {

50 echo (vals);}

Example 2

This program demonstrates sending alist over a network stream.

1 uses “nro.adl " @StdLi b”;

2

3 cl ass Message : ActivityManager

4 {

5 i nteger port Numnber;

6 vanillaNro {‘'Create, ‘ConnectReady, self, ‘GetMessage, FALSE} =>
7 connect Nr o;

8 /1 used to notify object when nessage arrives

9 handl e hNet Not i fy;

10 // used to send and receive nessages

11 handl e hiMessageSt r eam

12 list Activitylnfo = {{'Recei veMessage, {“message”}}};
13

February 25, 1997 231

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

b

AthenaMuse 2.2 Documentation

upon Construct: integer port

{
port Number = port;
hNet Noti fy = new {‘' Creat eFronPort, portNunber} => | OnwNotify;
{* Subscribe, &connectNro} => hNetNotify;

}

on SendMessage: any nessage, string host, integer port
{
{* Unsubscri be, &connectNro} => hNet Notify;
del ete hNet Noti fy;
hMessageStream = new {‘ Connect Construct, host, port}
=> XNstream
{* SendAny, nessage} => hMessageStream
del et e hMessageStream
hNet Noti fy = new {‘' CreateFronPort, portNunber} => | OnwNotify;
{* Subscribe, &connectNro} => hNetNotify;

}

on Destroy

{
{* Unsubscri be, &connectNro} => hNet Notify;
del ete hNet Noti fy;

}

upon Construct

{

/* Define the port nunber & host where receiving end is running */

232

i nteger portnum = 8900;
string tohost = “anyhost. your. domai n”;
string negstring = “Hello froma renote AthenaMise”;

Message {‘ Construct, portnun} => nyMessage;

nro{‘ Create, ‘ReceiveMessage, self, *‘GetFronPeer, FALSE}
=>messNr o;

{* Subscribe, &nmessNro} => nyMessage;

{* SendMessage, msgstring, tohost, portnum} => myMessage;}

February 25, 1997

AthenaMuse 2.2 Documentation

6.5 External Processes

The External Processes (XT) wrapped classes are designed to allow the user of ADL to have
access to other computational processes outside of AM2. This function can even alow AM2 to
spawn other applications and send them input and output. Documentation for the following
classes appear in this section:

e Section 6.5.1, “XTcommand” page 233

* Section 6.5.2, “XTprocFilter (only on UNIX)” page 235

e Section 6.5.3, “XTprocSink (only on UNIX)” page 235

* Section 6.5.4, “XTprocSource (only on UNIX)” page 236

Note that the class inheritance tree diagram for the External Commands (XT) wrapped classesis
flat, meaning that that these classes do not have superclasses, thus no inheritance diagram is pro-
vided here.

6.5.1 XTcommand

This class implements the execution of an external command in afashion similar to the UNIX
“system” routine.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods
upon Create: list cmd

Executes the command specified in the argument cmd. This constructor blocks on the execu-
tion of the external command. The list cmd must be alist of strings with at least one element.
The first string on the list represents the command name, and the following elements, if
present, represent command line arguments. The interpretation of the command list is plat-
form dependent and is normally |eft to the standard platform execution environment. Under
UNIX, thiswould be the user’ s shell.

upon CreateNoBlock: list cmd

Executes the command specified in the argument cmd asynchronously. Under UNIX, this cor-
responds to executing the command “in the background”. This constructor does not block on
the execution of the external command. The argument must be formatted as in the Create
method.

February 25, 1997 233

AthenaMuse 2.2 Documentation

on Abort

Kills an external command initiated with the * CreateNoBlock constructor. This method exe-
cutesin a platform dependent manner, and it does not guarantee smooth termination or
cleanup of the externa command. The spawned external command should normally be termi-
nated through their own interface.

on Done: return boolean
Returns TRUE if the external command has terminated and FAL SE otherwise.
on GetStatus: return integer

The returned value is a status variabl e indicating the success or failure of the external com-
mand. The value 0 indicates successful execution on al platforms; non-zero values are plat-
form dependent error codes. If an UNSET value is returned, then the external command has
not terminated, i.e., in the cases in which the * Done message would return FALSE.

Attributes

None

Activities

None

Example

1 /* Demponstrates the use of XTcommand to run external prograns */
2 anonynous: XFt op

3 {

4 XFbutton but1

5 { x=20; y=100; wi dth=400; hei ght=40;

6 | abel =" Create Non Bl ocki ng External Process";
7 i

8 XFbutton but2

9 { x=20; y=200; wi dth=400; hei ght=40;

10 | abel =" Creat e Bl ocki ng External Process"”;

11 b

12 upon Construct

13 { w dt h=440; hei ght =350;

14 but 1. Pressed = {' but 1Pressed, self};

15 but 2. Pressed = {' but 2Pressed, self};

16 }

17 on but 1Pressed

18 { /*This creates a Tel net Session on W ndows*/
19 new {' CreateNoBl ock, {"telnet"}} => XTconmand;
20 }

21 on but 2Pressed

22 { /*This creates a Tel net Session on W ndows*/
23 new {' Create, {"telnet"}} => XTcomand;

24 }

25 }top;

234 February 25, 1997

AthenaMuse 2.2 Documentation

6.5.2 XTprocFilter (only on UNIX)

This class implements the execution of an external command that functions as a co-processto the
ADL script creating the X TprocFilter. That is, it both reads a stream generated by the calling ADL
script and generates an output stream read by the script.

Superclasses

None

Methods
upon Create: list cmd

Executes the command specified by cmd in such away that the input to and output from the
command istied to aread-write | Opipe whose handle is stored in the member hPipe.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by closing the 1 Opipe pointed to by
hPipe.

on GetStatus: return integer

The returned value is a status variabl e indicating the success or failure of the external com-
mand. The value O indicates successful execution on all platforms; positive non-zero values
are platform dependent error codes. ‘ GetStatus returns UNSET if one of the |Opipesto or
from the external processisstill open. Thisreturn value except in the UNSET case isidentical
to the value returned by ‘ Close => hPipe once the pipe has closed.

Attributes

None

Activities

Activity Keys Description

hPipe handle handle to the | Opipe object opened when the X TprocFilter was cre-
ated

Figure 6.50: XTprockFilter Activities

Example

None

6.5.3 XTprocSink (only on UNIX)

This class implements the execution of an external command that reads a stream generated by the
calling ADL script. It thus resembles the UNIX popen routine in “w” rite mode.

February 25, 1997 235

AthenaMuse 2.2 Documentation

Superclasses

None

Methods
upon Create: list cmd

Executes the command specified by cmd in such away that the input to the command is tied
to awritable | Opipe whose handle is stored in the member hTo.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by closing the 10pipe pointed to by hTo.

on GetStatus: return integer

The returned value is a status variabl e indicating the success or failure of the external com-
mand. The value 0O indicates successful execution on all platforms; non-zero values are plat-
form dependent error codes. ‘ GetStatus returns UNSET if the 10pipe to the external processis
still open. Thisreturn value except in the UNSET caseisidentical to that returned by ‘ Close
=> hTo if the pipe has already been closed.

Attributes

None
Activities

Activity Keys Description

hTo handle handle to the | Opipe object opened when the X TprocSink was cre-

ated
Figure 6.51: XTprocSink Attributes

Example
1 /1 Decode a rot-13 nessage using tr, a standard UNIX utility
2 XTprocSink { ‘Create, { “tr”, “a-zA-Z", “n-za-nN-ZA-M 1} }
3 => nmyQutFilter;
4 i nteger status;
5 nmyQutFilter.hTo << “Zrffntr va n obggyr” << Endl;
6 status = ‘Cose => nyQutFilter. hTo;

6.5.4 XTprocSource (only on UNIX)

This class implements the execution of an external command that generates an output stream read
by the calling ADL script. It thus resembles the UNIX popen routine in “r” ead mode.

Superclasses

None

236 February 25, 1997

AthenaMuse 2.2 Documentation

Methods
upon Create: list cmd

Executes the command specified by cmd in such away that the output from the command is
tied to a readable | Opipe whose handle is stored in the member hFrom.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by the external processitself and should
be sensed by detecting an EOF on the pipe associated with hFrom.

on GetStatus: return integer

The returned value is a status variabl e indicating the success or failure of the external com-
mand. The value O indicates successful execution on all platforms; non-zero values are plat-
form dependent error codes. ‘ GetStatus returns UNSET if the 10pipe from the external
processis still open. Thisreturn value except in the UNSET caseisidentical to the value
returned by ‘ Close => hFrom once the pipe has closed.

Attributes
None
Activities

Activity Keys Description

hFrom handle handle to the 10pipe object opened when the X TprocSource was cre-

ated
Figure 6.52: XTprocSource Attributes

Example
None

February 25, 1997 237

AthenaMuse 2.2 Documentation

238 February 25, 1997

AthenaMuse 2.2 Documentation

6.6 Database

The Database (DB) wrapped classes provide multi-database support for object-oriented multime-
dia. The addition of database functionality allows the application author to decouple the applica-
tion code from the application data, allowing the easy update of data and reuse of code. It also
allows the application to provide easy access to many existing data repositories. Therefore, it is
very important that an application provide easy access to many existing datarepositories. It isalso
important that an application be able to interact, perhaps simultaneously, with awide variety of
existing database systems. The advantages of providing a generic database interface for use by the
application author are twofold. The same application code can be used to access multiple database
systems and there is no need for the author to spend time learning several different database
access interfaces. AM2 DBclasses support the following database packages:

* UNIX - Oracle, OS2, PostGress, UniSQL and MSQL which isfreeware and makesit possible
to incorporate small databases without UniSQL.

* NT - Oracle, Dbase, FoxPro, MS Access and any other relational database with ODBC sup-
port. ODBC drivers are required for running AM2 on NT.

Documentation for the following classes appear in this section:

» Section 6.6.1, “DBdatabase” page 240

e Section 6.6.2, “DBclass” page 243

» Section 6.6.3, “DBobject” page 244

» Section 6.6.4, “DBset” page 245

» Section 6.6.5, “DBcursor” page 246

» Section 6.6.6, “DBquery” page 247

» Section 6.6.7, “DBbinary” page 249

» Section 6.6.8, “DBmedia” page 250

» Section 6.6.9, “DBimage” page 251

» Section 6.6.10, “DBdate” page 251

» Section 6.6.11, “DBtime” page 252

* Section 6.6.12, “DBtimestamp” page 253
» Section 6.6.13, “DBmonetary” page 254

Note that the class inheritance tree diagram for the Database (DB) wrapped classesisrelatively
flat, meaning that these classes share very few inheritance relationships, thus no inheritance dia-
gram is provided here.

February 25, 1997 239

AthenaMuse 2.2 Documentation

6.6.1 DBdatabase

Thisisthe principle class and represents a connection to a component database. Methods are
available on the class to perform schema identification and modification, to control query execu-
tion, transaction management and to store application objects in the component database.

Superclasses
Section 6.1.2, “Activity Manager - Abstract” page 116
Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods
on AddAttribute: string className, string attrName, string attr return boolean

Adds an attribute attrName of type attrType to the class className. In arelationa database
thisis equivalent to adding afield to atable. Returns TRUE if the attribute is added to the
class, otherwise FALSE.

on Commit

Sends a commit transaction message to the database which saves all changes made to the data-
base since the last commit and automatically begins a new transaction. Commit must be called
before a DBdatabase instance is destroyed if changes are to be saved. Only appliesto those
database systems that support transactions.

on CreateAppObj: string className, list arguments return handle

This method returns a handle to an application object of type className constructed on the
heap. The method is used to create instances of classes retrieved from the database. For exam-
ple, it can retrieve arow from a database table or the results from a query. The number and
type of the values in arguments determines which constructors are used. If there are no argu-
ments, the default constructor is used.

on CreateClass: string className, list attributes return boolean

Causes the creation of anew class called className in the schema database. The list attributes
containsalist of lists. Each of these sublistsis made up of two strings. The first item specifies
the attribute name and the second item specifies the attribute type. Returns TRUE if the class
iscreated, FALSE if creation fails.

on CreateODbj: string className, list attributes, list data return handle

Creates an instance of the class className in the database and returns a handle to the newly
created database object. The returned handle will be a handle to an object of class DBobject.
Thelist attributes contains alist of attribute names for which initial data values will be speci-
fied and the data contains the corresponding data values in the order specified in the list of
attribute names.

240 February 25, 1997

AthenaMuse 2.2 Documentation

on CreateSubClass: string className, list superClasses, list attributes return boolean

Similar to CreateClass, but allows the specification of alist of superclasses, which contains
thelist of class names from which the newly created class should inherit. The list may contain
no class names. Thelist of attributes contains additional attribute names for which data values
will be entered. Returns true upon successful creation of the subclass classname, and false
otherwise.

on DeleteClass: string className return boolean

Removes the definition of the class named className from the database schema. Returns
TRUE if successful, otherwise FALSE. Also necessarily removes al objects of this class.

on Execute: handle hQuery return handle

Executes the query specified by hQuery, a handle to an object of type DBquery. The query
specification is pre-processed appropriately for the component database type before the query
isexecuted. A handle to a DBcursor object is retuned from which the results may be retrieved.

on ExecuteStr: string query return handle

The string query is send directly to the database for execution. No pre-processing of the query
iscarried out. A handle to aDBcursor object is returned.

on GetAllClasses: return list
returns alist of the names of all the classes/tables in the component database
on GetBaseClasses: return list

Returns alist of the names of al the base classes (classes that have no superclasses) that are
defined in the database schema.

on GetPersistentRoot: string rootName return handle

Returns a handle to the database object pointed to by the persistent root named rootName, or
NULL if theroot does not exist in the database. The handle isto an object of class DBobject.

on GetPersistenRoots: return list

Returns alist of the names of al the persistent roots defined in the database. The list will be
empty if no roots are defined or if the database does not support the notion of persistent roots.

on Login: string userName, string password return boolean

Enables the user to specify a username and password when connecting to the database. This
method is usually called before a connection to the database is opened. However, it may be
called before and/or after Open. It can also be called later to change the username under which
database operations are carried out. Returns TRUE if the username and password are accepted
successfully and false otherwise.

on Open: string databaseName, string server, string location, string type return boolean

Opens a connection to the component database named dat abaseNane that islocated on the
machine specified in the string ser ver and can be located by means of the string | ocat i on.

February 25, 1997 241

AthenaMuse 2.2 Documentation

If the string containing ser ver isan empty string then the database is presumed to reside on
the local machine. Similarly, | ocati on isan empty string when it is not required to specify
the component database. The stringt ype specifies which type of database is being used.
Currently, the supported types for UNIX are ODBC, O2, PG95, UniSQL, and MSQL. The
supported types for Windows NT include Oracle, dBase, Foxpro and MS Access. A descrip-
tion of each type available islocated after the class interface descriptions. The method returns
TRUE if a connection is established and FALSE if the connection fails.

on Store: handle hObject return boolean

Storesan ADL object instance, referenced by the handle hObject, in the database so that it can
beretrieved later. The class information for the object to be stored is stored first only if thisis
the first instance of that classto be stored in the open database. Returns TRUE if the object is
stored successfully.

on StoreAs: handle hObject, string objName return boolean

Similar to Store, but stores the object specified by the handle hObject along with a persistent
name objName. This persistent name, objName can be used as an identifier during retrieval.

on StoreClassOnly: handle hObject return boolean

Stores only the ADL class definition for the object retrieved by the handle hObj ect . It
doesn’'t store individual instance information. Returns TRUE if the class definition is stored
successfully.

on RefreshStructure

Reread the database schema definition from the database. Thisisonly necessary if updates are
made outside of the multidatabase environment. Changes made within the environment are
automatically reflected in the schema.

on Retrieve: handle hObject, list theList return handle

Retrieves an ADL aobject instance from the database which is referenced by the database
handle hObject. Thelist isused to hold special constructor arguments, such as handle to a par-
ent widget when awidget object is being retrieved. Returns a handle to the retrieved object.

on RetrieveByName: string className, string objName, list theList return handle

Retrieves an ADL object instance from the database which is of class className and identi-
fied by the persistent name objName. If the object cannot be found in the database a NULL
handleis returned.

on RetrieveClassOnly: string className, handle parentClass return handle

Retrieves the definition of the application class className from the database and loads it into
the environment so that instances of that class can be created. The class is created as a nested
class of parentClass. A handleto the classisreturned. Thishandlewill be NULL if theclassis
not successfully created.

242 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

None

Activities

None

Example

1 DBdat abase dbase; /1 variable declarations
2 list classes, attrs;

3 string class;

4 bool ean done;

5

6 /1 login to the database with a usernane and password
7 done = {‘'Login, ‘user, ‘password} => dbase;

8 /1l open the unisql database called nyDat abase

9 /1 the unisql server must be running

10 done = {‘' Open, ‘nyDatabase, ‘UN SQ.} => dbase;

11 i f(done){

12 classes = ‘CGet All O asses => dbase

13 for class in classes{

14 /1 list of class attributes

15 attrs = {' CetAttributes, class} => dbase

16 }

17 /1 create an instance of class person and give the
18 /] attribute nanme an initial value of “joe”

19 /1 the class and attribute nmust be valid for the
20 /1 database “ny Dat abase”

21 {*CreateCbj, ‘'person, {‘nane}, {‘'joe}} => dbase;
22 /1 save the changes to the database

23 ‘Commit => dbase;

24 }

6.6.2 DBclass

This class represents a class definition within a component database. This class has superclass,
attribute, method, key and extent properties associated with it. Methods are provided to access
these properties.
Superclasses

None

Methods
on GetAttributes: return list

A list of attributes defined for the classis returned. Thelist is composed of two sublists. The
first sublist isalist of attribute names. The second isalist of the datatypes of these attributes.

February 25, 1997 243

AthenaMuse 2.2 Documentation

on GetMethods: return list

Returns alist of al the methods defined for the class. The returned list contains a sublist for
each method. This sublist itself contains three elements. The first element is the name of the
method. The second is a string specifying the return type of the method. Thethird element isa
list of strings specifying, in order, the parameter types for the method.

on GetSubClasses: return list
Returns alist of the names of all the subclasses of the class.
on GetSuperClasses: return list

Returns alist of the names of all the superclasses of the class.

Attributes

None

Activities

None

Example

None

6.6.3 DBobject

This class represents a database object. The object will be an instance of a particular database
class, which can be found from querying the object. The object has methods which allow manipu-
lation of its attributes and methods.

Superclasses

None

Methods
on Name: return string
Returns the class name of the object class to which the object belongs.
on GetAttribute: string attribute_name return any
Returns the value of the specified attribute for that object.
on SetAttribute: string attribute, any value return boolean
Set the value of the named attribute to value and returns TRUE if successful assignment.
on Call: string method_name, list arguments return any

Calls the specified method on the object using the list of arguments specified and returns the
result of the method invocation.

244 February 25, 1997

AthenaMuse 2.2 Documentation

on Drop: return boolean

Deletes the object from the database and returns TRUE if the action was successful.

Attributes

None

Activities

None

Example

1 DBdat abase dbase; /1 variable declarations
2 handl e hObj, hCursor;

3 [ist result;

4

5 /1 don't forget to open the database etc.

6 /1 execute a query that returns an object handle
7 hCursor = {'ExecuteStr, “select person from person”} => dbase;
8 result = ‘Next => hCursor;

9 hQhj = at(1, result);

10 /1 fine the value of the name attribute

11 echo({‘ GetAttribute, ‘name} => hObj);

12 /1 delete the object fromthe database

13 ‘Drop => hQbj;

14 /1 save the changes

15 ‘Commit => hQbj;

6.6.4 DBset

This class represents the set datatype. A set is used to hold a collection of datatypes. Duplicate

data types are alowed within the set. To the ADL programmer, a set can be viewed as alist of
database objects or values.

Superclasses

None

Methods

upon Create: list values

Creates aDBset and initializes its contents to the values found in the list. The contents of the
list must be a database-recognized type, such as integer, redl, etc. (toDTobject, DTdate etc.).

on GetList: return list
Returns the set in the form of alist.
on SetL.ist: list values
Sets the contents of the set to the valuesin the list.

February 25, 1997

245

AthenaMuse 2.2 Documentation

on AddElement: any value

Adds an element to the set of the specified type and value.

Attributes

None

Activities

None

Example

1 DBset {‘Create, {'dum’dee}} => set;

2 /1 add the integer 3 to the set

3 {* AddEl enrent, 3} => set;

4 val ues = * GetList => set;

5 /1 val ues should now be {‘dum °‘dee, 3}

6.6.5 DBcursor

Thisclassisused to accessthe results of aquery execution. The class also providesinformation as
to the format of the query result set. Each entry in the result set isrepresented as alist. The cursor
class can be thought of as a pointer that moves forward and backwardsin thislist.
Superclasses

None

Methods
on Success: return boolean

Returns TRUE if the query executed successfully, otherwise FALSE. This value should be
checked before attempting to retrieve the results.

on RowCount: return integer
Returns the number of entriesin the result set.
on ColumnCount: return integer
This method returns the number of elementsin an entry of the result set.
on TypeL.ist: return list
Returns the data types of the elements of aresult entry.
on Next: return list

Moves the cursor forward one entry in the result set and returns the value of that entry. Ini-
tially Next returns the data values for the first row of the cursor. If Next is used beyond the
number of result rowsin the cursor, an empty list is returned.

246 February 25, 1997

AthenaMuse 2.2 Documentation

on Prev: return list

Moves the cursor to the previous entry in the result set and returns that entry. If Prev is used
back beyond the first result row of the cursor, an empty list is returned.

on OpenAt: integer position return list

Moves the cursor to the result entry at position and returns that entry. If it is outside the range
of the cursor, an empty list is returned.

on IsLast: return boolean

Returns TRUE if the cursor is currently positioned at the last result in the set. A subsequent
execution of the method Next would result in an error.

on Position: return integer

Returns the position to which the cursor currently points. First row is at position 1.

Attributes

None

Activities

None

Example

1 handl e hCursor; /1 variable declarations
2 hCur sor ={* ExecuteStr, “select nane, age from

3 per son where name=" John’ "} =>dbase;

4 /lassuning there are three instances of person that match
5 //the set would be

6 [1{{"John, 14}, {'John, 9}, {;John, 12}}

6.6.6 DBquery

This class represents the database query. The multidatabase uses a standard query format that is
based on SQL-92 with extended functionality to accommodate object database systems. A typical
SQL query hasfour parts, each part represented by one line in the sample query below. The query
finds the name, age and salary of al people called John who are working on project 3345 and
ordersthe result set by salary amount. The keyword in each lineis given in bold face.

select name, age salary

from person, project

where name="John’ and projectlD=3345
order by 3

The query class enables the query to be specified as a string or built up from its component parts.
The query is subject to pre-processing by the multidatabase system.

February 25, 1997 247

AthenaMuse 2.2 Documentation

Superclasses

None

Methods
on SetQryFrom: list fromList

Sets the list of class names from which the query result will be generated.
on SetQryOrderBy: list orderList

Sets the order in which the results will appear.
on SetQrySelect: list selectList

Sets the list of attributes from which the query result will be generated.
on SetQryText: string queryText

Setsthe text of the entire query. The query will automatically be broken down into its compo-
nent parts.

on SetQryWhere: list whereL.ist
Setsthelist of conditions which govern result generation.
on GetQryOrderBy: return list
Returns the order in which the results will be listed.
on GetQrySelect: return list
Returnsthe list of attributes from which the query result will be generated.
on GetQryText: return string

Returns the compl ete text of the query. Thiswill be automatically generated from the compo-
nent parts if necessary.

on GetQryWhere: return list
Returnsthe list of conditions which governs result generation.
on Bind: integer n, any value

A parameter in aquery can be specified by a question mark (?) when the query is constructed.
Thismark must be replaced by an appropriate value before the query is executed. This method
replaces the parameter marked by the nth question mark with value.

on BindAll: list values
This function replaces all the question marksin the query with the values from the supplied
list in order.

Attributes

None

248 February 25, 1997

AthenaMuse 2.2 Documentation

Activities

None

Example

1 DBquery q;

2 /1 don't forget to open the database etc.

3 /1 exanple of constructing queries fromlists
4 {"Set Sel ect, {‘nane, ‘'age}} => q;

5 {*SetFrom {'person}} => q;

6 hCursor = {'Execute, &g} => dbase;

7 /1 exanpl e of query binding

8 {"Set Query, “select person from person where name = ?"} => q;
9 {*BindAl'l, {‘joe}} => dbase;

10 hCursor = {'Execute, &g} => dbase;

6.6.7 DBbinary

This class represents the binary data type. It is assumed that the datais either stored directly as
bytes or as areference to an external file that holds the bytes. If the datais stored in an external
file, then the file location can beretrieved. The location has three components, a name to identify
the machine on which the file resides, a path to locate the file on that machine, and the name of
thefileitself. Currently, since thereis no means of returning apointer to abinary stream of datato
the ADL program directly, the only option with binary dataisto storeit in atemporary file.
Superclasses

None

Methods
upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBbinary object where the binary information is stored in the file loca-
tions specified by the method parameters.

upon CreateAsBinary: string pathName, string fileName, string hostName return handle

Creates a DBbinary object where the binary information is read from the file location speci-
fied by the method parameters and stored internally to the object.

on GetFile: return string

If the binary datais stored as areference to an external file. GetFile returns the external file-
name.

on GetHost: return string

If the binary datais stored as areference to an external file. GetFile returns machine name
wherethefileis stored.

February 25, 1997 249

AthenaMuse 2.2 Documentation

on GetPath: return string

If the binary datais stored as areference to an external file. GetPath returns a path to the exter-
nal file.

on IsBinary: return boolean

Returns TRUE if the binary datais stored internally to the object. Returns FALSE if the
binary datais stored as areference to an externa file.

Attributes

None
Activities
None

Example

None

6.6.8 DBmedia

This class represents media data that is stored either internally in binary form or as areference to
an external file.

Superclasses
Section 6.6.7, “DBbinary” page 249

Methods
upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBmedia object.

Attributes

None

Activities

None

Example

None

250 February 25, 1997

AthenaMuse 2.2 Documentation

6.6.9 DBimage
This class represents image data specifically.

Superclasses
Section 6.6.7, “DBbinary” page 249

Methods
upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBimage object that is located on the hosthame machine at the location
pathname in filename.

on Getlmage: return handle
Returns a handle to an MMimage object that has been constructed from the information con-
tained in the DBimage object.

Attributes

None

Activities

None

Example

None

6.6.10 DBdate

Thisclassisused to represent the date datatype. The datatype is composed of three components,
an integer from 1 to 12 representing the month, an integer from 1 to 31 representing the day, and a
four digit number representing the year.

Superclasses

None

Methods

upon Create: integer month, integer day, integer year return handle
Creates a DBdate and initializes the value of the date.

on SetDate: integer day, integer month, integer year
Sets the value of the date.

February 25, 1997 251

AthenaMuse 2.2 Documentation

on GetDateStr: return string
Returns the date in the form of a string such as‘13/10/1994 .
on GetDateL.ist: return list

Returnsthe date in the form of alist of integers, { month, day, year}.

Attributes

None

Activities

None

Example

1 DBdate {‘Create, 5, 23, 1994} => date;
2 echo(' GetDateStr => date);

6.6.11 DBtime

This class represents the time data type. The data types has three components, an integer between
0 and 23 representing the hour, an integer between 0 and 59 representing the minute and an inte-
ger between 0 and 59 representing the seconds.

Superclasses

None

Methods
upon Create: integer hour, integer minute, integer second return handle
Creates a DBtime and initializes the value of the time.
on SetTime: integer hour, integer minute, integer second
Sets the value of the time.
on GetTimeStr: return string
Returns the time (24 hour clock) in the form of a string such as *14:03:22".
on GetTimeList: return list

Returns the date in the form of alist of integers, { hour, minute, second} .

Attributes

None

252 February 25, 1997

AthenaMuse 2.2 Documentation

Activities

None

Example

1 DBtine {‘Create, 5, 15, 32} => dtime;
2 echo(' GetTimeStr => dtine);

6.6.12 DBtimestamp

This class represents the timestamp data type which consist of atime and a date together repre-
sented by a data value of type DBtime and a data value to type DBdate.

Superclasses

None

Methods
upon Create: handle date, handle time return handle

Creates a DBtimestamp and initializes the value of the timestamp.
on GetTstampList: return list

Returns alist composed of two elements, a handle to a DBdate object and ahandle to a
DBtime object.

on SetTstamp: handle date, handle time
Sets the value of the timestamp.
on GetTstampStr: return string
Returns the timestamp in the form of a string such as *05:04:03 13/10/1994' .

Attributes

None

Activities

None

Example

1 DBti nmestanp {‘Create, &date, &dtinme} => tstanp;
2 echo(’ Get TstanpStr => tstanp);

February 25, 1997 253

AthenaMuse 2.2 Documentation

6.6.13 DBmonetary

This classis used to represent the monetary data type. Currently the only information availableis
the amount of money represented by an object of this class. Currency information is not yet incor-
porated into the class.

Superclasses

None

Methods
upon Create: real amount
Creates a DBmonetary and initializes the amount of the monetary value.
on SetAmount: real amount
Sets the amount of the monetary value.
on GetAmount: return real

Returns the amount of the monetary value.

Attributes

None

Activities

None

Example

1 DBrnonetary {‘Create, 14.01} => noney;
2 echo(’ Get Anpbunt => noney) ;

3 {* Set Anbunt, 18.99} => noney;

4 echo(’ Get Anpbunt => noney) ;

254 February 25, 1997

AthenaMuse 2.2 Documentation

6.7 Data Structures

The wrapped Data Structures (DS) wrapped classes of AM2 provide generic optimized data struc-
tures. The user could reimplement these using lists but the implementation would be less efficient.
Data structure classes are easy to wrap, and a good place for the novice to begin to augment the
set of AM2 wrapped classes. Documentation for the following classes appear in this section:

» Section 6.7.1, “DSqueue” page 255
» Section 6.7.2, “DSstack” page 257

Note that the Data Structures wrapped classes do not inherit from each other, thus no inheritance
diagram is provided here.

6.7.1 DSqueue

This class implements atraditional first-in-first-out (FIFO) queue.

Superclasses

None

Methods
on Enqueue: any value

Adds the value to the end of the queue.
on Dequeue: return any

Returns the first value and removes it from the queue.
on First: return any

Returnsthe first value but does not remove it from the queue.
on IsEmpty: return boolean

Returns TRUE if the queue is empty.
on Unparse: return string

Returns a human-readable description of all entries.
on Clear

Clearsthe queue of elements.

Attributes

None

February 25, 1997 255

AthenaMuse 2.2 Documentation

Activities

None

Example

1 on Assert: bool ean condition

2

3 if (! condition)

4 {

5 di e(“assertion failed!");

6 }

7 }

8

9 upon Construct

10 {

11 DSqueue q;

12 integer i = 6;

13 string s = “heather”;

14 l'ist Il = {“this”, “is”, “a”, “list”"};
15 {“Assert”, “lIsEnmpty” => g} => theApp;

16 {“Enqueue”, 6} => q;

17 {“Assert”, !(“IsEmpty” => q)} => theApp;
18 {“Enqueue”, “heather”} => q;

19 {“Enqueue”, {“this”, “is”, “a”, “list”"}} => q;
20 {“Assert”, i == “First” => q} => theApp
21 {“Assert”, i == “Dequeue” => q} => theApp
22 {“Assert”, s == “Dequeue” => q} => theApp;
23 {“Assert”, | == “Dequeue” => q} => theApp
24 {“Assert”, “lIsEmpty” => g} => theApp;

25 }

26 on Init

27 {

28 DSqueue q;

29 integer i = 6; string s = “heather”;

30 list I ={“this”, “is”, "a”, “list”};

31 “I sEmpty” => q; /1 TRUE

32 echo(“Unparse” => Q);

33 {“Enqueue”, 6} => q;

34 echo(“Unparse” => Q);

35 “I sEmpty” => q; /1 FALSE

36 {“Enqueue”, “heather”} => q;

37 echo(“Unparse” => Q);

38 {“Enqueue”, {“this”, “is”, “a”, “list”"}} => q;
39 echo(“Unparse” => Q);

40 i == “First” => q; /'l TRUE

41 i == “Dequeue” =>q; // TRUE

42 s == “Dequeue” =>¢q; // TRUE

43 | == “Dequeue” => q; // TRUE

44 “I sEmpty” => q; /1 TRUE

45 }

256

February 25, 1997

AthenaMuse 2.2 Documentation

6.7.2 DSstack

This class implements atraditional last-in-first-out (LIFO) stack.

Superclasses

None

Methods
on Push: any value
Adds the value to the top of the stack.
on Pop: return any
Returns the top value and removes it from the stack.

on Top: return any

Returns the top value but does not remove it from the stack.

on IsEmpty: return boolean

Returns TRUE if the stack is empty.
on Unparse: return string

Returns a human-readable description of all entries.
on Clear

Clears the stack of elements.

Attributes

None

Activities

None

Example

1 on Assert: bool ean condition
2 {

3 if (! condition)

4 {

5 di e(“assertion failed!");
6 }

7 }

8

9 upon Construct

10 {

11 DSst ack st ack;

12 integer i = 6;

February 25, 1997

257

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

258

{“Push”, “heather”} => stack;
{“Push”, {“this”, “is”, “a”, “list”"}} => stack;
{“Assert”, | == “Top” => stack} => theApp;
{“Assert”, | == “Pop” => stack} => theApp;
{“Assert”, s == “Pop” => stack} => theApp;
{“Assert”, i == “Pop” => stack} => theApp;
{“Assert”, “lsEnpty” => stack} => theApp;

}

on Init

{

AthenaMuse 2.2 Documentation

string s = “heather”;
list | = {“this”, “is”, “a”, “list"};
{“Assert”, “lsEnpty” => stack} => theApp;

{“Push”, 6} => stack;

{“Assert”, !(“IsEnmpty” => stack)} => theApp;

DSst ack st ack;

integer i = 6;
string s = “heather”;
list I = {“this”, “is”

“I sEnpty” => stack; /1
echo(“Unparse” => stack);

{“Push”, 6} => stack;
echo(“Unparse” => stack);

“I sEnpty” => stack; /1

{“Push”, “heather”} => st
echo(“Unparse” => stack);
{“Push”, {“this”, “is", *“
echo(“Unparse” => stack);

, “a”", “list"};

TRUE

FALSE

ack;

a”, “list”}} => stack;

February 25, 1997

AthenaMuse 2.2 Documentation

February 25, 1997 259

AthenaMuse 2.2 Documentation

260 February 25, 1997

AthenaMuse 2.2 Documentation

Appendix A Built-In Functions for ADL

Thisappendix liststhe functions that are built-in to ADL for operations on the base and compound
types. We discuss their use in the ADL chapter (Section 3.12, “Built-in Function Calls” page
29). The available functions and their operations will change as we experiment to find what's
most useful for application writers.

A.1 Notation

We list each function name, followed by its argument list in parenthesis, separated by commas
with the type for each given. In the following descriptions, we use sequence to describe some-
thing that can be either a string or a list, and number to describe something that can be either an
integer or areal. We use any to describe something that can be one of the following types: bool-
ean, integer, real, string, handle, interval, list, time, or vtype.

A.2 Function Descriptions
A.2.1 Input/Output

echo (any argument)

Effects: prints a human-readabl e representation of argument to standard output.
Returns: argument.

read ()

Effects: reads a string up to white-space from standard inpui.

Returns: the string that was read.

die (string message)
Effects: prints the contents of message to standard error, then exits with exit code
Returns: die does not return

February 25, 1997 261

AthenaMuse 2.2 Documentation

A.2.2 Time and Date

localTime()

Returns: A time value whose hours, minutes, seconds, and milliseconds are set to
the current local time.Platforms that cannot provide a given level of granu-
larity should return O for that part of the time. For instance, if a machine
cannot provide milliseconds, | ocal Ti me may return the current time
with milliseconds set to O.

Note: AthenaMuse2 relies on the system’ s idea of the current local time for this
function. If you are not happy with the value returned, please check that the
timeis set properly on your machine.

localDate()

Returns: A list containing four integer elements:
1.day of week, 1 - 7, 1 == Sunday, etc.
2.day of month, 1- 31
3.month of year, 1- 12
4.year, 1900 -

Note: AthenaMuse2 relies on the system’ s idea of the current date for this func-
tion. If you are not happy with the value returned, please check that the
date is set properly on your machine.

A.2.3 Conversion

toBoolean(any source)

Requires. aboolean, astring containing a“ TRUE” or “FALSE” (any capitalization),
an integer, ared, or atime.

Effects.. ERtype error if the type cannot reasonably be converted to a boolean.
Returns: a bool ean representation of the valuein sour ce.

tolnteger(any source)

Requires: an integer, a string containing an integer, areal that is smaller than the
maximum size of an integer, a boolean, or atime (converts to number of
milliseconds).

Effects: ERsemantic error if thevaluein sour ce istoo largefor an integer.ERtype

error if thevaluein sour ce cannot reasonably be converted to an integer.
Returns: an integer representation of thevalueinsour ce.

262 February 25, 1997

AthenaMuse 2.2 Documentation

tolnterval (any source)

Requires: Aninterval, a string containing an interval constant, or alist of the format:
{{boolean,integer/real} ,{ boolean,integer/real} }.

Effects: ERtype error if the valuein sour ce cannot reasonably be converted to an
interval.

Returns: the interval representation of the valuein sour ce.

toTime(any source)

Requires: A time, an integer (milliseconds), areal (rounded to integer milliseconds),
astring, or alist with oneto four integer elements (representing the least
significant parts of the time, i.e. 2 elements implies seconds and millisec-

onds).

Effects: ERtype error if the valuein sour ce cannot reasonably be converted to a
time.

Returns: the time representation of the valuein sour ce.

toList(any source)

Requires: A list, astring containing alist with constant elements, or an interval.
Effects: ERtypeif the valuein sour ce cannot reasonably be converted to alist.
Returns: the list representation of the valuein sour ce.

toReal (any source)

Requires: A real, an integer, aboolean, or a string representing a constant real in the
same format as that recognized by the parser

Effects: ERtypeif the valuein sour ce cannot reasonably be converted to areal.

Returns: A real number representing the valuein sour ce.

toString(any source)

Returns: A string representation of sour ce. If sour ce isahandlethis call pro-
duces afata error.

A.2.4 Type Query

* isInteger(any value)
» isBoolean(any value)
» isHandle(any value)

* isinterval(any value)

February 25, 1997

263

AthenaMuse 2.2 Documentation

* isList(any value)

* isRed(any vaue)

* isString(any value)

e isTime(any vaue)

e isVtype(any value)

Returns: TRUE if value is of the given type, FALSE if not.

getType(any value)
Returns: The vtype of the argument val ue.

canConvert(string source, vtype conversionType)

Returns: TRUE if thesour ce can be convertedto conver si onType, FALSE if
not. Put another way, canConver t returns TRUE if the appropriate con-
version built-in (t oBool ean, t ol nt eger, etc.) for conver si on-
Type succeeds when given sour ce as an argument.

A.2.5 Sequences (lists and strings)

Lists

at(integer iIndex, sequence source)

Returns: If sour ce isaligt, theitemat i ndex isreturned. If sour ce isastring, a
one character string containing the character at i ndex isreturned. The
index is counted from 1, not O.

Notes: If index exceeds the length of source, an ERsemant i ¢ error is generated.
This behavior may change.
first(sequence source)

Returns: Thefirst element of thelist if sour ce isalist or the first character of itis
astring. If sour ce isempty, an empty sequence of the same type as
sour ce (list or string) is returned.

rest(sequence source)

Returns: A sequence of the same type (list or string) containing all but the first ele-
ment in source. If the sequence is empty or only contains a single element
or character, the returned sequence will be empty.

isEmpty(sequence test)

264 February 25, 1997

AthenaMuse 2.2 Documentation

Returns: TRUEft est containsno items (list) or characters (string), FAL SE other-
wise.

length(sequence source)

Returns: The number of elements (list) or characters (string) in sour ce.

extract(sequence source, integer start,integer length)

Returns: A sequence containing the elements of source with indicesfromst art to
start +l engt h- 1. Sequence indices start at 1, not O.

Notes: If an attempt is made to extract beyond the end of a sequence, a shorter
sequence will be returned containing only those items from start to the end
of the sequence.

find(any key, sequence source)

Returns: If sour ce and key are strings, returnsindex of first character of first
occurrence of key insour ce, or 0if key isnot found insour ce (since
indicesin sequences start with 1). If sour ce isastring, but key isnot, an
ERsemant i ¢ error isgenerated. If sour ce isaligt, returnsindex of first
member of sour ce found to be equal to key, or O if no match isfound.

Notes: lists are not searched recursively, only top level members are compared,
and no type conversion is performed, i.e. 1.0 '= 1.
Strings

split(string source, string delim)

Returns: the list of substrings from sour ce that remains after every occurrence of
del i misdeleted from it. If two instances of del i moccur immediately
adjacent to each other or if sour ce starts or ends with an occurrence of
del i m then an empty string isinserted into the list at the appropriate posi-
tion.

isAlpha(string source)

Returns: TRUE if all the charactersinthe sour ce string are one of [A-Z, &Z]

toUpper(string source)

Returns: astring identical to sour ce except that all lowercase a phabetic charac-
terswill have been changed to uppercase.

Example: t oUpper ("teSt sTri NG ") returns " TEST STRI NG "

February 25, 1997

265

AthenaMuse 2.2 Documentation

toLower(string source)

Returns: astring identical to sour ce except that all uppercase a phabetic charac-
terswill have been changed to lowercase.

A.2.6 Mathematical

The mathematical built-ins that follow can produce six categories of errors:
e DOMAI N: implies an inappropriate argument, e.g., sqrt (-1);
* SING impliesan argument or arguments which produce a singularity in the result, e.g.,
I 0g(0);
* OVERFLOW impliesthe result exceeds the maximal value that the return type can express,
* UNDERFLOW implies that the result is smaller in magnitude than the return type can express,
» TLOSS: totd loss of significance — most implementations do not produce this error

* PLGSS: partial loss of significance

By default, DOVAI N and SI NG errors are treated as fatal, and all others are ignored. The
developer may change this behavior by sending a’ Set Fat al Er r or s messagetot he App.
Please see _ for further information.

random(interval range)

Returns: A random number inr ange. If both limits of range are integers, an integer
will be returned; otherwise areal will be returned.

sgrt(number val)

Returns: The nonnegative square root of val expressed asareal. A DOVAI N error
occursif val isnegative.

pow(number base, number exp)

Returns: base raised tothe power exp expressedasar eal . exp may beared if
base isnonnegative. A DOVAI N error occursif base isnegative and
exp isnotanintegral value, and it may occur when base isOand exp
islessthan or equal to 0. This built-in may also generate OVERFLOW or
UNDERFLOW errors.

exp(number val)

Returns: The exponential function of val , ' , expressed asareal. An OVER-
FLOWor UNDERFLOW error may occur.

266 February 25, 1997

AthenaMuse 2.2 Documentation

log(number val)

Returns: The natural logarithm of val expressedasa real . A DOVAI N error
will occur if val <0. 0 anda SI NG error if val ==0.

1og1l0(number val)

Returns: The base 10 logarithm of val expressedasa real . A DOVAI N error

will occur if val <0.0 anda SI NG errorif val ==0.

cos(number val)

Returns: Thecosineof val (interpretedinradians) expressedasa r eal .

sin(number val)

Returns: Thesineof val (interpretedinradians) expressedasa real .

tan(number val)

Returns: Thetangent of val (interpretedinradians) expressedasa r eal

acos(number val)

Returns: The principal value of thearc cosineof val (interpreted in radians)
expressed asar eal intherange [O,p] . A DOVAI N error will occur if
val doesnot fal withintherange [-1, 1] .

asin(number val)

Returns: The principal value of thearc sineof val (interpreted in radians)
expressed asar eal intherange [-p ®2,p @2]. A DOVAI N error will
occur if val doesnot fall withintherange [-1, 1].

atan(number val)

Returns: The principal value of the arc tangent of val (interpreted in radians)
expressed asar eal intherange [-p 22,p 2] .

atan2(number y, number x)

Returns: The principal value of thearctangent of y ox expressedasar eal inthe
range [—p 22,p @2] . A DOMAIN occur error will occur if both y and x

are0.

February 25, 1997

267

AthenaMuse 2.2 Documentation

cosh(number val)

Returns: The hyperbolic cosine of val expressed asarea. An OVERFLOW error
may occur.

sinh(number val)

Returns: The hyperbolic sineof val expressed asareal. An OVERFLOW error
may occur.

tanh(number val)

Returns: The hyperbolic tangent of val expressed asarea.

integerPart(number val)

Returns: Theinteger part of val expressedasa r eal . Thereturned value always
hasthe samesignas val .

fractionPart(number val)

Returns: Thefraction part of val expressedasa real . Thereturned value
always hasthe samesignas val .

ceil(number val)

Returns: The smallest integral value not lessthan val expressedasa real .

fabs(number val)

Returns: The absolute value of val expressedasa real .

floor(number val)

Returns: The largest integral value not larger than val expressed asa r eal .

fmod(number x, number y)

Returns: The floating-point (r eal) remainder of x »y . That is, if

r = fmod(x,y),then $i ,suchthat x = (i ~ y)+r ,r hasthesame
sign as x, the magnitude or r islessthan that of y. A DOVAI N error may
occur if y==0.

eQ

Returns: Theconstant e at thesignificanceof a r eal .
piQ

Returns: Theconstant pi at the significanceof a r eal .

268 February 25, 1997

AthenaMuse 2.2 Documentation

A.2.7 Handles

isValid(handle h)

Returns: TRUE if the handle is non-NULL and pointsto avalid object or variable,
otherwise FALSE.

A.2.8 Classes and Inheritance

i1sKindOf(handle hObject, handle hClass)

Returns: TRUE if hObj ect pointsto an object (as opposed to a variable of base,
compound or complex type), hCl ass pointsto awrapped or ADL class,
and hQbj ect pointsto an instance of the class pointed to by hCl ass or
to aclass derived from it.

Notes: Pointersto classes are generally derived from expressions using the opera-
torst heCl ass orcl assOF (see Section 3.22, “Metaclass Opera-
tions” page 43).

className(handle hClass)

Returns: The string name of the class pointed to by the handle hCl ass or the null
string if the classisanonynous.

Notes: Pointersto classes are generally derived from expressions using the opera-
torst heCl ass or cl assOf (see Section 3.22, “Metaclass Operations”
page 43).

isDirectBaseOf(handle hSuspectedBaseClass, handle hKidClass)

Returns: boolean

Effects: If hSuspectBaseClass is a pointer to a direct base class of the class pointed
to by hKidClass, returns TRUE, else FALSE.

Warning: Itisafata error for either argument to be NULL or to not point to a class.

A.2.9 Networking

userName()

Returns: A string containing the name of the user executing AthenaMuse2.

hostName()
Returns: If Domain Name Serviceis enabled on the system, the fully qualified host-

February 25, 1997 269

AthenaMuse 2.2 Documentation

name is returned. Otherwise, the host table entry for the machineis
returned. This may or may not be afully qualified hostname depending on
the format of the host table for the system.

February 25, 1997 270

AthenaMuse 2.2 Documentation

Appendix B Creating Wrapped Classes

This chapter explains how to create your own wrapped classes using the wrap script, afacility
intended for C++ programmers who want to extend the capabilities of AM2 by installing their
own code in the system. Most AM2 users do not need this facility.

The chapter describes the model the wrap script uses and the details of how to wrap a C++ classto
makeit visiblein the ADL. It also describes the model of inheritance the wrap script provides and
describes the features that support it.

The purpose of the wrap script is to help the programmers publish C++ classesto the ADL as
wrapped classes. Once published, awrapped classis amost indistinguishable from a user-defined
classin the ADL. For thisreason, it isimportant that you understand the differences between
wrapped classes and user-defined classes. To learn more about the two, see Section 3.23,
“Wrapped Classes” page 44 before continuing. If you are not familiar with the wrapped classes
that come with the ADL, see Chapter 6, “Wrapped Class Reference”.

B.1 Wrap Script Model

There are essentially three parts to publishing a class: publishing its name, publishing its mem-
bers, and publishing its methods.! Thisinformation is necessary for AM2 to create a subclass,
instantiate a class, and operate on a C++ class. Y ou provide the information by writing awrap file
that describes the class to be wrapped. Once it is written, you run the wrap script, sometimes
referred to as the wrapper, and generate the wrapped class.

For instance, to wrap a C++ class called IntStack as awrapped class called DSIntStack, you write
afilecalled DSI nt St ackRO. wr p and run the wrap script. The wrapper generates the class named
DSIntStackRO, writing the files DSi nt St ackRO. h to declare it and DSi nt St ackRO. cc to
implement it. The command line interface to the wrap script determines where to place the gener-
ated files. It isdescribed in Section B.3.1, “Command Line Interface” page 287.

The wrap script aso has an inheritance mechanism that provides an inheritance relationship between
wrapped classes and simplifies the specification and maintenance of the wrap code itself. We postpone the
description of this mechanism until after we cover the basics.

February 25, 1997 271

AthenaMuse 2.2 Documentation

We call the C++ class that we want to wrap the foundation class. In our example, the class
IntStack is the foundation class. We encourage programmers to think of the wrapper classas a
tranglation layer only, turning ADL messages and member assignmentsinto calls to an instance of
the foundation class. In the example, when you create an instance of DSintStackRO, the
DSintStackRO constructor creates a corresponding IntStack instance. ADL messages such as
Push and Pop translate into calls on that instance of IntStack. By making it easy for a wrapped
object to use an instance of the foundation class, the wrapper encourages programmersto put very
little into the wrapped class.

B.2 How to Wrap a C++ Class

B.2.1 Lexical Conventions

The wrap script ignores white space in awrap file. However, some parts of the description must
be on lines by themselves, such as delimiters above and below sections containing C++ code not
meant for interpretation by the wrap script. The delimiter isaline containing at least 3 consecu-
tive equal signs (=). We recommend using long sequences to provide a good visual break. Both
multi-line(/*... */)andsingleline(//) comments are allowed in these blocks, since the
compiler does not interpret the code. For example:

/1 Uninterpreted C++ code belongs in here.
/* The bar above and below it nust be on lines by thenselves. */

Outside of these uninterpreted blocks use single line (/ /) comments to annotate the wrap file,
anywhere but the delimiter (====) lines.

B.2.2 The Wrap File: an Example

In the following example, we use the wrapped class DSIntStackRO to ook at each part of awrap
file. We explain the components of thisfilein Section B.2.3, “An Explanation of the Parts of a
Wrap File” page 274.

noti ce

* $Header: /mit/ceci/ 1/ aybee/devl/doc/firstRel/RCS/ DSintStackRO wrp,
v 1.1 1995/06/02 21:23:23 aybee Exp aybee $

272 February 25, 1997

AthenaMuse 2.2 Documentation

Copyright 1993, 1994, 1995 Massachusetts Institute of Technol ogy.
Al rights reserved

At henaMuse is a registered trademark of the Massachusetts
Institute of Technol ogy.

f oundati on: | ntStack

wr apped: DSi nt St ack
nodul e: Exanpl eModul e
abstract: fal se

header

#i ncl ude <l nt Stack. h>
/*
* I ntStack.h hypothetically includes sonmething |ike..

* cl ass IntStack

A

* public:

* int getHeight();
* void push(int);

* int pop ();

* int isEnpty();

* }'

*/

source

#i ncl ude <control / EXnodul e. h>
#i ncl ude <control /DSi nt St ackRO. h>
#i ncl ude <adl / ERsemanti c. h>

super cl asses

{
}

codeFr agnment s

{

constructor

private:

February 25, 1997 273

AthenaMuse 2.2 Documentation

publ i shed:

nane

{
get: default
set: default

}

hei ght

{
get: custom
set: none

}
}

met hods
{
private:
voi d | ocal Destroy()

if (mpWapped)
del et e npW apped,;

publ i shed:
voi d Push(integer_t newTop)

/* effects: puts newTop on the top of the stack */
npW apped- >push(newTop);

/* returns: renoves top value fromthe stack and returns it */
assert(! npWapped->i senpty());
return nmpW apped- >pop();

B.2.3 An Explanation of the Parts of a Wrap File

Notice

This section lets you protect your intellectual property by housing things such as the copyright
notice and the RCS $Header $ string.? The wrap script places a copy of this section at the top of

2 RCSisasource code control system widely used by programmers.

274 February 25, 1997

AthenaMuse 2.2 Documentation

both the generated header file and the generated source code file. We usually place the contents of
the file named “standard_header” in this section.

Foundation or FoundationRO Declaration

The wrap script encourages programmers to implement awrapped class by using an instance of a
foundation class. As encouragement, the wrapper provides a member named npW apped in the
generated class. Y ou can use this member to point to an instance of the wrapped class. The mem-
ber mpW apped can be either a C++ pointer or areference counted pointer.

Thisisarequired field and you must use one of these declarations to tell the wrap script the type
of the foundation class:

f oundati on: cl assNane

This line must contain the designation f oundat i on: followed by the name of foundation class.
The npW apped member is of type cl assNane. In the few cases where there is no underlying
foundation class to support the wrapped class, you can specify voi d as the class name.

f oundati onRO cl assNaneRO

This line must contain the designation f oundat i onRO: followed by the name of foundation
class that includes the RO suffix. The npW apped member is of type cl assNaneRO.

For your convenience the wrap script provides two macros WRAP_FOUNDATI ON and
WRAP_FOUNDATI ON_PTR, defined as the name of the foundation class and the type of apointer to
that class respectively. These become especially useful when you want to take advantage of wrap-
per inheritance, as discussed in Section B.2, “Inheritance Model of the Wrap Script” page
280.

The Wrapped Class Name
wr apped: nameOf W appedC assl| nADL

Thisisarequired field and must contain the designation wr apped: followed by the name of the
wrapped classin the ADL. The latter must be alegal ADL identifier. (See Section 3.2, “Identifi-
ers” page 14.)

Module Declaration

nodul e: nodul eNanme

Thisisarequired field and must contain the module name followed by alegal ADL identifier. See
Section B.2, “Inheritance Model of the Wrap Script” page 280 for an explanation about the
module mechanism that AM2 uses. Y ou must add a line such as UT_FORCE_LOAD(nameCf -

W appedCl assl nADL) to the appropriate module source file to force the linker to pull in the
newly wrapped class.

Abstract Declaration

abstract: bool ean

February 25, 1997 275

AthenaMuse 2.2 Documentation

Thisisarequired field. The bool ean must be either TRUE or FALSE. If true, this class may not
beinstantiated in the ADL. This becomes useful when you use wrapped classinheritance and have
base classes that should not be instantiated.

Can You Create a Subclass in the ADL?

adl Subcl assabl e: bool ean

Thisisan optional field. The bool ean must be either t r ue or f al se. If true, ADL programmers
may usethis class asadirect base of any ADL class. Usually, only abstract classes may not have a
subclassin the ADL. As aresult, the default value for this characteristic is the logical not of the
previous declaration abst r act . If aclassis abstract, then the default is that you cannot create a
subclassin the ADL; if aclassis not abstract, then the default is that you can create a subclassin
the ADL.

The Header Section

At compile-time, wrap script inserts the header section into the generated header file before
declaring the class. Use this section to include declarations for required types, most notably the
declaration of the foundation class.

The Source Section

At compile-time, the wrap script inserts the sour ce section into the generated source file before
defining the methods of the generated class. Use thisfile to include header filesfor classesused in
the implementation. The wrap script checks that there is an include statement that appearsto
include the generated header file, and exits with an error message if it does not find thisinclude
statement. For instance, in our stack example it checksthat thereisani ncl ude statement that
looks something like#i ncl ude <...DSi nt St ackRO. h>, wherethe ellipsisrepresentsany (or
no) directory specification.

Code Fragments

Y ou may need to insert code sections in various places, as described in this section. To do so, cre-
ate asection called codeFr agnent s as shown in the example in Section B.2.2, “The Wrap
File: an Example” page 272. Legal names for these sections include:

constructor and preConstructor

The wrap script inserts code in the constructor fragment into the C++ constructor for the wrapped
object. The code looks like the following:

wr appedCl assNanmeRO(const MCpr ogr anbj ect RP& pPar ent
const MCi nstanceRP& pDerived= gkpNul |l nstPtr)
npW apped(0)
{

/1 ...contents of “preConstructor” fragment here...
/1 ...contents of “constructor” fragment here...

}

276 February 25, 1997

AthenaMuse 2.2 Documentation

constructorFromFoundation

The wrap script provides a constructor for the wrapped classwhen aconst r uct or Fr onfFoun-
dat i on fragment is present. The code looks like the following:

wr appedC assNaneRO(WRAP_FOUNDATI ON_PTR pW apped,
const MCprogramObj ect RP& pPar ent,
const MCi nstanceRP& pDerived=gkpNul | I nstPtr)

{

npW apped = pW apped;

/1 ...contents of preConstructor fragnent here...

/1 ...contents of constructorFronfFoundation fragnent here...
}

wrappedisReady
The contents of wr appedl sReady goesin afragment similar to:
voi d wrappedl sReady() { /* fragnment code here */ }

A wrapped object should call thewr appedl sReady() function when the foundation object it
wrapsisready. Thisisvery useful in the case of wrapper inheritance, further discussed in Section
B.2, “Inheritance Model of the Wrap Script” page 280.

preDestroy and postDestroy

If code fragmentsfor pr eDest r oy and post Dest r oy exist, their contents go in methods similar
to:

voi d preDestroy() {
voi d post Destroy() {

fragment code here */ }

/*
/* fragnent code here */ }

The wrapped object’ s Destroy method then has the following body:3

{

preDestroy(); /1only inserted if preDestroy exists

| ocal Destroy(); /lonly inserted if |ocal Destroy exists
nmpW apped = NULL;

post Destroy(); /lonly inserted if postDestroy exists

MCcxxObj ect RO : Destroy();//normal upchai ned Destroy call
}

Members

Use the members section to introduce members in the generated class. See Section B.2.2, “The
Wrap File: an Example” page 272 for the syntax for introducing members.

3 The Destroy method is part of the Reference Counting mechanism and is beyond the scope of this chapter.

February 25, 1997 277

AthenaMuse 2.2 Documentation

The members of awrapped class have four protection levels: private, protected, and public in
C++, and published in the wrapper. The wrap script prepares members in the published category,
making them available to the ADL run-time engine. Y ou can separate member descriptions into
protection levels by placing the protection level name followed by a colon, such as

private:

on aseparate line. All subsequent lines until the next protection level designation or the final
delimiter (}) are given that protection level. The wrap script does not interpret lines with a C++
protection level of private, protected, or public. They go directly into asimilarly protected section
of the generated header.

Published members appear to the ADL as instance members of the published class. There are two
generic operations performed on ssimple members: get and set . Usethe get operation when an
ADL program needs the value of amember, and the set operation when the program assigns a
value to the member. The wrap script allows you to specify how to handleget and set opera-
tions on each published member: by using the default accessor, by using a custom accessor, or by
preventing access.

Published members have a special format, as shown in the following example:

menber Name

{

get: accessStyle
set: accessStyle

}

Put each statement on aline by itself and designate the access style to be one of the following:
defaul t,cust om Or none.

If amember’ saccess styleisdef aul t , thewrap script automatically provides the generated class
with amember of type MCl val ue for storing that value. The member’s name isits published
name preceded by an m In our example, the wrap script would provide the wrapped class with a
member named mane.

Sometimes amember doesn’t really exist as a member of the wrapped class. For instance, in our
example, the foundation IntStack class aready maintains the height, so it would be wasteful for us
to maintain that information in the wrapped class too. For cases such as this, the wrap script
allows you to specify a custom access method for amember. If you specify acustom get state-
ment for amember, you must provide a method with the following signature, where member-
Name represents the appropriate member’ s name:

UTval ue _Get memberName() const

In our example, we provide amethod called _Get _hei ght that asksits foundation object for the
current height. If you specify acustomset net hod, you must provide a method with the follow-
ing signature:

voi d _Set _memberName(const UTval ue& newval)

If it made sense to set the height of a stack, you could specify that the set accessor of hei ght be
cust omand provide amethod named _Set _hei ght .

278 February 25, 1997

AthenaMuse 2.2 Documentation

Y ou can tell the wrap script to specify an access style of none to handle the case where you do
not want to allow get and set operations on members. In our example, hei ght hasaset access
method of none, causing afatal error for in any ADL program that attemptsto set it.

What methods should the wrapped class have?

Use the methods section to describe the methods, or operations, for the wrapped class. See Sec-
tion B.2.2, “The Wrap File: an Example” page 272 for the syntax for specifying methods. The
methods of awrapped class have the same four protection levels as members: private, protected,
and public in C++, and published in the wrapper. The wrap script prepares methods in the pub-
lished category, making them available to the ADL run-time engine.

Each of the protection levelsis optional and contains method descriptions. A method description
consists of the method’ s C++ signature, followed by ablock of uninterpreted C++ code (set off by
=== delimiters). The wrap script extracts the signatures and places them in the proper protection
level section of the generated header, and places the definition in the generated sourcefile. If you
specify the keyword i nl i ne, the wrap script places the body of the method in the header too.
Specify the keyword ct or to mark an ADL constructor. Marking a method with ct or isequiva-
lent to using the keyword upon inthe ADL. The keyword | ocal marksamethod asit doesin the
ADL. ADL subclasses of the wrapped class do not inherit the method, but wrapped subclasses do.

The wrap script exports methods listed in the published section to the ADL as methods with a cor-
responding name and ADL signature. The following types are the only legal arguments and return
types for published methods:

C++ type ADL type
Eboolean boolean
integer t integer
UThandle handle

UTinterval interval

UTlist list

real _t real
UTstring string
UTtime time

UTvalue any
UvalueType vtype

Figure B.1 Arguments and Return Types for Published
Methods

Asaspecia case, you can aso havethereturntypevoi d. It isequivaent to not declaring areturn
typeinthe ADL.

February 25, 1997 279

AthenaMuse 2.2 Documentation
B.2 Inheritance Model of the Wrap Script

The wrap script implements inheritance in a manner analogous to the way it is done by hand — it
essentially copies-and-pastesinherited descriptions into derived wrap descriptions. In this section
we explain the copying and pasting, the restrictions on creating a subclass, and the hooks that we
provide to allow wrap descriptions to work when pasted into subclasses.

Frequently, the foundation classes that we want to wrap have an inheritance relationship. Let’s
suppose that we want to wrap a class called Printablel ntStack. This new class is a subclass of the
IntStack class that we discuss in the example in Section 1.2.2, and it adds the method

get Pri nt Stri ng toitsinterface, which returns a string that describes the stack.

Using only the features described in the previous section, we would have to create a new wrap file
that includes all of the wrap description of the existing DSintStack wrapped class referred to in
Section 1.1, but which has PrintablelntStack as its foundation classand get Pri nt Stri ng asa
published method. As you might expect, this leads to maintenance nightmares, especially since
wrapped classes often have more methods and members than DSintStack does.

Let’slook at this example two ways: first without inheritance and then with inheritance.

B.2.1 Example without Inheritance

noti ce

* $Header: /mit/ceci/ 1l aybee/ devl/doc/firstRel/RCS/
DSpri nt abl el nt St ackROsansl nheritance.wp,v 1.1 1995/06/02 21:23: 23 aybee Exp
aybee $

* Copyright 1993, 1994, 1995 Massachusetts Institute of Technol ogy.
* All rights reserved.

* AthenaMuse is a registered trademark of the Massachusetts

* |Institute of Technol ogy.

*/

f oundati on: | ntStack

wr apped: DSpri nt abl el nt St ack
nodul e: Exanpl eModul e
abstract: fal se

header

#i ncl ude <Printabl el nt St ack. h>
/*

* Printabl el nt Stack.h hypothetically includes sonething like...
#i ncl ude <Printabl el nt St ack. h>

class Printabl el nt Stack: public |IntStack

280 February 25, 1997

AthenaMuse 2.2 Documentation

{
public:
char* getPrintString();

#i ncl ude <control / EXnodul e. h>
#i ncl ude <control /DSprintabl el nt StackRO. h>
#i ncl ude <adl / ERsemanti c. h>

codeFr agnment s

{

constructor

menber s

{

private:

publ i shed:

nane

{
get: default
set: default

}

hei ght

{
get: custom
set: none

}
}

met hods
{
private:
voi d | ocal Destroy()

if (mpWapped)
del ete npW apped,;

February 25, 1997 281

AthenaMuse 2.2 Documentation

return npW apped- >get Hei ght () ;

publ i shed:
voi d Push(integer_t newTop)

/* effects: puts newTop on the top of the stack */
npW apped- >push(newTop);

/* returns: renoves top value fromthe stack and returns it */
assert(! npWapped->i senpty());
return nmpW apped- >pop();

/* effects: puts newTop on the top of the stack */
return nmpW apped->Get PrintString();

B.2.2 Example with Inheritance

noti ce

* $Header: /mit/ceci/ 1l aybee/devl/doc/firstRel/RCS/ DSprintablelnt-
StackRO. wrp,v 1.1 1995/06/02 21:23:23 aybee Exp aybee $

* Copyright 1993, 1994, 1995 Massachusetts Institute of Technol ogy.
* All rights reserved

* AthenaMuse is a registered trademark of the Massachusetts

* |Institute of Technol ogy.

*

f oundati on: Printabl el ntStack

wr apped: DSpri nt abl el nt St ack
nodul e: Exanpl eModul e
abstract: fal se

header

#i ncl ude <Printabl el nt St ack. h>
/*
* Printabl el ntStack.h hypothetically includes sonething |ike..

*

282 February 25, 1997

AthenaMuse 2.2 Documentation

#i ncl ude <Pri nt abl el nt St ack. h>

*

*

* class Printabl el nt Stack: public |IntStack
A

* public:

* char* getPrintString();

*

*

*

#i ncl ude <control / EXnodul e. h>
#i ncl ude <control /DSprintabl el nt StackRO h>
#i ncl ude <adl / ERsemanti c. h>

super cl asses

{
DSi nt St ack

}

codeFr agnment s

{

constructor

npW apped = new Print abl el nt St ack;

}

met hods

{

publ i shed:

UTstring GetPrintString()

/* effects: puts newlTop on the top of the stack */

return nmpW apped->Get PrintString();

B.2.3 An Explanation of the Wrap Inheritance Description

For a discussion of the notice, wrapped, module, and abstract fields, see Section B.2.3, “An

Explanation of the Parts of a Wrap File” page 274.

February 25, 1997

283

AthenaMuse 2.2 Documentation

Superclasses

This section of the description lists the wrap descriptions that are superclasses for this class. See
Section B.2.2, “Example with Inheritance” page 282 for the format for specifying superclasses.
Each line between the brackets should contain the name of a superclass description.

The wrap script uses each superclass name listed to find the corresponding description. It looks
for afile named “ superclassNameRO.wrp” somewhere in the wrap path. In our example, the
wrapper looks for DSi nt St ackRO. wr p. The wrapper ensures that the ADL run-time engine
thinks of each listed class as a superclass of the given class.

Foundation: and FoundationRO:

To allow descriptions to inherit the code from their superclass descriptions, it is necessary that all
code that manipulates the npW apped member work with the npW apped member of the sub-
classaswell. For this reason, a wrap description can inherit only from awrap description whose
foundation classisavoid or a C++ superclass of its foundation class. This provides the required
C++ type safety since the wrap script is not intelligent enough to check this relationship at wrap-
time. It generates code that attempts to cast from a NULL pointer to the subclass's
WRAP_FOUNDATION to a pointer to the superclasses s WRAP_FOUNDATION. If the foun-
dation classes do not have the proper relationship, this code intentionally causes a compile-time
error; if al goeswell, the compiler lists the error as occurring on the line containing the founda-
tion declaration.

For example, DSprintablelntStack is a subclass of DSintStack. Their foundation classes are
PrintablelntStack and IntStack, respectively, so PrintableStack must be a subclass of IntStack.
The code that the wrap script generates to check the pointer typesis as follows:

(IntStack*) tenmpPtr = (PrintablelntStack*) NULL;

Header and Source Sections

Subclasses inherit the contents of the header and source sections of their superclasses by concate-
nation. These sections appear in an order that ensuresthat a class' header section does not appear
until after the header sections of its supercl asses.* We refer to this as the proper order.

Members

A subclass inherits members. The wrap script places the contents of the member section of a
superclass of awrapped classin the subclassin the proper order. Subclasses cannot have members
with the same name as their superclasses members. The wrap script detects duplicate published
member names, but since the wrapper does not interpret the contents of the C++ member sections,
duplicatesin those sections are not be caught until compile-time. Note that members are placed at
the same protection level asin the superclass and are not moved to another level asin C++ sub-
classes. That is, inherited private members are listed as private members of the subclass and are
accessible to that class.

4 The ActivityManager classis an exception. To work around a bug in the HP compiler having to do with tem-

plates and the order in which they and their declarations are seen, the source section of the ActivityManager
classisalways placed last in its subclasses.

284 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

A subclasses inherits methods, and it is possible to override inherited methods. Providing a
method with the same name as a method provided by a superclass overrides that method. Just as
inthe ADL, methods are inherited in adepth-first fashion. Unlike the ADL, local methods (such as
ADL constructors) are inherited. Thisisto encourage wrap class writers to provide a consistent
ADL constructor interface.

Thecontentsof const ruct or andconst r uct or Fr onfFoundat i on arenot inherited. Thisisin
keeping with the C++ treatment of constructors, and it is partly attributable to the special meaning
of the mpW apped member. No matter how many wrapper descriptions a class inherits from, it
has only one mpW apped member. The wrap script providesthe pr eConst r uct or and wr ap-
pedl sReady fragments (which are inherited by concatenation in the proper order) to allow a
superclass to initialize its members before and after npW apped is constructed and ready for
operation.

Useful Details

In addition to defining WRAP_FOUNDATION and WRAP_FOUNDATION_PTR, as described
above, the wrapper provides WRAP_IS ABSTRACT and WRAP_IS ADLSUBCLASSABLE,
which are either O (false) or 1 (true) depending on whether or not the wrapped classis abstract and
adl Subclassable respectively.

In an effort to cut down on the size of wrapped classes, the wrapper does not completely fill out
the class description for abstract, non-adl Subclassabl e classes since no instances of them will ever
be created. We call those ANAS classes. In addition, it does not include all of the inherited header
and source declarations. Unfortunately, hidden in the source sections are the includes of the gen-
erated header file and the include of the module in which the classis generated. Instead of includ-
ing the whole source section to provide the correct include statements, the wrapper uses some
heuristics to find and include only the needed include directives.

It is possible that the wrap script’ s attempted short cuts will be too effective and break something.
The optional wrap directive ANAScut s: bool ean keepsthe wrapper from taking short cutsin
any classfor whichitissettot rue, aswell asin all of its subclasses. Thisfeatureis provided
only as an escape hatch in the unlikely event that the heuristics fail. If you have to use this escape
hatch, please let us know.

5 Itasoabi g winin large wrapped hierarchies, such as the X Fwidgets, where we do not have to respecify the

ADL constructor over and over again.

February 25, 1997 285

AthenaMuse 2.2 Documentation

B.3 The Wrap Script and the Macintosh

The wrapper generates code for the Macintosh. This involves three things:
1) #pr agma once goesin the generated .h file as follows:

#i f def maci nt osh
#pragna once
#endi f // maci ntosh

2) The three random code blocks (not i ce, sour ce, and header) go in the code in the follow-
ing template:

#i fdef nmaci ntosh
macSecti on

#el se // macintosh
nor mal Secti on
#endi f // macintosh

Thewrap script writes nor mal Sect i oninthe. wr p file, and treatsmac Sect i on the same, with
the include statements corrected for the Macintosh. This correction involves dropping all direc-
tory specifications in the lines of the include statement, except for those of the Rogue Wave™
classlibrary. For example:

#i ncl ude <util s/ UTtypes. h> becomes #i ncl ude <UTtypes. h>
#i ncl ude <UTtypes. h> remains #i ncl ude <UTtypes. h>
#i ncl ude <rw/ cstring. h> remains #include <rw/ cstring. h>

3) The wrap script adds #pr agnma segnment commands to the generated .cc file. The default
segment for all methodsin thefileisthe same as the name of the wrapped class. The wrapper adds
the following to the top of each generated . cc file (with the correct name substituted for X Fbut-
tonRO).

#i f def maci ntosh
#pragm segnent XFbuttonRO
#endi f // macintosh

To handle future optimization on the Macintosh, you can specify a segment for each method by
preceding the signature with the desired name enclosed in square brackets. For example:

[your Segnent NanmeHer e] UThandl e request Cont ai ner (UThandl e hParent)
Note that the segment names set this way have effect only for that particular method.

286 February 25, 1997

AthenaMuse 2.2 Documentation

B.3.1 Command Line Interface
The following is an example of using the wrapper. The command line:

$(TOOLS DI R)/wrap $(WRAPFLAGS) XFbuttonRO. wrp $(WRAP_H DIR) $(WRAP_CC DI R)
causes the wrapper to generate:

$(VWRAP_H DI R)/ XFbut t onRO. h
$(WRAP_CC DI R)/ XFbut't onRO. cc

The wrapper exits with zero status if it completes successfully, and with a non-zero statusiif there
isaproblem. The remaining sections cover the legal flags for the wrap script: +depend, - 1 , -
mac, and +Wdi r ect ory.

+depend

The wrapper does not generate its usual C++ header and source files when given the +depend
flag. Instead, it outputs make-style dependencies for the source file it would have generated. For
instance, the wrapper generates the following dependencies for the generated X FbuttonRO.cc file.

./ XFbuttonRO. cc: ../../generic/src/ActivityManager RO wrp

./ XFbuttonRO. cc: ../../generic/src/AttributeManager RO wrp
./ XFbutt onRO. cc: ./ XFwi dget RO. wrp

./ XFbut t onRO. cc: ./ XFcont ai nabl eRO. wr p

./ XFbutt onRO. cc: ./ XFsi npl eRO. wrp

./ XFbut t onRO. cc: ./ XFfont abl eRO wrp

./ XFbut t onRO. cc: ./ XFl abel RO wr p

./ XFbut t onRO. cc: XFbutt onRO. wrp

The wrap script attempts to trick the compiler into reporting errors related to the . wr p file,
although this mechanism is not always perfect. If you really cannot see the problem at aline, you
may usethe- | flag to turn off line numbering. With the - | flag, the compiler reports errors
whereit thinks they occur in the generated . h and . cc files. Note that you have to rewrap thefile
for the thisflag to be useful.

-mac
By default, the wrapper creates code for the Macintosh platform. Using the - mac flag suppresses
this behavior in case you ever have to read the generated files.

+Wdirectory

The +Wdi r ect or y argument appendsdi r ect or y to the search path that the wrap scripts uses
when it triesto find files describing superclass descriptions. It isthe analog of the- | flag used by
C/C++ compilers.

February 25, 1997 287

AthenaMuse 2.2 Documentation

288 February 25, 1997

Index

Symbols

I operator 21

I operator 20

I= operator 20

% operator 20

& operator 21, 22
and handles 39

& & operator 21

order of evaluation 19

() delimiters 19

() operator 21

(] delimiters 19

* operator 20, 21, 25
and handles 39

+ operator 20, 22

. operator 21, 52

/ operator 20

[* comments 14

/I comments 14

. operator 18, 20

.2 operator 21

< operator 20

<< operator 22, 23, 31

<= operator 20

== operator 20
in indexed array 25

=> operator 23

-> operator 21, 52
and handles 39

> operator 20

>= operator 20

>> operator 23, 31

? operator 23
and unset values 28
inarrays 27

?=> operator 23

?}> operator 23

@ operator 24

[] delimiters 19

[> delimiters 19

{} delimiters 16, 19

|> operator 23

|| operator 21

order of evaluation 19

February 25, 1997

AthenaMuse 2.2 Documentation

A
abstract field
inwrap file 275
abstract wrapped class
See wrapped class: abstract
access control 41
in wrapped classes 45
access to members
in creating awrapped class 278
acos() built-in function 267
activities 60
and buttons 60
creating new 72
for subscription notification 80
in wrapped classes 112
inheritance and 70
keys 63
management of 59, 70
mouse events 63
system-defined wrapped classes 113
activities and application services
classinheritance tree 114
ActivityManager class 70, 116
inheritance example 76
inheriting from 75
Moveable class example 77
addition operator 20
address of operator 21
ADL
design decisions 5
ADL class
See class: user-defined
ADL sample programs
image viewer class 88
picture button class 92
toggle button class 81
video viewer class 99
adl Subclassable field
inwrap file 276
ANAS class 285
and operator 21
animated visuals
objects 191
anonymous keyword
in class definition 41
any keyword 18

289

AthenaMuse 2.2 Documentation

append operator 22
application scope 52
application services

system-defined wrapped classes 113
applications

ADL description of 49

at runtime 3

customization of 54

parts of 3

portability of 54
arithmetic operators 20
array elements 27
array operators 23
arrays

associative 26

indexed 25
asin() built-in function 267
asset blocks

class54

global 54

member 54
asset manager

ininitialization 50
assets 54

and application structure 3

and inheritance 56

and libraries 55

and precedence 56

examples 56

file structure 54

on platforms 54

short definition 3
assignment

examples 25

in type conversion 28

indexed array as target 25

short definition 3
associative arrays 26

example 27
asynchronous message 30
asynchronous message operator 23
atan 267
atan() built-in function 267
atan2() built-in function 268
AttributeManager class 118
audio 187

February 25, 1997

audio gain 180
AVwaveForm wrapped class 189

B
base type constants 15
short definition 3
base types 14
and new operator 37
short definition 3
boolean base type 14
boolean constants 15
boolean operators 21
order of evaluation 19
built-in function call operator 21
built-in function calls 29
examples 29
listing of 261
short definition 3
type conversion in 28
button
Pressed attribute 60, 62
push 141
radio 144
sample program 60, 61
toggle 142, 143, 144

C
C++ class
how to wrap 272
visibleto ADL 271
C++ compared to ADL 5
access control 41
arrays and pointersin C++ 26
assignment 25
class definition 40
commenting 14
control structuresin ADL 33
doublein C++ 15
formatting 14
longin C++ 14
multiple inheritance 48
operator set 19
pointersin C++ 15, 40
staticin C++ 18, 41
virtual functionsin C++ 48
C++ protection levels

290

AthenaMuse 2.2 Documentation

in creating awrapped class 278, 279
canConvert() built-in function 264
ceil() built-in function 268
channel selection 180
class

built-in function calls 269

hiding a41, 47

mix-in 49, 75

subclass 41

system-defined 40, 44

user-defined 40, 44
class asset blocks 54
class definition 40

examples 40

short definition 3
classinheritance tree

activities and application services 114

input/output module 199

mediamodule 172

user interface module 123
class keyword 40
class name

and scope 45, 52

in object definition 34
className() built-in function 269
classOf operator 22

in metaclass operations 43
Clone method 37
clone object operator 22, 37
code fragments

inwrap file 276
commands, external

execution of 233
comments

inwrap script 272

multi-line 14

single-line 14
common data member 18, 41
common method 42
complex types 25

short definition 3
compound types 16

and new operator 37

short definition 3
compute order

changing 19

February 25, 1997

concatenate list operator 22
concatenate string operator 22
concatenate with space operator 22
cond control structure 33
Construct system message 47, 50
constructor fragment
and inheritance 285
inwrap file 276
constructor method
Construct 61
Create 62
in wrapped classes 111
syntax of 51
constructorFromFoundation fragment
and inheritance 285
inwrap file 277
container
for widgets 128, 131
control flow 33
control structures 33
short definition 3
conversion
built-in function calls 262
cos() built-in function 267
cosh() built-in function 268
ctor keyword 279
customization of applications 54

D
data structures

system-defined wrapped classes 255
database

objectsin 244

system-defined wrapped classes 239
database connection

external 243
database query 247
date

built-in function call 262
DBcursor wrapped class 243, 244
DBdatabase wrapped class 240, 243, 244
DBdate wrapped class 247
DBmonetary wrapped class 254
DBquery wrapped class 247
DBset wrapped class 245, 249, 250, 251
DBtime wrapped class 252

291

DBtimestamp wrapped class 253
delete operator 22
and objects 36, 38
delimiters
compute order 19
interval pairs 19
lists 19
dereference operator 21
derived keyword 48, 75
destroy method
and delete operator 38, 74
in wrapped classes 112
use of 74
Destroy system message 47
destruction of objects 38
and inheritance 47
destruction of variables 18
in assignment 25
dialog box
for messages 136
digital audio 187
directory names
in asset files 55
display surface
for HTML objects 134
for media objects 133
division operator 20
DSdictionary
See arrays
DSqueue wrapped class 255
DSstack wrapped class 257
dynamic object creation 54
and global asset blocks 55
examples 37
short definition 4

E

€() built-in function 269
echo() built-in function 261
equal operator 20

error handling methods

for mathematical built-in functions 115

event loop

interaction with 115
exp() built-in function 267
expressions

February 25, 1997

AthenaMuse 2.2 Documentation

example 24
short definition 4
external commands
and input streams 235
and output stream 236
and process filter 235
execution of 233
external process
input and output streams 207
system-defined wrapped classes 233
extract() built-in function 265

F
fabs() built-in function 268
file streams
event notification 201
files
name specification 206
find() built-in function 265
first() built-in function 264
floor() built-in function 268
fmod 268
fmod() built-in function 268
font object 164
fonts 138
for i in array control structure 33
for i inlist control structure 33
foreign assignment 38
foreign characters
See XFfont wrapped class
formatting 14
forward statement 43
foundation class 272
foundation field
in inheritance description 284
inwrap file 275
foundationRO field
in inheritance description 284
inwrap file 275
fractionPart() built-in function 268
FTP
data entity 222
input data stream 225
protocol support 212
request structure 219
function operators 21

292

G
get operation

in creating awrapped class 278

get operator 23, 31

GetLibrary method 55
getType() built-in function 264
global asset blocks 54

global keyword 52

greater than operator 20

greater than or equal to operator 20

H
handle base type 15
handle constants 16
handle operators 21
handles 49
and wrapped classes 46
built-in function calls 269
to objects 16, 39
to variables 39
header section
in inheritance description 284
inwrap file 276
hostName() built-in function 270
HTTP
data entity 222
input data stream 227
protocol support 215
request structure 220

|
identifiers 14
short definition 4
Idle activity 116
idle time work procedures
subscription for 115
image
classes supported in AM2 184
image viewer class 88
sample program 91
indexed arrays 25
example 26
inheritance 47
built-in function calls 269
example of 71
lookup 48

February 25, 1997

AthenaMuse 2.2 Documentation

member concealment 47
method conceal ment 48
multiple 48
order in 284
short definition 4
inherited keyword 47, 48
init method
in wrapped classes 112
Init system message 47, 50
initialization 49
and inheritance 47
example 50
short definition 4
initializor block 50
and new operator 37
and scope 52
in object definition 35
input and output selection for media 180
input/output
built-in function calls 261
system-defined wrapped classes 199
input/output module
classinheritance tree 199
integer base type 14
integer constants 15
integerPart() built-in function 268
interval compound type 17
example 18
interval constant 17
interval pairs
formation of 19
| OactNotify wrapped class 201
| Ofile wrapped class 205
| OfileSpec wrapped class 206
| Oftp wrapped class 212
| OftpEntity wrapped class 222
| OftpRequest wrapped class 219
| OftpStream wrapped class 225
| Ohttp wrapped class 215
| OhttpEntity wrapped class 222
| OhttpRequest wrapped class 220
| OhttpStream wrapped class 227
|OnwNotify wrapped class 201
| Opipe wrapped class 207
| Ostream wrapped class 202
| Ourl wrapped class 208

293

AthenaMuse 2.2 Documentation

|Oweb wrapped class 211

| OwebEntity wrapped class 221

| OwebRequest wrapped class 218

| OwebStream wrapped class 223
isamember of interval operator 20
is element operator 23

isnot amember of interval operator 20
isvalue set operator 23

isAlpha() built-in function 265
isBoolean() built-in function 264
isDirectBaseOf() built-in function 269
iIsEmpty() built-in function 265
isHandle() built-in function 264
isinteger() built-in function 264
isinterval () built-in function 264
isinterval () built-in function 264
isKindOf() built-in function 44, 269
isList() built-in function 264

isReal () built-in function 264
isString() built-in function 264
isTime() built-in function 264
isvalid() built-in function 269
isVtype() built-in function 264

L
labels
See XFfont wrapped class
length() built-in function 265
less than operator 20
less than or equal to operator 20
lexical conventions
inthe ADL 14
inwrap script 272
short definition 4
libraries
in assets 55
short definition 4
library names
in asset files 55
list compound type 16
list operators 22
list selection 148
lists
and unset values 28
examples 17
formation of 19

February 25, 1997

local keyword 279
local method 42, 47
local scope 52
local Date()built-in function 262
local Time()built-in function 262
log() built-in function 267
0g10() built-in function 267
Ivalue
and handles 15
and stream operators 31
inarrays 27
in assignment 25
in object member reference 38

M
managing activities
See activities: management of
mathematical built-in function calls 266
M Capplication wrapped class 115, 118
media
HTML objects 195
non-sequential 184
objects 182, 191
sequential 176
system-defined wrapped classes 171
time-based 176
visual 174
media module
classinheritance tree 172
MEgif images 184
ME;jpeg images 184
member access
in creating awrapped class 278
member asset blocks 54
member operators 21
members
in inheritance description 284
in wrapped classes 112
protection of 51
referenceto 45, 51
members section
inwrap file 277
menu 160
commands 161
items 159
labeled items 159

294

AthenaMuse 2.2 Documentation

separators 162
MEpbm images 184
MEphotoCD images 184
message dialog box 136
message list

in method definition 41
message operators 23, 30
message prototype

in method definition 41
messages

asynchronous 30

examples 30

parts of 30

short definition 4

synchronous 30

type conversion in 28
metaclass operations 43

short definition 4
metaclass operators 22
method definition 41

examples 42

short definition 4
method description

in creating awrapped class 279
method invocation

and wrapped classes 46
methods

and inheritance 285

in inheritance description 285

in system-defined wrapped classes 112

methods published in wrapped class
arguments and return types 279
methods section
inwrap file 279
MEtiff images 184
MExbm images 184
mix-in class 75
MLtop wrapped class
See XFtop wrapped class
MMaudioControl wrapped class 180
MM base wrapped class 173
MM broker wrapped class 182
MM control wrapped class 183
MMdigital Audio wrapped class 187
MMhtml wrapped class 195
MMimage wrapped class 184

February 25, 1997

MMmovie wrapped class 191

use of 99
MMtemporal wrapped class 176
MMvidDiscPlayer wrapped class 193
MMyvisual wrapped class 174
module field

inwrap file 275

MouseNro wrapped class 65, 115, 116, 118,

120
multiple inheritance 48
and scope, example 49
multiplication operator 20

N
naming
and wrapped classes 46
native assignment 38
network streams
event notification 201
XDR data representation 229
networking
built-in function calls 270
new operator 22, 36, 44
not equal operator 20
not operator 21
notice section
inwrap file274
notification request objects 62
and timers 67
customi zation example 79
customized 78
definition of 62
example of 64
receiving method arguments 63
special classes 65
Suscribe method 62
Unsuscribe method 62
wrapped class 118, 120, 121
NRO
See notification request objects
Nro wrapped class 62, 78, 118
null values 27

O
object creation operator 22
object declaration

295

See object definition
object declarator 34
object definition 34

form of 34

short definition 4
object destruction operator 22
object member reference

See also members: reference to

short definition 4
object operators 22
objects

and assignment 25, 36

and handles 16

and new operator 36

and scope 36

as argument in message 31

destruction of 4, 38

dynamic creation of 36

handles 39

in database 244

initialization 49

not allowed in lists 16
on keyword

in method definition 41
opaque scope 52
operators

arithmetic 20

array 23

boolean 21

function 21

handle 21

list 22

member 21

message 23

metaclass 22

object 22

relationa 20

stream 23, 31

string 22
or operator 21
order

in inheritance 284
overloading

of selectors 42

February 25, 1997

AthenaMuse 2.2 Documentation

P
parent keyword 40
pi() built-in function 269
picture button class 92
sample program 98
polymorphism 49
postDestroy
inwrap file 277
pow 266
pow() built-in function 266
preConstructor fragment
inwrap file 276
preDestroy
inwrap file 277
presentations 171
presentationlD 171
Pressed attribute
of button 60, 62
sample program 60, 61
process filter 235
program structure 58
short definition 4
promotion
type conversion in 28
protection levels

in creating awrapped class 278, 279

push button 141
put operator 23, 31

Q
queue 255

R

random ()built-in function 267, 268, 269

random() built-in function 266
read() built-in function 261
real basetype 15
real constants 15
relational operators 20
remainder operator 20
remove operator 23

inarrays 27
resource resolution operator 24
rest() built-in function 265
return keyword 42
runtime type checking example 43

296

AthenaMuse 2.2 Documentation

rvalue
in indexed array 25

S
scope 52
and class name 45, 52
and member reference 52
application 52
example 53
local 52
opaque 52
problemsin 52
short definition 4
transparent 52
scope pair 47
scope resolution operator 21
use of 47
scrolling area 156
selection
from list 148
selector
in message 30
in method definition 41
overloading of 42
self keyword 47, 48
and wrapped classes 46
in method definition 42
send asynchronous message operator 23
send message operators
overloading of 19
send optional asynchronous message operator
23
send optional synchronous message operator
23
send synchronous message operator 23
sender keyword 42
sequences
built-in function calls 264
services, application
system-defined wrapped classes 113
Set operation
in creating awrapped class 278
Set methods 38, 41
SetAttributes
cal 39
method 39, 52

February 25, 1997

SetLibrary method 55
simpleNro class 69
sin() built-in function 267
sinh() built-in function 268
sink
for HTML objects 134
for media objects 133
SND audio format 187
source section
in inheritance description 284
inwrap file 276
special constructor
and inheritance 78
and new operator 37
and SetAttributes method 39
in object initialization 50
split() built-in function 265
sgrt() built-in function 266
stream operators 23, 31
streams
and external process 207
event notification 201
network 229
string base type 15
string constants 16
string operators 22
strings
built-in function calls 265
examples 16
subclass
creation of 45
subtraction operator 20
Sun au audio format 187
superclasses
in inheritance description 284
synchronous message 30
synchronous message operator 23

T
tan() built-in function 267
tanh() built-in function 268
text 151, 153
text label 139
theApp 115

and timers 67
theAppClass 58, 115

297

AthenaMuse 2.2 Documentation

theClass operator 22
theHeap keyword 40
Tick activity 116
time

built-in function call 262
time compound type 17
time-based media 176
TimerNro wrapped class 67, 121

sample program 68
timers67, 116

subscription for 115
toBoolean() built-in function 262
toggle button 143
toggle button class 81

sample program 86
tolnteger() built-in function 28, 262
tolnterval() built-in function 263
toList() built-in function 263
toLower() built-in function 266
top level

for widgets 129
toReal() built-in function 28, 263
toString() built-in function 263
toTime()built-in function 263
toUpper() built-in function 266
transparent scope 52
type checking

ADL handles 44
type constants 16
type conversion 28

short definition 4
type query

built-in function calls 264

U
unary minus operator 20
unary plus operator 20
Uniform Resource L ocator
See URL
UNSET constant 27
example 28
unset values 27, 30
and wrapped classes 46
upon keyword 51, 279
URL object
user interface

February 25, 1997

system-defined wrapped classes 123

user interface module

class inheritance tree 123

userName() built-in function 270
uses statement 58

\%

forms of 58

vanillaNro class 69
variables

definition of 4, 18
definition of, example 18
destruction of 18

video

device controller 193
objects 191

video viewer class

sample program 99

viewing area 156
void as foundation class

in wrap script 275

vtype base type 15

W

WAV audio format 187
widget containment

in ADL 51
See also containers

widgets

base 125

button 141

container for 131
display surface 133
HTML documents 134
message dialog 136
multiple-line text 151
scroll bar 156
selection list 148
simple 138

single-line text 153
text label 139

toggle button 142, 143, 144
top level 129

work procedures

idletime 116

World-Wide Web

298

AthenaMuse 2.2 Documentation

data entity 221
input data stream 223
protocol support 211
request 218
URL object 208
wrap file
explanation of parts 274
wrap script
and the Macintosh 286
command line interface 287
inheritance model 280
model for 271
WRAP_FOUNDATION macro
inwrap script 275
WRAP_FOUNDATION_PTR macro
inwrap script 275
wrapped asset manager
and library mappings 55
wrapped class 44
abstract 45, 276
and handles 46
and method invocation 46
and naming 46
and self keyword 46
as object in current scope 36
in metaclass operations 43
inheritance description 283
member access 45
wrapped class, creation of 271
and inheritance 276
example with inheritance 282
example without inheritance 280
members and protection levels 278
methods and protection levels 279
publishing members 278
publishing methods 279
wrapped class, system-defined
activities and application services 113
data structures 255
database 239
external processes 233
input/output 199
listing of 111
medial7l

February 25, 1997

user interface 123
wrapped field

inwrap file 275
wrapped objects 46
wrappedisReady fragment

inwrap file 277
wrappedisReady() function

and inheritance 277

wrapper
See wrap script

X
XFbutton wrapped class 60, 136
Pressed activity 60
sample program 60, 61
XFcheckBox wrapped class 143
XFcontainable wrapped class 128

XFcontainableContainer wrapped class 129

XFcontainer wrapped class 128
XFfont wrapped class 164
XFfontable wrapped class 138
XFhtml wrapped class 134

XFlabel wrapped class 139

XFlayout wrapped class 131
XFmenu wrapped class 160
XFmenuCommand wrapped class 161
XFmenultem wrapped class 156
XFmenuL abel editem wrapped class 159
XFmenuSeparator wrapped class 162
XFmessageDIg wrapped class 136
XFradioButon wrapped class 144
XFscrollBar wrapped class 156
XFselectList wrapped class 148
XFsimple wrapped class 138

XFtext wrapped class 60, 151, 153
XFtoggleButton wrapped class 142
XFtop wrapped class 129

XFwidget wrapped class 125
XGpainter wrapped class 167
XNstream wrapped class 229
XTcommand wrapped class 233
XTprocFilter wrapped class 235
XTprocSink wrapped class 235
XTprocSource wrapped class 236

299

