
C E C I

AthenaMuse® 2.2

Documentation

December, 1996

MIT AthenaMuse Software Consortium
Massachusetts Institute of Technology

Center for Educational Computing Initiatives 1 Amherst Street, Building E40-300 Phone 1 617 253 0173
Massachusetts Institute of Technology Cambridge, Massachusetts 02139-4307 Fax 1 617 258 8736

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

Written by

Wissam Ali-Ahmad
Philip Bailey
Issam Bazzi

Ana Beatriz Chiquito
Katherine Curtis

Robert Deroy
William Euerle

Adam Feder
Judson Harward

Mary Hopper
Cesar Hurtado

Masanori Kajiura
Justin Lapierre
Li Wei Lehman
Steven Lerman

Margaret Meehan
Cyril Morcrette

Kimberly Ringer
Yonah Schmeidler
Hiroshi Tominaga

Sigmund Tveit
Juan David Velasquez

of the

MIT AthenaMuse Software Consortium

This documentation should not be reproduced or redistributed without the written consent of the

AthenaMuse Software Consortium
E40-300

Massachusetts Institute of Technology
Cambridge, MA 02139

®AthenaMuse is a registered trademark of the Massachusetts Institute of Technology

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

i

Table of Contents

Chapter 1: Overview... 1
1.1: Organization of This Document .. 2
1.2: The Structure of an Application .. 2
1.3: Road Map to the ADL .. 3
1.4: AM2 Philosophy... 5

Chapter 2: Hello, World ... 7
2.1: Your First AM2 Program... 7
2.2: Explanation .. 8

Chapter 3: The Application Description Language .. 13
3.1: Lexical Conventions .. 14
3.2: Identifiers ... 14
3.3: Base Types... 14
3.4: Base Type Constants.. 15
3.5: Compound Types... 16
3.6: Variable Definitions... 18
3.7: Expressions .. 19

Delimiters ... 19
Operators .. 19

3.8: Assignment .. 25
3.9: Complex Data Types ... 25
3.10: Unset Values .. 27
3.11: Type Conversion.. 28
3.12: Built-in Function Calls .. 29
3.13: Messages.. 30
3.14: Stream Operators ... 31
3.15: Control Flow.. 33
3.16: Object Definition ... 34
3.17: Dynamic Objects and Storage Management.. 36
3.18: Object Destruction ... 38
3.19: Object Member Reference... 38
3.20: Class Definition ... 40
3.21: Method Definition ... 41
3.22: Metaclass Operations... 43
3.23: Wrapped Classes... 44

 Scope of a Class Name ... 45
 Creating an Instance of a Class.. 45
 Creating a Subclass ... 45
 Member Access ... 45
 Method Invocation .. 46

ii

AthenaMuse 2.2 Documentation

3.24: Inheritance ... 47
3.25: Object Initialization ... 49
3.26: Scope.. 52
3.27: Assets ... 54
3.28: Program Structure .. 58

Chapter 4: Using Activities in ADL .. 59
4.1: Using the Pressed Attribute ... 60
4.2: Using Notification Request Objects .. 62
4.3: Using Other Types of System-defined NRO Classes .. 65

Mouse NROs .. 65
Timer NROs ... 67

4.4: NROs Derived from System-defined NROs.. 69
4.5: Creating ADL Classes That Manage Activities ... 70

Inheriting An Existing Activity From a Class That Manages Activities 70
Creating a New Activity .. 72
Creating Classes That Inherit From the ActivityManager Class 75

4.6: Creating Customized NROs .. 78
4.7: Using Activities for Notification of Subscriptions .. 80

Chapter 5: Example ADL Programs.. 81
5.1: Toggle Button Class .. 81

ADL Implementation of the ToggleButton Class .. 82
An Example of Using the ToggleButton Class .. 86
Implementation Options .. 87

5.2: A Simple Image Viewer Class... 88
ADL Implementation of the Viewer Class ... 88
Example Use of the Viewer Class ... 91

5.3: A Picture Button Class... 92
ADL Implementation of the PictureButton Class .. 93
An Example Using the PictureButton Class .. 98

5.4: A Video Viewer Class ... 99
ADL Implementation of the VCR class ... 99

Chapter 6: Wrapped Class Reference ... 111
6.1: Activities and Application Services... 113

MCapplication - Abstract ... 115
Activity Manager - Abstract .. 116
Attribute Manager - Abstract .. 118
Nro ... 118
MouseNro .. 120
TimerNro ... 121

6.2: User Interface... 123
 XFwidget - Abstract .. 125
XFcontainable - Abstract ... 128

AthenaMuse 2.2 Documentation

iii

XFcontainer - Abstract ... 128
XFcontainableContainer - Abstract ... 129
XFtop ... 129
XFlayout .. 131
XFvisual ... 133
XFhtml ... 134
XFmessageDlg ... 136
XFsimple - Abstract ... 138
XFfontable - Abstract .. 138
XFlabel ... 139
XFbutton .. 141
XFtoggleButton - Abstract ... 142
XFcheckBox .. 143
 XFradioButton .. 144
XFselectList ... 148
XFtext .. 151
XFtextField .. 153
XFscrollBar .. 156
XFmenuItem - Abstract ... 159
XFmenuLabeledItem - Abstract .. 159
XFmenu ... 160
XFmenuCommand ... 161
XFmenuSeparator .. 162
XFfont .. 164
XGPainter .. 167

6.3: Multimedia... 171
MMbase - Abstract .. 173
MMvisual - Abstract .. 174
MMtemporal - Abstract ... 176
MMaudioControl - Abstract .. 180
MMbroker .. 182
MMcolor .. 183
MMimage ... 184
MMdigitalAudio .. 187
AVwaveForm ... 189
MMmovie .. 191
MMvidDiscPlayer (only on UNIX) ... 193
MMhtml ... 195

6.4: Input/Output... 199
IOactNotify .. 201
IOnwNotify .. 201
IOstream - Abstract .. 202
IOfile .. 205
IOfileSpec .. 206
IOpipe .. 207
IOurl ... 208

iv

AthenaMuse 2.2 Documentation

IOweb - Abstract .. 211
IOftp ... 212
IOhttp ... 215
IOwebRequest - Abstract ... 218
IOftpRequest .. 219
IOhttpRequest .. 220
IOwebEntity - Abstract .. 221
IOftpEntity ... 222
IOhttpEntity ... 222
 IOwebStream - Abstract ... 223
IOftpStream ... 225
IOhttpStream .. 227
XNstream ... 229

6.5: External Processes ... 233
XTcommand .. 233
XTprocFilter (only on UNIX) .. 235
XTprocSink (only on UNIX) ... 235
XTprocSource (only on UNIX) ... 236

6.6: Database... 239
DBdatabase .. 240
DBclass .. 243
DBobject .. 244
DBset ... 245
DBcursor .. 246
DBquery ... 247
DBbinary .. 249
DBmedia .. 250
DBimage .. 251
DBdate ... 251
DBtime ... 252
DBtimestamp ... 253
DBmonetary.. 254

6.7: Data Structures... 255
DSqueue ... 255
DSstack .. 257

Appendix A: Built-In Functions for ADL .. 261
A.1: Notation .. 261
A.2: Function Descriptions ... 261

Appendix B: Creating Wrapped Classes .. 271
B.1: Wrap Script Model.. 271
B.2: How to Wrap a C++ Class .. 272
B.2: Inheritance Model of the Wrap Script... 280
B.3: The Wrap Script and the Macintosh .. 286

AthenaMuse 2.2 Documentation

February 25, 1997 1

Chapter 1 Overview

AthenaMuse 2 (AM2) is a multimedia authoring tool designed for authoring by multiple users in a
heterogeneous, networked environment. The following if an outline of this chapter, which pro-
vides a brief introduction to AM2 and an overview of the document:

• Section 1.1, “Organization of This Document” page 2

• Section 1.2, “The Structure of an Application” page 2

• Section 1.3, “Road Map to the ADL” page 3

• Section 1.4, “AM2 Philosophy” page 5

At the heart of AM2 is a scripting language called the Application Description Language (ADL).
We conceived the ADL as the platform-independent storage format for AM2 application descrip-
tions. Our original intention was to build a series of direct manipulation editors to assist users of
all levels of programming experience in developing AthenaMuse applications. Only one such edi-
tor, a prototype layout editor, has been developed. Consequently, the ADL has also become the
primary authoring medium for AM2 applications.

One reason for the ADL’s effectiveness as a scripting language is that we designed it in concert
with the internal C++ classes that regulate the AM2 environment. An AM2 application at run-time
may be thought of as a collection of class instances that responds to user input like an automaton.
The ADL is a very economical description of the classes that are used to build that automaton. The
goal of this documentation is to explain how application developers can use the ADL to build the
classes necessary to implement a particular multimedia application. Our intended audience are
application developers. We assume some programming experience and familiarity with the gen-
eral principles of object-oriented programming, but knowledge of C++ is not necessary to use the
ADL. At times, however, in what follows, we will compare or contrast the ADL to C++ and Small-
talk to clarify its use to those familiar with these other object-oriented languages.

The AthenaMuse environment currently runs on three flavors of UNIX (SunOS 4.2.n, Solaris 2.5,
and HPP-UX 9) as well as on Win95 and Windows/NT 3.5.1. A preliminary version of Athena-
Muse runs on Macintosh System 7, but as of the date of this document, this version is not sup-
ported.

2 February 25, 1997

AthenaMuse 2.2 Documentation

1.1 Organization of This Document

To start you on the road to building that application we give you several types of information:

• Overview: a brief description of the structure of an application and the building blocks avail-
able to you in the ADL, plus a discussion of the ADL’s philosophy

• Hello World: provides a glimpse of AthenaMuse’s powerfully simple application description
language (ADL) before the more formal descriptions that will follow in later chapters

• Description of the ADL: the simpler, basic constructs of the language and the more complex
units made from these simpler ones

• Using activities in ADL: a description of the mechanism by which AM2 objects request noti-
fication of and respond to user actions and other external events, such as reaching the end of a
video segment in an application

• Annotated samples of ADL programs: for those who like to learn by association and exam-
ple, this section provides a series of programs of increasing complexity

• Wrapped class reference: description of the system-defined wrapped classes, including
accessible members and methods, supported activities and sample programs illustrating com-
mon uses of wrapped classes

• Creating wrapped classes: explanation of the use of the wrap script, a tool for system devel-
opers who want to make their own C++ classes available to the ADL

The AthenaMuse environment attempts to offer true application portability across the UNIX and
Windows platforms. This document will footnote platform dependencies where they exist.

Certain features were conceived as part of the original AthenaMuse design but have never been
implemented. While there is no guarantee that these features will be implemented in the future,
we have retained discussion of them in this document because the design of AM2 is usually more
comprehensible when they are included. All such features are clearly marked unimplemented.

1.2 The Structure of an Application

AM2 has two design goals that have affected the design of the application building environment:

1. The description of an application’s interface should be separate from the content presented.
For example, in a multimedia application that contains a video viewer you may want to use
the viewer many times, but each video clip viewed with it is tied to the particular context.

2. An application should be as portable as possible across platforms and environments so that
you can customize an application to suit a user’s background and preferences, and so that you
can take advantage of special features of a particular hardware configuration or operating sys-
tem. For example, an application may use the English language on interface controls as a
default, but it should also allow customization of the control labels in other languages. And
the application should request general services, such as a video source, and determine how to
access that source from a description of the system configuration.

AthenaMuse 2.2 Documentation

February 25, 1997 3

Satisfying these two goals suggests that an application consist of three distinct parts:

1. Application description specifies the application’s interface and functionality in as pure and
platform-independent a form as possible

2. Application content is stored separately from the application description

3. Customizations of the application, are stored separately so that the same application descrip-
tion can run with different sets of customizations (known in AM2 as assets)

In AM2, classes describe the application’s interfaces and functionality. At run-time, instances of
these classes are populated with content drawn from databases, files, network services, or the
application itself. The use of classes to specify interfaces encourages users to think in terms of and
to build with nested interface templates. The ADL’s rich set of features for initializing the
instances of these templates marries them to the content. The joining of the two forms the screens,
images, text fields, and buttons of the application. The initialization also contains a step that
allows the user to customize each instance (see Section 3.25, “Object Initialization” page 49).

1.3 Road Map to the ADL

The elements of the ADL are defined briefly here. Italicized terms refer to other ADL terms also
defined in this list.

• Assets allow a user to customize an application description using a special form of initializa-
tion.

• Assignment is a very simple type of statement that calculates the value of an expression and
assigns it to a variable.

• Base types are the simplest system-defined variable types used in the ADL, e.g., integer or
string.

• Base type constants are actual values of base typs that can be expressed in the ADL, e.g., 42
or “Hello, world!”.

• Built-in function calls are invocations of system-defined functions that can take arguments
and return a value. They help the user manipulate base and compound values in ways that
would be difficult if not impossible with expressions.

• Class definitions specify the members and methods of a class.

• Complex types are indexed collections of data of a specified type. The ADL supports both
indexed and associative arrays.

• Compound types are ADL data types built from base types. They include lists, times and
intervals.

• Control structures are built from statements and conditional expressions to form complex
statements that can change the course of an application’s execution. The if and the while
statements are examples of control structures.

4 February 25, 1997

AthenaMuse 2.2 Documentation

• Dynamic object creation provides a mechanism for the application developer to create
objects as needed at run-time.

• Expressions are built from constants, variables, and operators. They are used at
run-time to calculate new values.

• Identifiers name variables and classes in the ADL.

• Inheritance describes how one class builds on the members and methods of other classes.

• Initialization describes the various mechanisms for initializing class objects with their mem-
bers and inherited bases.

• Lexical conventions determine how to format the ADL in a file or on the screen, including the
mechanisms for embedding explanatory comments in a script.

• Libraries are collections of classes used as a starting point in building new classes, and the
application as a whole.

• Messages are sent to objects, which must possess the appropriate method to handle the mes-
sage. A message can be part of an expression if it returns a value or it can stand by itself as a
statement.

• Metaclass operations describe special operators and messages used to treat a class as a spe-
cial kind of object.

• Method definitions specify how messages with a particular selector, or name, are handled.

• Object definitions are similar to variable definitions. They specify class members or tempo-
rary objects in methods. An object definition can specify how the object is to be initialized at
run-time.

• Object destruction describes what happens when a defined object is destroyed automatically,
such as at the end of a method, or when a dynamic object is destroyed explicitly.

• Object member reference describes how to use parts of an object in expressions, assignment
statements, and messages.

• Program structure describes how this whole hierarchy of components can be used to gener-
ate complete applications.

• Scope governs the visibility of variables and objects, that is, the portion of the program where
their names are known.

• Type conversion specifies the rules the ADL uses to change the type of a value when it
encounters one type but needs another, or when the result of an expression could be of several
types. For instance, is the value of the expression 3.14159/2 an integer or a real?

• Variable definitions declare the developer’s intention to use a named variable within a given
context, or to initialize the variable to a particular value.

5 February 25, 1997

AthenaMuse 2.2 Documentation

1.4 AM2 Philosophy

AM2 uses a completely object oriented approach to provide a flexible and extensible multimedia
environment. Early design discussions focused on describing an object oriented paradigm and
deciding whether to use an existing language for implementation or to invent one. The design
team decided to create a new language called Application Description Language, based on C++.

The ADL is a means of specifying an entire AM2 application, with particular efficiency in describ-
ing user interface templates and their associated functionality. It also provides easy access to and
manipulation of the underlying system objects provided by the AM2 run-time environment.

The design team selected C++ as the AM2 implementation language both for its portability and
relative efficiency. While C++ is an extremely rich and complex programming language, the ADL
requires only a small subset of that functionality. The language features supported by the ADL are
both necessary to its task and sufficient to accomplish it. That is, the ADL supports the minimal
set of language constructs necessary to specify the general set of multimedia applications.

The ADL never allows a C++ usage to have a different meaning in the ADL than it would have in
C++. Nor does the ADL arbitrarily express C++ concepts using non-C++ usage without very
strong reasons for all such variations. For instance, the ADL uses the keyword common to desig-
nate what in C++ would be a class static data member in order to reduce the ambiguity of the
much overused static declaration. Any ADL concepts or mechanisms that C++ does not support
are directly required by the ADL’s particular multimedia mission. For example, the list compound
data type is highly desirable to support the construction of messages at run-time and to facilitate
communication with underlying databases.

It is worth acknowledging the two single most important differences between the ADL and C++.
First, the ADL does not associate pointers with specific data types as C++ does. And second, the
ADL allows the entire contents of a message to be determined at run-time including the message
selector and the number of arguments.

AthenaMuse was originally intended to offer transparent application portability across Windows,
UNIX, and the Macintosh. Work on the Macintosh platform has been discontinued as of the sum-
mer of 1996, but the goal of application portability has been met on the other platforms. It is
worth noting certain principles of AM2’s approach to platform portability:

• Since application portability is a goal, the use of platform specific features is discouraged, but
not forbidden. That is, AM2 should not deny the developer access to platform-specific fea-
tures, but neither should it encourage their use.

• By default, an application running on a UNIX version of AM2 should obey the Motif look and
feel, while a version running under Windows should obey the Windows user interface guide-
lines. The preliminary Macintosh version followed the same principles.

The later feature makes the former less bothersome. AthenaMuse classes attempt to embody
semantic functionality rather than low-level feature sets. For instance, the AM2 approach to
menus is platform independent. It is the registration of the menu with a particular application on a
particular operating system that determines the visual style of the menu (e.g., pull-down or pop-
up, tear-off, etc.).

6 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 7

Chapter 2 Hello, World

Ever since Brian Kernighan and Dennis Ritchie introduced us to The C Programming Language1,
it has become traditional to introduce a new programming language to its audience via the sim-
plest of programs, one that produces the message, “Hello, World”. And that is exactly what we
shall do below. Before the more formal descriptions that will follow in later chapters, we want to
give a glimpse of AthenaMuse’s powerfully simple application description language (ADL).

2.1 Your First AM2 Program

So follow along now and type in the following lines using your favorite text editor.

If you have installed AthenaMuse correctly, you should now be able to type

% am2Program hello.adl

To run this sample program, where am2Program is the name of the AthenaMuse executable on
your system. The result should be a small frame containing a single button labelled
“Hello, World”.2 If you click on the button, the program exits and the frame disappears. All
right. It may not be the most exciting program, but in a very few lines of code you have imple-
mented a well-behaved application that creates a window button with which you can interact.
Let’s look at the code line by line to see how it works.

1 First edition, Prentice-Hall, Englewood Cliffs, New Jersey, 1978.
2 On Windows, this frame appears in the upper left corner of the screen. On UNIX, its location depends on

your window manager. Many window managers allow the application to “float” as an outline box until you
click to position it.

1 anonymous: XFtop
2 {
3 XFbutton button {
4 label = “Hello, world”;
5 Pressed = {'Exit, theApp};
6 };
7 } top {
8 height = button.height;
9 width = button.width;
10 };

HelloWorld.adl

AthenaMuse 2.2 Documentation

February 25, 1997 8

2.2 Explanation

Line 1: The building blocks of AM2 applications are classes and objects. A class
defines a set of structured data and a set of methods that operate on that
data. An object is an instance of a particular class.

Our application starts off with the definition of a class that will describe the
frame holding the single button of the application. We are only going to
need one instance of this class so we don’t need to name it. We declare the
class with the keyword anonymous. If we were going to create another
instance of this class later, we would need to name the class so we could
refer to it again. In this case, we would declare it with the keyword class
and supply a name for the class.

XFtop is the name of a system supplied wrapped class. XFtop provides a
top-level shell or frame that can contain other components and that will
interact with your system’s window manager. By itself, instances of XFtop
are fairly boring, but they perform a very real function. By dealing with the
window manager and the other top level windows on your display,
instances of XFtop handle requests to minimize the application and man-
age stacking order.

The colon between the keyword anonymous and the class name XFtop
means that the nameless class we are describing inherits from XFtop. That
is, it has all the characteristics of the system-supplied XFtop, plus a few
extras that we will define in the following lines.

Line 2: The curly brace ({) marks the start of our special additions, which will
distinguish our anonymous class from its XFtop base. It is matched by the
closed curly brace (}) on line 7 that marks the end of our special addi-
tions.

Line 3: As we said, an XFtop that doesn’t contain anything is boring. Our frame
does contain something, a single button. And this is the line that inserts the
button in the frame.

In AM2, the standard way to make one window system component (we call
them widgets) contain another is to make the contained widget a member
of the container parent class. Well, almost. Since XFtop is a built-in
wrapped class, we can’t alter it, say by adding a new member. But we can
create a new class that inherits from the wrapped class. And that derived
class can contain additional members. So wrapped classes implementing
container widgets are used as bases for user defined classes that contain
other widgets as members.

And we are defining just such a member here. The member is an instance
of the wrapped class XFbutton, and we refer to it within this anonymous
class by the name we assign it here, button. This is a little subtle. The
class we are defining here has no name, but it has named members. All

AthenaMuse 2.2 Documentation

February 25, 1997 9

members must have names, but classes do not need to be named unless we
are going to refer to them later.

The open curly bracket that follows the button declaration marks the begin-
ning of a block of code that allows us to particularize this instance of the
XFbutton class.

Line 4: The XFbutton wrapped class contains a member called label. You
don’t have to declare this member. It’s built in. You don’t even have to ini-
tialize it, although you almost certainly want to. If you don’t, your button
won’t have a text label. In this line, we set button’s label to be the string
“Hello, World”. Notice that this initialization is actually an executable
statement, and so must be followed by a semicolon.

Line 5: This line describes what we want to happen when the button is clicked by
the mouse. AM2 provides the programmer a very flexible way to monitor
whatever the user is doing on the screen using activities. This functionality
is described in Chapter 3, Using Activities (provide cross reference).

But we can do something much simpler here. XFbuttons possess a mem-
ber called Pressed that specifies what the user wants to happen when the
button gets pressed. The value of Pressed must be a list delimited by
curly braces and containing two elements. The first element is a message
and the second is a handle to the object to which the message should be
sent. So, the Pressed member should contain values that look like { mes-
sage, target }.

In the ADL, a message can also be a list, whose first element is a string
called the selector. The selector determines which method will be invoked
in the target of the message when the message is sent. The other elements
of a message list are arguments to the method. But the message we want to
send is so simple that it doesn’t possess arguments, just the selector that all
messages must have. And in the case of a message without arguments, the
message list can be represented simply by the selector string, which is what
has happened here. The message is a string, 'Exit. Note that if a string
consists of a single word, it can be preceded by a single quote (') rather
than enclosed in double quotes (").

The second part of the value of Pressed must be a handle to the target of
the message. A handle is the ADL’s version of a pointer or reference. A
variable or member declared as a handle can contain references to other
objects or variables. In this case, we are using the keyword theApp to
specify a very special reference to the application object.

Everything in an ADL program defines a class including the application
itself. The application, although it is not preceded by the keyword anony-
mous and curly braces, defines an anonymous class that includes all global
variables and all other class definitions. When the application starts up, a
single instance of this application class is created and initialized. This
object can be accessed through the keyword theApp which always con-

10 February 25, 1997

AthenaMuse 2.2 Documentation

tains a handle to this application object. So, by making theApp the target
of the 'Exit message, we are assuming the application has a method
called Exit that doesn’t take any arguments. It does. As a matter of fact, it
inherits that method from a class called MCapplication that serves as a
silent base class to all applications. You can read about MCapplication
in the wrapped class documentation in Section 6.1, “Activities and Appli-
cation Services” 113.

Line 6: The closing brace on this line ends the block of initializations for the mem-
ber button. It can be thought of as ending the declaration of the member,
and all declarations must end with a semicolon.

Line 7: The first curly brace on this line, the closed brace, ends the definition of
our anonymous class derived from XFtop. The next word, top, is the
name of the instance of this anonymous class. Why do we need to name
this instance? Well, this instance is a global variable in the application, and
global variables are considered to be members of this application class.
And, as we said above, all members must have names. Trust us on this one
for now. It makes things come together much more nicely if we have to
supply a name for this variable. The second curly brace, the open one,
starts the initialization block for this single instance of our anonymous
class derived from XFtop.

Line 8: Here we initialize the height of the frame to be the same as the height of the
button that it contains. The units are pixels. It turns out that XFtop has a
member called, you guessed it, height. We set the frame’s height to be
the same as the height of the frame’s member called button. Note that
both the frame and the button have a member, height. We use the .
notation to access the member height of the frame’s member button.
The variable height to the left of the = refers to the frame’s member of
the same name because this initialization block belongs to the frame, not
the button (or any other object).

Now an interesting question. Why do we have to specify the height of the
frame but not the height of the button? By default, buttons with text labels
are sized to be just big enough to contain the label. You can override that
by setting the width and height of a button, but we have not done that here.
Which is why the “Hello World” application ends up being so small on
the screen. But XFtops have a default size that is very, almost vanishingly
small. Why didn’t we make them large enough to contain their contents by
default? Well, we thought about it and tried it out, but application develop-
ers decided that it hardly ever turned out to be what they wanted. So we
decided that you had to size the top-level frame. Children of this top-level
frame (that is, the widgets contained by it) would have default position in
the upper left hand corner. If you have more than one child widget, that is
unlikely to be what you want for the second and later widgets. But in this
case, we don’t have to worry about positioning the button, just sizing the
frame around it.

11 February 25, 1997

AthenaMuse 2.2 Documentation

Line 9: This line is like the previous except it sets the width of the frame, not the
height.

Line 10: We’re done. The curly brace closes the initialization block for the frame
top, and because the initialization completes the definition of the anony-
mous class and its single instance, we must follow it by a semicolon.

• Try changing a few values here and there, or try to comment out a line by prepending two
slashes (//) and then rerun the program. We have glimpsed only the very surface of AM2’s
capabilities in this example, but it should give you some sense already of what it feels like to
create an application in the ADL.

12 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 13

Chapter 3 The Application Description Language

The purpose of this chapter is to provide a detailed description of the ADL, which is the core of
AM2. Note that this covers both the simpler, basic constructs of the language and the more com-
plex units made from these simpler ones. The following outline describes the sections of this
chapter:

• Section 3.1, “Lexical Conventions” page 14

• Section 3.2, “Identifiers” page 14

• Section 3.3, “Base Types” page 14

• Section 3.4, “Base Type Constants” page 15

• Section 3.5, “Compound Types” page 16

• Section 3.6, “Variable Definitions” page 18

• Section 3.7, “Expressions” page 19

• Section 3.8, “Assignment” page 25

• Section 3.9, “Complex Data Types” page 25

• Section 3.10, “Unset Values” page 27

• Section 3.11, “Type Conversion” page 28

• Section 3.12, “Built-in Function Calls” page 29

• Section 3.13, “Messages” page 30

• Section 3.14, “Stream Operators” page 31

• Section 3.15, “Control Flow” page 33

• Section 3.16, “Object Definition” page 34

• Section 3.17, “Dynamic Objects and Storage Management” page 36

• Section 3.18, “Object Destruction” page 38

• Section 3.19, “Object Member Reference” page 38

• Section 3.20, “Class Definition” page 40

• Section 3.21, “Method Definition” page 41

• Section 3.22, “Metaclass Operations” page 43

14 February 25, 1997

AthenaMuse 2.2 Documentation

• Section 3.23, “Wrapped Classes” page 44

• Section 3.24, “Inheritance” page 47

• Section 3.25, “Object Initialization” page 49

• Section 3.26, “Scope” page 52

• Section 3.27, “Assets” page 54

• Section 3.28, “Program Structure” page 58

3.1 Lexical Conventions

Lexical conventions determine how to format ADL code in a file or on the screen, including the
mechanisms for embedding explanatory comments in a script.

Formatting

ADL code is not sensitive to the presence or absence of white space between language elements
provided that all keywords and identifiers are distinguished. Thus the programmer has the same
degree of freedom that C and C++ allow in formatting code. White space includes these charac-
ters: space (‘ ‘), newline (‘\n’), carriage return (‘\r’), form feed (‘\f’), and vertical tab (‘\v’).

Commenting

Comments are indicated as they are in C++. Two contiguous slashes (//) indicate the start of a
comment that continues to the end of the current line. This form is the usual method for annotat-
ing individual, single-line statements. A slash immediately followed by an asterisk (/*) indicates
a comment that continues until the reverse sequence (*/) is encountered. This form is the usual
method for inserting multi-line comments.

3.2 Identifiers

An identifier is the name of a variable, class, method, or built-in function. It must begin with a let-
ter and consist of a sequence containing only letters, digits, or the underscore character (_). Case
is significant. Identifiers can possess an arbitrary number of characters, and at least the first 32
characters are distinguishable. Some ADL implementations may consider more than 32 characters
significant. If a particular implementation considers the first n() characters significant, and
two identifiers differ only after the nth character, the implementation considers them identical.

3.3 Base Types

The system recognizes the base, or primitive, types boolean, integer, real, string, vtype,
and handle.

Boolean

A boolean must have the value TRUE or FALSE.

Integer

An integer corresponds to a C/C++ long and is represented with at least 32 bits.

n 32≥

AthenaMuse 2.2 Documentation

February 25, 1997 15

Real

A real corresponds to a C/C++ double. The minimum and maximum positive values of a real

are platform dependent, but should accommodate a range of at least to .

String

An ADL string represents an ASCII string implemented using an underlying C++ class, and,
thus, does not correspond exactly to a C/C++ char*. The only restrictions on maximum string
length are implementation dependent, but in all AM2 implementations strings are guaranteed to
have a maximum length of at least 65535 bytes. If the integer constant MAX_STRING_LENGTH
has a value greater than 0, that value specifies the maximum allowed string length.

Vtype

A vtype allows storage of types of variables, and is used for type-checking.

Handle

A handle to a lvalue of a base type or a compound type (see Section 3.5, “Compound Types”
page 16), or to an ADL object represents a reference to the underlying variable or object. It is a
more general case of the C/C++ pointer, in that AM2 will eventually support handles to objects in
other AM2 process spaces. AM2 handles do not support the full semantics of C/C++ pointers. In
particular, there is no relation between handles and arrays in the ADL, and handle arithmetic is not
allowed.

3.4 Base Type Constants

The ADL supports constants in each of the primitive system types: boolean,integer, real,
string, vtype and handle.

Boolean Constants

Boolean constants must be one of the keywords TRUE or FALSE.

Integer Constants

Integer constants are always decimal and can be signed, e.g., 255, -1, +100000. The named inte-
ger constants MAX_INTEGER and MIN_INTEGER represent the values of the largest positive
integer and the smallest negative integer on the host system.

Real Constants

Real constants follow the standard C language form of an integer part, a decimal point, an e or E,
and an optionally signed integer exponent. At least one of the integer and fraction parts must be
present, as well as either the decimal point or the exponent. Examples: 3.1416, 1E+9,
-0.21e-3.

The named floating point constants MAX_REAL and MIN_REAL represent the values of the
largest and smallest positive real numbers that can be represented on the host system.

The REAL_EPSILON constant represents the smallest positive real value such that

0.0 + REAL_EPSILON != 0.0

10.0 38– 10.038

16 February 25, 1997

AthenaMuse 2.2 Documentation

String Constants

A string constant that contains only letters (A-Z, a-z), digits (0-9), or the underscore character
(_) can be so designated by preceding it with the single quote character ('). This feature simpli-
fies the specification of messages (see Section 3.13, “Messages” page 30). You can always
enclose a string constant within double quotes ("), and you can embed the standard C escaped
character constants1 in strings.

Type Constants

Type constants can be one of the keywords booleanType, integerType, realType,
stringType, vtypeType, handleType, listType, timeType, or intervalType.

Handle Constants

The only permissible handle constant is expressed by the keyword NULL. It represents a value
that cannot be a valid handle to any variable or object. Thus, NULL indicates that a handle vari-
able does not point to any valid target.

3.5 Compound Types

The ADL supports three compound data types: list, time, and interval. It also sup-
ports both multidimensional indexed arrays and one dimensional associative arrays. Arrays are
complex data types, however, and are discussed further in a later section (see Section 3.9, “Com-
plex Data Types” page 25).

List

A list is a compound type built up out of expressions of base and compound types. Lists can,
therefore, nest. There is no syntactical requirement that all list elements be of the same type. You
create lists using the list delimiters ({}), and separate list elements with commas.

A list element in a ({}) expression can be an expression itself. In this case, the expression is eval-
uated and the list element is initialized with the result. The list contains the result of evaluating the
expression, not the expression.

Note that lists are not objects, and objects cannot be members of lists. Handles to objects, how-
ever, are a base type and so can be list members. The empty list denoted by ({}) can be used in
comparisons and to initialize lists.

1 Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language (1988), 193-194.

"Hello, world\n"

'GetWidth

Figure 3.1 String Examples

AthenaMuse 2.2 Documentation

February 25, 1997 17

Time

A time is an ordered 4-tuple of integers representing a period of time, and is not meant to be used
for absolute (real) time. A time consists of numbers of hours, minutes, seconds, and millisec-
onds, and can be either positive or negative.

Time constants consist of from one to four integers separated by colons. If only one number is
given, a colon must precede it. The four numbers correspond to hours, minutes, seconds, and mil-
liseconds. If fewer than four numbers are given, then they are assumed to be the less significant
(and more precise) components of a time (i.e., 3:4 is taken to mean 3 seconds and 4 milliseconds).
White space between the parts of a time constant is not allowed.

All times are kept in standard form: milliseconds are between 0 and 999, minutes and seconds are
between 0 and 59. This means that constants such as 90:0 are automatically converted to 1:30:0
internally. If any integer in a time constant is negative, all integers forming the constant must be
negative or 0, so that -1:-30:0 is legal but -1:30:0 is not legal.

Interval

An interval is an ordered pair of integers or real numbers with an associated open or
closed condition for each half of the pair. You can convert appropriately formatted lists consisting
of

 { {boolean, integer|real}, {boolean, integer|real} }
or

{ {boolean, time}, {boolean, time} }

to intervals, and vice versa. Note that this alternate representation of an interval consists of a
two part list of lists. Each sublist contains a boolean and either a real, an integer, or a time.
A TRUE value corresponds to the closed condition, and a FALSE corresponds to the open condi-
tion. You can represent the interval constant as follows:

• an opening left parenthesis or square bracket

• an integer, real, or time constant

• a comma

• a second integer, real, or time constant

• a closing right parenthesis or square bracket

{'Monday, 'Tuesday, 'Wednesday, 'Thursday, 'Friday }

{'ClipA, {0, max+1} }

{ dayOfMonth, month, year }

Figure 3.2 List examples

18 February 25, 1997

AthenaMuse 2.2 Documentation

A parenthesis indicates an open condition, and a square bracket indicates a closed condition. The
interval variable is assigned only as a unit. You can access and alter the interval endpoints and the
associated open and closed conditions only by using the corresponding list form of the interval,
or a built-in function. An interval appears in expressions only if it uses the special relational oper-
ator (:),pronounced in.

integer|real|time : interval

Such a (sub)expression evaluates to TRUE if and only if the left argument falls within the interval
defined by the right argument. Interval expressions are intended primarily to test whether the cur-
rent value of a state object falls within a particular range. See the example of interval usage in Fig-
ure 3.3.

3.6 Variable Definitions

You can define base and compound variables at the beginning of any scope (see Section 3.26,
“Scope” page 52) using the keywords boolean, integer, real, string, time,
vtype, handle, list, and any followed by a non-null list of identifiers (see Section 3.2,
“Identifiers” page 14). A variable defined with the keyword any can contain a value of any base
or compound type, while variables defined with the other types can only contain values of their
defined type. It is an error to assign a value of one type to a variable of another type if the value
type cannot be implicitly converted to the variable type (see Section 3.11, “Type Conversion”
page 28).

Exiting from an enclosing scope destroys variables, and their values are not preserved across sep-
arate entries to that scope. The ADL does not support the C and C++ concept of static vari-
ables. The same functionality can usually be provided by a class common data member, although
it is currently unimplemented.

4 : [0,9] // returns TRUE

interval range;
integer frame;

range = (0 , 54000];
frame = 999;

if (frame : range)
{ /* Do this */ }

Figure 3.3 Sample Interval Usage

integer anInt, myInt, yourInt;

list A, B;

string daysOfWeek;

Figure 3.4 Sample Variable Definitions

AthenaMuse 2.2 Documentation

February 25, 1997 19

3.7 Expressions

You construct expressions from variables (see Section 3.6, “Variable Definitions” page 18),
constants (see Section 3.4, “Base Type Constants” page 15), operators, and delimiters. The ADL
operator set is a near subset of the C++ operator set with a few additions and is described in the
figures below.

3.7.1 Delimiters

Delimiters in the ADL primarily group together related tokens. For example, you use parentheses
to change precedence within an expression. ADL delimiters have a higher precedence than opera-
tors, thereby allowing them to control the order of evaluation.

In some cases delimiters create a new semantic item out of the elements they enclose. The interval
delimiters serve this purpose by making an interval from two numbers. However, intervals are
more than two numbers paired together. They possess “open” or “closed” attributes at each end-
point and support a test for membership in the interval.

3.7.2 Operators

When the same operator occurs in both the ADL and in C++, it has the same semantics, prece-
dence, and associativity. The following points deserve special notice:

• The ADL normally evaluates both subexpressions of a binary operator before calculating the
result of the binary operator. However, the boolean operators (&&) and (||) present a special
case. The ADL evaluates the right subexpression only if the left subexpression is TRUE in the
case of (&&) and FALSE in the case of (||).

• The send message operators (=>),(|>),(?=>),and (?|>) have been overloaded to
accept both objects and object handles as a second operand.

DelimiterPair Purpose Sample Usage

() To change order of computation in expressions (1+2) * 3

{} To form a list from expressions {'A, 'World, 2*3}

[], [),
(], ()

To form an interval from pairs of numbers 5 : (4,6)

Figure 3.5 ADL Delimiters

20 February 25, 1997

AthenaMuse 2.2 Documentation

a. Note the absence of the pre- and postfix operators ++ and --.

a. Any implies any base or compound data type. The equal and not equal operators can also be applied to arrays
(Section 3.9, “Complex Data Types” page 25), but not to objects.

Operator Operation Precedence Type of Operands Type of Result

+ unary plus 6 integer, real, or time integer, real, or time

- unary minus 6 integer, real, or time integer, real, or time

* multiplication 7 integer or real integer or real

* multiplication 7 (integer or real) * time time

/ division 7 integer or real integer or real

/ division 7 time / time integer

% remainder 7 integer integer or real

+ addition 8 integer, real, or time integer, real, or time

- subtraction 8 integer, real, or time integer, real, or time

Figure 3.6 Arithmetic Operatorsa

Operator Operation Precedence Type of Operands Type of Result

== equal 11 anya boolean

!= not equal 11 any boolean

< less than 11 integer, real, or time boolean

<= less than or
equal to

11 integer, real, or time boolean

> greater than 11 integer, real, or time boolean

>= greater than
or equal to

11 integer, real, or time boolean

: is a member of
interval

11 integer, real, or time
 : interval

boolean

!: is not a mem-
ber of interval

11 integer, real, or time
 !: interval

boolean

Figure 3.7 Relational Operators

AthenaMuse 2.2 Documentation

February 25, 1997 21

Operator Operation Precedence Type of Operands Type of Result

! not 6 boolean boolean

&& and 12 boolean boolean

|| or 13 boolean boolean

Figure 3.8 Boolean Operators

Operator Operation Precedence Type of Operands Type of Result

() built-in
function call

1 any any

Figure 3.9 Function Operators

Operator Operation Precedence Type of Operands Type of Result

:: scope
resolution

1 classname::member any

. member
selection

2 object.member any

-> member
selection

2 handle->member any

Figure 3.10 Member Operators

Operator Operation Precedence Type of Operands Type of Result

& address of 3 variable or object handle

* dereference 3 handle variable or object

Figure 3.11 Handle Operators

22 February 25, 1997

AthenaMuse 2.2 Documentation

a. See also the built-in list functions of Section 3.12, “Built-in Function Calls” page 29, and the for i in
list { . . . } construction of Section 3.15, “Control Flow” page 33.

Operator Operation Precedence Type of Operands Type of Result

new object
creation

14 new class handle

delete object destruc-
tion

15 delete handle none

clone clone object 3 clone object or object
handle

handle

Figure 3.12 Object Operators

Operator Operation Precedence Type of Operands Type of Result

classOf get handle to
metaclass

object

3 classOf object or
object handle

handle

the-
Class

get handle to
metaclass

object

3 theClass classname handle

Figure 3.13 Metaclass Operators

Operator Operation Precedence Type of Operands Type of Result

+ concatenate 8 string string

& concatenate
with space

9 string string

Figure 3.14 String Operators

Operator Operation Precedence Type of Operands Type of Result

<< append 10 list << any list

+ concatenate 8 list list

Figure 3.15 List Operatorsa

AthenaMuse 2.2 Documentation

February 25, 1997 23

a. Stream operators are further discussed in Section 3.14, “Stream Operators” page 31.

Operator Operation Precedence Type of Operands Type of Result

? is element 6 array element boolean

remove remove 15 array element none

Figure 3.16 Array Operators

Operator Operation Precedence Type of Operands Type of Result

? is value set 6 any boolean

Figure 3.17 Is Value Set Operator

Operator Operation Precedence Type of Operands Type of Results

<< put 10 list << any
object << any

object << object

list

object

object

>> get 10 list >> any
object >> any

object >> object

list

object

object

Figure 3.18 Stream Operatorsa

Operator Operation Precedence Type of Operands Type of Result

=> send synchro-
nous

message

4 string or list =>
object or object handle

any

|> send asynchro-
nous

message

4 string or list |>
object or object handle

any

?=> send optional
synchronous

message

4 string or list ?=>
object or object handle

any

?|> send optional
asynchronous

message

4 string or list ?|>
object or object handle

any

Figure 3.19 Message Operators

24 February 25, 1997

AthenaMuse 2.2 Documentation

Operator Operation Precedence Type Of Operands Type of Result

@ resource resolution 5 string string

Figure 3.20 Resource Operators

3.14159 * (radius * radius)

length("Dogs and cats") <= 255

userMessage + "\n"

{ 'ResizeButton } + Args |> myButton

(oldWidth == ('GetWidth => myButton))

Figure 3.21 Sample Expressions

AthenaMuse 2.2 Documentation

February 25, 1997 25

3.8 Assignment

Assignment statements allow you to assign new values to declared variables of base (Section 3.3,
“Base Types” page 14) and compound types (Section 3.5, “Compound Types” page 16). You
can use any such declared variable as an lvalue in an assignment. When you copy a string or list in
an assignment, you perform a deep copy. When you make an assignment to a previously initial-
ized string or list, you destroy the previous contents.

Declared objects are neither base nor compound system types, and hence an identifier declared to
name an object cannot receive an assignment. Handles, however, are a base system type and a
variable declared as a handle can receive a handle to an object in assignment statements.

Note that unlike C and C++ there is no assignment operator, and assignment cannot be a subex-
pression. There are no compound assignment operators like(+=). The lvalue determining the tar-
get of the assignment is guaranteed to be evaluated after the expression on the right side of the
assignment statement (see Section 3.11, “Type Conversion” page 28 for a discussion of type
conversion in assignment).

3.9 Complex Data Types

Indexed Arrays

An indexed array is a complex data type derived from one of the base or compound types. All ele-
ments of an indexed array must be of the same type, but since lists can be array elements this
restriction is not severe. Indexed arrays cannot be members of lists, but a handle to an indexed
array can be such a member.

The type and dimensionality of an indexed array must be declared before its use, but indexed
array bounds are not fixed. Indexed array indices must be integers, but need not be positive or
even non-negative. An indexed array expands as it receives values assigned to new elements
beyond the previous bounds. It is a run-time error to use the value of an indexed array element
before that element receives an assignment. An indexed array element can be the target of an
assignment and can appear in any expression where a constant or variable of its type is appropri-
ate.

You can assign indexed arrays provided that the rvalue for the assignment is an array of the same
dimensionality and type. A deep copy occurs in such a case, and all the previous data from the tar-
get array is lost. Indexed arrays can also appear with the relational operator (==) provided that
both operands are indexed arrays. Two indexed arrays are considered equal if they possess the
same dimensionality, the same type, the same bounds, the same assigned elements, and the corre-
sponding elements are equal in each array.

buttonWidth = 'GetWidth => myButton;

buttonWidth = 2 * buttonWidth;

Figure 3.22 Sample Assignments

26 February 25, 1997

AthenaMuse 2.2 Documentation

Use arrays with caution because they require considerable storage over and above that required
for their elements. The relation between indexed arrays and pointers in C and C++ does not hold
between ADL’s arrays and handles. In the ADL, you can pass the handle of an array as an argu-
ment to a built-in function or a message. Note that in this case the handle being passed points to
the original array, not a copy of it

Associative Arrays

An associative array is a complex data type derived from one or more of the base or compound
types. An associative array is similar to an indexed array except that the indices, or keys, need not
be an integer but can be of any base or compound type, even a list. Certain index types, how-
ever, are probably not useful. For instance, a real index could be misleading.

 All elements of a single associative array must possess keys of the same type. You declare the
key and value types in the array declaration. As with indexed arrays, associative arrays are
dynamic, growing as elements receive assignment. They can receive assignment as a unit, and
their equality tested as such. Associative arrays are equal if and only if the values and keys of both
arrays are of the same types, they possess the same keys, and elements with the same keys possess
the same value.

Declaration

integer anInt;
integer twoDimArray<2>, anotherArray<2>;
list listArrayA<1>;

Element Assignment, Expression Use and Initialization Checking

twoDimArray[0,1] = 5;
anInt = twoDimArray[0,1] + 1;
anInt = twoDimArray[0,0]; // error, used before set

Array Assignment and Operations

anotherArray = twoDimArray;
if (anotherArray == twoDimArray)
{ /* Do This */ }
anotherArray[0,0] = 1;
if (anotherArray == twoDimArray)
{ /* Don’t Do This */ }

Figure 3.23 Indexed Array Usage

AthenaMuse 2.2 Documentation

February 25, 1997 27

Array Element Operators

There are two special unary operators that you can use with array elements or expressions that
evaluate to array element lvalues.

• The (?) operator tests whether the following array element specification refers to an element
that exists. Since arrays are dynamic, a given key may or may not exist within a given array.
The (?) operator allows the user to test for the existence of an array element without generat-
ing a used before set error.

• The remove operator removes the following array element from the corresponding array.

3.10 Unset Values

Database tables regularly contain optional fields. If you retrieve a record from a table with an
optional field, and the field does not contain a value, the field is said to contain a null value. The
semantics of null values and a null handle are similar but subtly different. A null handle has a
value; it simply doesn’t point to any object. Programmers often use a null handle to mark an end
of a list or an inactive option rather than missing data. Null values, however, have no value at all.
They are unset. The ADL supports the concept of unset values primarily to provide a more uni-
form interface to databases.

The constant UNSET is typeless and represents an unset value. It can be assigned to a variable of
any type, used in (==) and (!=) comparisons and put on lists. The examples shown in Figure 3.26
are legal.

Declaration

string captionArray<integer>;
list authorArray<string>;
string holiday<string, integer>;
string key;

Element Assignment, Expression Use and Initialization Checking

captionArray[19774] = "The old covered bridge";
key = "Joseph Conrad";
authorArray[key] = { 'Nostromo, 'Victory, "Lord Jim" };
holiday['July, 4] = "Independence Day";

Figure 3.24 Associative Array Usage

if (?authorArray["Jane Austen"])
{
 remove authorArray["Jane Austen"];
}

Figure 3.25 Array Element Operations

28 February 25, 1997

AthenaMuse 2.2 Documentation

All uninitialized variables have an unset value. Unset values can appear wherever the constant
UNSET can with one exception: the comparison of two values is a run-time error if one or both are
unset. You can, however, compare an unset value to the constant UNSET. It is important to distin-
guish an unset string or list from an empty one. You can append to an empty string or list, but not
to an unset one. Unset values can appear in lists, however, and the list append operator (<<) can
append an unset value to a list.

You can use the operator (?var) to test for the existence of an array element and to test if a vari-
able is set.The expression var == UNSET is syntactic sugar for it. Similarly, you can compare
array elements with UNSET to determine if they exist. Finally, assigning an array element the con-
stant UNSET is equivalent to calling the operator remove except that it is an error to remove a
non-existent element, but you can assign UNSET to one.

3.11 Type Conversion

Type conversion happens in the following instances:

• Assignment

• Arguments to built-in function calls

• Arguments to messages

• Promotion in arithmetic and numerical relational expressions

In the first three cases integers convert to reals, and reals truncate to integers, as indi-
cated by the associated type declarations. Strings are not automatically converted to numeric
values. You can use the ADL built-in functions (see Section 3.12, “Built-in Function Calls”
page 29) toInteger()and toReal() to perform explicit conversions. In the case of promotion
in expressions, any binary operator with one integer and one real operand promotes the
integer operand to real before performing the operation. Certain compound types are also
implicitly converted.

integer answer;
string question;
list record = { "When?" };
any elt;

if (answer == UNSET)
{
 question = "Why";
}
elt = at(1, record);
if (elt != UNSET && isString(elt))
{
 question = elt;
}
record << UNSET;

Figure 3.26 Operations with the Constant UNSET

AthenaMuse 2.2 Documentation

February 25, 1997 29

• A time converts to an integer, a real, or a list as required, and vice versa. The inte-
ger or real version of a time contains the corresponding number of milliseconds. The list
version contains four elements: hours, minutes, seconds, and milliseconds.

• An interval implicitly converts to a list, and an appropriately formatted list to an
interval (see Section 3.5, “Compound Types” page 16). An error results if you attempt to
convert an inappropriate list to an interval or time.

The only other case of promotion occurs when a string on the left hand side of a send message
operator is promoted to a one member list. (see Section 3.13, “Messages” page 30).

3.12 Built-in Function Calls

The ADL provides a set of built-in function calls to access functions from the C standard library
and to operate on expressions of base type, compound type, and complex type. Appendix A,
“Built-In Functions for ADL” page 261 documents these functions, which currently fall into the
following categories:

• “Input/Output” page 261

• “Time and Date” page 262

• “Conversion” page 262

• “Type Query” page 263

• “Sequences (lists and strings)” page 264

• “Mathematical” page 266

• “Handles” page 269

• “Classes and Inheritance” page 269

• “Networking” page 269

User-defined functions are not permitted. Messages to global objects currently provide equivalent
functionality. All arguments to built-in functions are passed by value, although such an argument
can be a handle to an underlying base, compound, complex, or object type.

random([1,5))

length(name)

Figure 3.27 Sample Function Calls

30 February 25, 1997

AthenaMuse 2.2 Documentation

3.13 Messages

A message is an operation that one object performs upon another. You can send a message to any
object. It consists of three parts:

1. Selector (message name): The string identifier for the message must have a match in the
receiving object’s method dictionary.

2. Message arguments: Arguments are optional. The message selector and any arguments form
the message list.

3. Message target: A reference to an object, or to the handle of an object, that is to receive the
message list.

The target object method has the option to return a value. If a method returns a value in some
cases, it must return a value in all cases. The returned value may be unset. Messages that return a
value can appear in expressions. Messages that do not return a value must appear in standalone
statements.

If there are no message arguments, the message list can consist of a string. Otherwise, the mes-
sage list must be a true list whose first element is a string specifying the message selector. The
message list can be a list variable or a list valued expression. It is evaluated at run-time just
before the message is sent so that all parts of the message, including the selector, are dynamic. A
message argument may be unset.

One of the following message operators separates the message list and the message tar-
get:(=>),(|>),(?=>),and (?|>). The operators (=>) and (?=>) specify that the message is to be sent
synchronously — that is, the message is sent immediately and the invoked method is executed
before the next statement in the calling method. A synchronous message thus effectively creates a
new stack frame. The operators (|>) and (?|>) conversely specify that the message is to be sent
asynchronously —that is, the message is queued for later delivery. The system guarantees that an
asynchronous message will be delivered and executed before the return to the overall event loop if
an appropriate method exists in the destination object. No guarantees are made, however, about
the relative execution of multiple asynchronous messages.

The operators (?=>) and (?|>) send optional messages, while the operators (=>) and (|>) send
required messages. It is an error to send a required message to an object that does not possess a
method for the message selector. If an object receives an optional message with a selector that it
does not understand, however, it simply ignores the message. Optional messages are particularly
useful for broadcasting system messages to all objects.

'Construct => Viewer;

'Init?=> Viewer;

{mName} + {"width", 40} |> myTarget;

dayMonth = 'GetDayOfMonth => Calendar

Figure 3.28 Sample Messages

AthenaMuse 2.2 Documentation

February 25, 1997 31

Since message arguments are passed as members of a list, they must be passed by value. No
object can be a member of a list, and thus, no object can be an argument to a message. A handle
to an object, however, can be passed as an argument to a message. The return value, if present,
must also be one of the base or compound system types and is also passed by value. A message
cannot return an object or a complex data type (i.e., indexed or associative arrays).

3.14 Stream Operators

To simplify the use of streams, the ADL provides two stream operators: put (<<) and get (>>).2

The operators act differently depending on their arguments. In all cases, the intent is that the <<
operator sends data into a stream and the >> operator receives data from the other end of the
stream. In the next few paragraphs, we describe how the operators work for each set of argument
types. Any other argument combinations are type errors. In all cases, the result of the expression
is the left operand. When the first argument is an lvalue whose type is list, as in Figure 3.29, these
operators make the list act as a stream.

The << operator appends any_value onto the list specified by list_lvalue. The >> operator
reverses this operation, removing the first value from the list_lvalue and storing it in the
simple_variable on its right. Using the >> operator on an empty list is an error. It is also an
error if the value to be stored by the >> operator does not match the type of simple_variable.
Figure 3.30 shows the object on the left as a stream into which we put (<<) or from which we take
(>>) simple types. The send operator (<<) sends the object a message with one argument, the
value on the right hand side.

2 These operators differ from their C++ counterparts in that the meaning of the "send" and "receive" operators
are essentially defined by the ADL. Class authors who define methods to handle the messages sent by the
operators may modify their effects on objects.

list_lvalue << any_value;

list_lvalue >> simple_variable;

Figure 3.29

object << any_value;

object >> simple_variable;

Figure 3.30

32 February 25, 1997

AthenaMuse 2.2 Documentation

The selector of this message is based on the type of the value. The selector is "Send” concate-
nated with the name of the type of the value. For instance, the following expression causes the
message {"SendBoolean", TRUE} to be sent to myStream:

myStream << TRUE

The receive operator (>>) sends the object a message with no arguments whose selector is based
on the type of the simple_variable. The selector is "Receive" concatenated with the name of
the type of the variable. This message returns a value of the requested type. The operator then
assigns this value to the simple_variable. For instance, in the following:

integer i;
myStream >> i;

myStream is sent the message ReceiveInteger and the value returned is assigned to i. When
both operands are objects, as in Figure 3.31, the operators help the object on their right send and
receive itself from the object on the left (presumably a stream).

To accomplish this, the object on the right is sent a message with a handle to the object on the left.
The selector of this message is either SendTo (<<) or ReceiveFrom (>>).

object << object;

object >> object;

Figure 3.31

AthenaMuse 2.2 Documentation

February 25, 1997 33

3.15 Control Flow

The ADL provides a standard and predictable set of control structures, as shown in Figure 3.32:

There are three non-C++ control structures:

1. for i in list { . . . } iterates over the elements of the list and executes the code in
the block repeatedly with the variable i assigned to each member of the list in turn. This usage
requires that all list elements are of the same type (the declared type of the variable i) or that
i be of type any.

2. for i in array { . . . } iterates over the state of the array when the for statement is
first entered. For each such assigned element, i is assigned a list whose first member is the

value of the array element, and whose second through members are the values of the

element’s indices, where is the number of array indices. The order in which the elements
are visited is unpredictable.

3. cond, borrowed from LISP, guarantees that at most one of the code blocks within the cond
block is executed, the first that is preceded by a TRUE boolean expression. A default can be
specified using TRUE.

We discuss the forward statement in Section 3.21, “Method Definition” page 41.

if (BoolExpression) { . . . }
[else if (BoolExpression) { . . . }]
. . .
[else { . . . }]

for i in list { . . . }

for i in array { . . . }

while (BoolExpression) { . . . }

do { . . . } while (BoolExpression);

cond {
(BoolExpression1) { ... }

[(BoolExpression2) { ... }]
[...]
}

break;

continue;

return [value];

forward => [selector @] object/handle;

Figure 3.32 Control Structures

n 1st+

n

34 February 25, 1997

AthenaMuse 2.2 Documentation

3.16 Object Definition

Defining an instance of an object is similar to defining a variable, but the initialization of objects
is more complex. We deal with this topic more fully in Section 3.25, “Object Initialization”
page 49, where we discuss the process of initializing objects. In this section we are concerned
only with the syntax for defining objects.

The default object declaration takes the form of a class name followed by a non-null list of object
identifiers. More generally, an object declarator substitutes for each identifier. An object declara-
tor is an identifier combined with two optional constructions that specify how the object is to be
initialized.

list alist;
any value

for value in alist {
 if (isInteger (value)) {
 echo(“Value is an integer\n”);
 {else {
 echo(“Value is not an integer\n”);
 }
}
integer anArray<string>;
list alist;

anArray[“Steve”} = 43;
anArray[“Lori”] = 42;

for alist in anArray{
 echo(“Age of”&at(2,alist)&“is”&at(1,alist)+“\n”);
}

integer ival = 7;

cond{
 (ival >= 2) {
 echo(“Integer greater than 2\n”);
 }
 (ival >= 0 {
 echo(“Integer greater than or equal to 0
 but less than 2\n”);
 }
 (TRUE) {
 echo(“Integer is negative\n”);
 }
}

Figure 3.33 Non-C++ Control Structures

AthenaMuse 2.2 Documentation

February 25, 1997 35

The simple form of object declaration shown in the first example of Figure 3.33 would create two
instances of the MyClass named myObj1 and myObj2 respectively. When these two instances
are created, the standard message Construct is, by default, sent to each instance. The more
complicated example shown in that same figure illustrates how the default Construct message
can be over-ridden. In this example, the message

{‘CustomConstruct, arg1, ... argn}

is sent when the instance myObj is created instead of the simple Construct message. This
requires, of course, that the class named MyClass have a constructor method named Custom-
Construct and that the member and type of the arguments in the message agree with those spec-
ified for the method. A class can have any number of constructor methods, but only one of these
can be used to create any given instance of the class. As discussed further in Section 3.25,
“Object Initialization” page 49, constructor methods are distinguished fom ordinary methods in
ADL by beginning them with the keyword upon rather than the keyword on.

The third example in Figure 3.34 illustrates the use of initializor blocks. These blocks consist of
a series of ADL statements enclosed in curly brace delimiters. Initializor blocks allow an ADL
programmer to set values for the attributes of an instance of a class being constructed. In the
example in the figure, the attributes height and width are each initialized to 100. Initializor
blocks (or izor blocks for short) are used very often by ADL programmers becasue they provide a
very convenient way to set attribute values for newly-created objects. However, it is important to
stress that the ADL statements in an izor block are executed as though they were part of the object
being created, not as part of the object in which they actually appear. This is termed a foreign
scope in ADL. This means that the right hand side of the assignment:

height 100

Simple Object Declaration

MyClass myObj1, myObj2;

Object Declaration with Custom Constructor

MyClass { 'CustomConstruct, arg1, ..., argn} => myObj;

Object Declaration with Initializor Block

MyClass myObj1 {
height=100;width=100;

};

Object Declaration with Special Constructor and Initializor Block

MyClass { 'CustomConstruct, arg1, ..., argn} => myObj1 {
height=100;width=100;

};

Figure 3.34 Object Declaration

36 February 25, 1997

AthenaMuse 2.2 Documentation

refers to the variable named height in the new instance of MyClass being created. The conse-
quences of an izor blocks being executed in a foreign scope are often not obvious to beginning
ADL programmers. For example, consider a fragment of ADL code as follows:

integer xvalue=50; //declare an integer initialized to 50
MyClass myObj {height=zvalue;}; //incorrect use of izor block

One migh incorrectly expect that the value of the attribute named height in MyClass would be
set to 50 by this code. Instead, this code will produce an error because the izor block that attempts
to set height is executed in the scope of the class MyClass, and the variable xvalue on the
right hand side of the assignment is not defined in this scope. Thecorrect way to achieve the
desired result in ADL would be using the following cde fragment:

integer xvalue=50; //declares an integer initialized to 50
MyClass my Ob; //create instance of MyClass named myObj
myObj.height=value; //set the height attribute of myObj

The fourth example in Figure 3.34 combines the use of a custom constructor with the useo f an
izor block. While the detals of the order in which things occur when a new object is constructed
are covered in much more detail in Section 3.25, “Object Initialization” page 49, it is worth not-
ing that the execution f the custom constructor occurs before the execution of the izor block.
Thus, any statements in the constructor method that set values of attributes that are also set in the
izor block will be over-ridden.

An object declaration can contain multiple object declarators, each with its own identifier, just as
it can contain multiple simple identifiers. Object instances are not variables and cannot receive
assignments.3 Objects declared within a scope are destroyed upon exit from that scope. Never
destroy declared objects using the delete operator. In defining an object, you create a new
instance of the wrapped C++ class, initialize it, and make it visible to the ADL in the current scope
if the object is an instance of a system-defined wrapped class. If the object is an instance of a user-
defined ADL class, then you create a new instance of that class along with all its members and
bases (see Section 3.23, “Wrapped Classes” page 44 for more information on wrapped, or sys-
tem defined, classes and user-defined classes).

3.17 Dynamic Objects and Storage Management

You can create objects dynamically by using the new operator with the name of, or a handle to, a
defined class. Such an object does not possess a name, and the user refers to it solely through the
handle returned by the new operator. The object continues to exist even after exit from the enclos-
ing scope, and if you are not careful, it is easy to destroy the handle accessing the object. Free the
object using the delete operator before destroying its handle.

3 This avoids forcing the user to confront the complexity of the C++ copy constructor. Default cloning is pro-
vided (see Section 3.17, “Dynamic Objects and Storage Management” page 36).

AthenaMuse 2.2 Documentation

February 25, 1997 37

You can use the new operator with both special constructors and initializor blocks. The created
object is initialized using the default Construct method unless a special constructor message
intervenes between the new operator and the class name. The optional initializor block follows the
class name.

You can also use the new operator to create new instances of base and compound types, including
arrays. As with objects, the new operator returns a handle to the new instance and not the instance
itself. Again, free the instance using the delete operator.

The clone operator (unimplemented) can be applied to an object or object handle to produce a
copy of an object. The default method for doing this is to first simulate a use of the new operator
on the object’s class, and then do a recursive clone on member objects, a bitwise copy on mem-
bers of base data types, and a deep copy on compound data members.

A non-default clone procedure is specified by defining a Clone method in the class to be
cloned. This method is called with the handle of the cloned object as an argument. The method
gets called after the simulated new, and substitutes for the remainder of the default clone proce-
dure. Note that Clone is called as a method on the freshly cloned object, rather than on the object
being cloned. Thus a Clone method should have no return value. Destroy cloned objects using
the delete operator.

class MyClass
{

string name;
upon Construct { ... }
upon CustomConstruct : list date { ... }

};

class Foo
{

on DoIt
{

handle aClassPtr, bClassPtr, aListPtr;
aClassPtr = new MyClass;
date = { 19, 'May, 1990 };
bClassPtr = new {'CustomConstruct, date}

=> MyClass { name = “M.I.T.”; };
aListPtr = new list;

}
};

Figure 3.35 Dynamic Instancing Example

38 February 25, 1997

AthenaMuse 2.2 Documentation

3.18 Object Destruction

AM2 destroys an object declared within a scope on exit from that scope. The delete operator
also destroys an object. Apply it only to the handle of an object returned by the new or clone
operators.

The default destruction of an object involves:

• The recursive destruction of all member objects and variables in reverse declaration order

• The recursive destruction of all bases in reverse declaration order

• The destruction of the deleted object

This may be insufficient if the object contains handles to other objects or data allocated using the
new operator. So that you can specify custom actions to accompany an object’s destruction, AM2
checks for a Destroy method whenever you delete an instance of a user-defined class. AM2 calls
this method, if it exists in the deleted object’s class, before the destruction of member objects and
bases, and the freeing of object storage.

3.19 Object Member Reference

You can access the data members of an object using the (.) operator. If myObject is the name of
an object instance generated by a declaration, then myObject.memberName refers to the appro-
priate object member. Access control is discussed in Section 3.20, “Class Definition” page 40.
You can chain object references using the (.) operator to refer to members of objects that are
themselves the members of an enclosing object. For instance, imagine a class named Viewer that
describes a standard video viewer, and that possesses a button named Forward that starts video
play. Then you might have the following statements:

If an object member reference occurs in an expression, then the value is simply accessed. If an
object reference occurs as an lvalue, that is as the target of an assignment, and the assignment
appears in a method applied to the object itself, then a simple assignment is performed. Such
assignments are called native. If, however, the object member reference occurs in a method
applied to some other object, then the run-time system checks for a standard Set_name method in
the class of the object whose member is the target of the assignment, with the member name as
part of the selector and the value of the right side of the assignment as the argument.

Assignments that invoke Set_ methods are called foreign. If such a Set_ method is not found
for a foreign assignment, then a standard assignment is applied.

{
Viewer myViewer;

myViewer.Forward.width = 40;
}

Figure 3.36 Object Member Reference

AthenaMuse 2.2 Documentation

February 25, 1997 39

For an example of native assignment, consider a class named Book that has an integer member
called CurrentPage. If you call a NextPage method on an instance of the Book class, and the
method contains the statement,

CurrentPage = CurrentPage + 1;

then, in effect, you increment CurrentPage without calling the Set_CurrentPage method. In
contrast you use foreign assignment when assigning to members defined in bases. Thus, if class
Dictionary inherits from Book, and a method of Dictionary contains an assignment to Cur-
rentPage, this assignment invokes the Set_CurrentPage method, if it exists.

All classes possess a default SetAttributes method. This method takes one argument, a spe-
cially formatted list of lists, each of whose sublists consists of a pair of elements, a string member
name, and a corresponding value. The SetAttributes message is handled by iterating over the
argument list, and performing the appropriate foreign assignment for each member/value pair.
You can use a SetAttributes message to set members in bases. You can override the SetAt-
tributes method, but it is probably dangerous to do so. This feature is similar in intent to the X
toolkit varargs style interface, and it simplifies the writing of special constructors (see Section
3.25, “Object Initialization” page 49).

You can create a handle to an object or a variable using the (&) operator. You cannot, however,
take the handle of an object member that possesses a Set_ method. You can access object
members through a handle using the (->) operator. The (*) operator dereferences a handle,
but it cannot be applied in such a way that it returns an inappropriate target for an assignment. For
example, you cannot use it to return an object on the left hand side of an assignment.

XFbutton myButton;
list buttonList = {
 { 'x, 50 },
 { 'y, 50 },
 { 'width, 200 },
 { 'height, 100 }
 };

{ 'SetAttributes, buttonList } => myButton;

Figure 3.37 Sample SetAttributes Call

{
Viewer myViewer;
handle vwrPointer;

vwrPointer = &myViewer;
vwrPointer->Forward.width = 40;

}

Figure 3.38 Object Handles

40 February 25, 1997

AthenaMuse 2.2 Documentation

Note that unlike C++ pointers, ADL handles are dynamically typed. The built-in function
isKindOf() provides run-time type checking of handles (see Section 3.22, “Metaclass Opera-
tions” page 43).

The keyword parent is always a handle to the object that has the current object as a direct mem-
ber. In a method, the current object is always the object on which the method is being invoked. In
an initializor block, the current object is the one being initialized. If the current object was dynam-
ically created using the new operator, then there is no parent. This case can be tested using
another keyword, theHeap. For dynamically created objects, parent == theHeap.

3.20 Class Definition

In the ADL, a user can define a new class from scratch (user-defined), create a subclass of a user-
defined class, or create a subclass of a wrapped (system-defined) class. Class definitions can nest
and you can define a class within another class, but not within its methods.

There are two forms for class definitions. The more common form defines a named class from
which the user will later declare several instances. Such a class definition introduces a new type
name into the ADL just as it does in C++. It consists of the following:

• the keyword class

• the name of the new class

• a colon if the new class is an explicit subclass followed by the names of parent classes
(separated by commas)

• an open curly bracket ({)

• the class member declarations, if any

• the class method definitions, if any

• a close curly bracket

• an optional comma-separated list of instance names

• a trailing semicolon

class MyClass [: Base1[, Base2[, ...]]] {
Member Declarations
Method Definitions

} [instance1[, instance2[, ...]]];

anonymous [: Base1[, Base2[, ...]]] {
Member Declarations
Method Definitions

} [instance1[, instance2[, ...]]];

Figure 3.39 Class Definitions

AthenaMuse 2.2 Documentation

February 25, 1997 41

You can declare instance variables of the defined class immediately by appending their names
after the closing curly bracket of the class definition.

The second form defines an unnamed class, and is used when all the instances of the unnamed
class can be declared at the time the class itself is defined. This form of the class definition substi-
tutes the key word anonymous for class and omits the class name. By default, all instances of a
class contain their own copies of class data members. If the intention of the application developer
is that all class instances should share one copy of a data member, then that data member’s decla-
ration should be prefaced with the common keyword (unimplemented). Common members corre-
spond to the static class members of C++. The ADL has adopted a different nomenclature
because the word static is overused in C++.4

A subclass can redefine a member or method of a parent class. Such a redefinition is said to hide
the original member or method definition in the parent class. That is, the subclass cannot access
the parent member or method without using a scoping operator (::) (see Section 3.24, “Inherit-
ance” page 47).

AM2 currently provides only primitive access control to limit the developer’s ability to get and set
the values of a class instances members. The ADL does not possess a scheme similar to the C++
categories of public, protected, and private members. In C++ all access control is checked
at compile-time, which is possible because of the language’s strict type checking. The ADL is less
strictly typed (handles form a single type), which forces any access control to be implemented
using run-time mechanisms. We believe that it would be too computationally-intensive to imple-
ment the three C++ access categories. One possibility under consideration is to dispense with the
protected category and to modify the private category so that private members and meth-
ods of an object could only be accessed from within that object itself. In C++, private methods
can be called on an object from any object of the same class. The developer can use Set_ meth-
ods (see Section 3.19, “Object Member Reference” page 38) to make a member read-only in
methods outside the immediate class and or in class methods applied to other instances of the
same class.

Since wrapped classes are system-defined you cannot modify them, but you can create subclasses.
One of the great strengths of the AM2 environment is that wrapped classes are almost indistin-
guishable from user-defined classes, yet they are implemented in C++ and may interface to third-
party libraries. The following section discusses wrapped classes and the relationship to user-
defined classes in more detail.

3.21 Method Definition

Method definitions are contained in blocks introduced by the keyword on followed by the mes-
sage prototype. The prototype must begin with an identifier called the selector that is unique
within the method’s class. The selector appears as an unquoted character string as the first compo-
nent of the message list (see Section 3.13, “Messages” page 30). The selector can be the same as
the selector of a method in the parent class or one of its ancestors. In this case, the new method
overrides the ancestor’s method.

4 See B. Stroustrup, The C++ Programming Language2 (1991) 166.

42 February 25, 1997

AthenaMuse 2.2 Documentation

If the method receives arguments, you must declare these arguments in the message prototype
after the selector and a colon separator. The arguments must be of base or compound type. Nei-
ther arrays nor objects can be message arguments, but handles to them are allowed. The type of
the arguments, if they are present, are checked each time a method is invoked. Message argu-
ments may be unset.

The ADL does not allow the overloading of selectors. That is, a method is always called with the
same type of arguments in the same order. The same method selector cannot be specified for two
separate methods that are distinguished by their argument lists, as in C++. The method can return
a value, once again of base or compound type. If it does so, you must declare the type of the return
value as the last part of the prototype following all the argument declarations. This declaration
takes the form of the keyword return followed by the type of the return value.

The block that follows the message prototype contains the executable ADL code that defines the
method. If a method declares a return value, this code must indicate the return value using the
keyword return followed by an expression that evaluates to the return value. The returned value
may be unset. The method terminates upon execution of a return statement, or if the method
does not return a value it terminates after execution of the last statement of the block. In methods
with no return value, do not follow a return statement indicating premature termination by an
expression.

In an object method, the keyword self is always a handle referring to the object and the keyword
sender is always a handle to the object that sent the message currently being handled. If the mes-
sage was sent by the system, e.g., a default or special constructor or an Init message, then
sender is NULL. An object can directly set the value of an object member without using a Set_
message to self.

Methods, like object members, can be common, that is, they can apply to the class as a whole
rather than a particular instance of the class (unimplemented). You can declare a common
method by inserting the keyword common between on and the selector in the method definition.
Common methods have access only to the common members of a class, not to the regular mem-
bers, because you cannot refer to a regular member without referring to an instance.

You may declare a method to be local if you do not wish the method to be inherited by a sub-
class. That is, a local method may not be invoked by a message directed to an instance of a
derived class.

See Figure 3.40 for the general form of a method definition. The colon is required if either an
argument list or return type is present.

on [common] [local] selector [:[type1 arg1, ... , typen argn]
[return rettype]]
{

Method Declarations
Method Statements

}

Figure 3.40 Method Definitions

AthenaMuse 2.2 Documentation

February 25, 1997 43

The forward statement (unimplemented) indicates that the current message is to be forwarded
to another object. The statement has two forms illustrated in Figure 3.41.

In both cases, execution transfers to a method in the new target specified by the object or handle
appearing after the (=>) operator. The first case of this example issues an identical message to
the new target. The second case uses the same arguments, but specifies a new selector by a string.
The new target appears to return directly to the message sender in the case of a synchronous two-
way message, not to the forwarding object. An object can forward a message to a different
method within itself by using the construction

forward 'newSelector => self;

The forward statement is largely syntactic sugar except that it guarantees that the message is for-
warded synchronously, even if the original message is asynchronous. That is, once a method has
started to handle a message, the forward statement is seen as an extension of the original han-
dler, and not the transmission of a new message.

3.22 Metaclass Operations

The future development of editors in the ADL requires the capability to create ADL subclasses
dynamically. Such an editor may need to access the class (metaclass object) of a wrapped or ADL
class. The classOf operator, when applied to an object identifier or an object handle, returns a
handle to the corresponding metaclass object. It may also be necessary to send a message to the
metaclass object of a named class. The operator theClass, when prefixed to a class identifier,
likewise returns a handle to the specified class.

forward => object/handle;

forward stringSelector => object/handle;

Figure 3.41 Two Forms of the Forward Statement

class MyClass : MyBase { ... } myObject;
class YourClass { ... };

on Foo
{
 if (isKindOf(&myObject, theClass MyBase))
 { /* Do This */ }
 if (isKindOf(&myObject, theClass YourClass))
 { /* Don’t do this */ }
}

Figure 3.42 Run-time Type Checking Using isKindOf()

44 February 25, 1997

AthenaMuse 2.2 Documentation

The isKindOf(hObject,hClass) built-in function provides run-time type checking of ADL
handles. You can call it with two arguments: the first is a handle to an object, the second is a han-
dle to the metaclass object for a class. The second argument is usually derived from one of the
expressions shown in Figure 3.42.

The isKindOf() function returns TRUE if and only if the class pointed to by the second argu-
ment is the class or a base of the class of the object pointed to by the first argument. You can cre-
ate an instance of a class from a handle to the metaclass object using the new operator by
enclosing the handle in parentheses, as shown in Figure 3.43.

3.23 Wrapped Classes

Wrapped classes are C++ classes that are “wrapped” with the necessary information to make them
usable in the ADL. Wrapped classes are also called system-defined classes. They cannot be modi-
fied although they can be adapted through subclassing. AM2 comes with a set of wrapped classes,
which are described in Chapter 6, “Wrapped Class Reference” page 111.

By convention, the names of wrapped classes begin with two capital letters that define the module
the class belongs to, followed by a lower case word specifying the class within the module. If
more than one word is necessary, the names are concatenated with second and later words starting
with a capital letter. The following samples are typical wrapped class names:

XFtop // a top level frame or shell window
XFbutton
XFcheckBox // note the capitalization
MMimage

The exceptions to this convention are the set of wrapped notification classes (see Section 4.2,
“Using Notification Request Objects” page 62) and certain abstract wrapped classes, e.g.,
ActivityManager, that never appear in ADL programs. Most programmers try to distinguish
their ADL from wrapped classes by starting the names of ADL classes with only a single capital
letter, e.g., ExitButton. Note that XFtop and XFbutton will frequently be used as example
wrapped classes in this document.

System developers can also create wrapped classes using the wrap script (see “Creating
Wrapped Classes” on page 271). We use wrapped classes and user-defined classes (those writ-
ten in the ADL by an application developer) in almost exactly the same way, with some restric-
tions on member access for wrapped classes. This section discusses how wrapped classes differ
from user-defined classes.

There are five things that you can do with any class: refer to it by name, create a subclass of it,
create an instance of it, access members of its instances, and invoke methods of its instances.
Let’s look at each activity in turn.

handle hButton = new (theClass XFbutton);
handle hButton = new {‘Create, self} => (theClass XFbutton);

Figure 3.43 Creating a Class Instance from the Handle to a Metaclass Object

AthenaMuse 2.2 Documentation

February 25, 1997 45

3.23.1 Scope of a Class Name

An ADL programmer specifies a class by its name when creating a subclass or an instance of the
class, and when getting a handle to the class (using theClass operator). The scope of a class
name represents the part of the program in which the name refers to that class (see Section 3.26,
“Scope” page 52). A wrapped class’ name has the same scope as that of a non-nested, user-
defined class. This means that a wrapped class can be used anywhere in an ADL application.

One difference between wrapped classes and user-defined classes is that the latter, when defined
with the same name as a wrapped class silently hides the corresponding wrapped class. For
instance, suppose there is a wrapped class named XFselectList. A user-defined class named
XFselectList would hide the wrapped class of the same name so that any objects of type
XFselectList would be instances of the user-defined class, not instances of the wrapped class.
Two user-defined classes with the same name generate a semantic error.

3.23.2 Creating an Instance of a Class

You can instantiate, that is represent by a concrete instance, all wrapped classes with the excep-
tion of an abstract wrapped class. An abstract wrapped class is one that exists only to provide
organization in the hierarchy of classes. It is not a complete class in itself and therefore instances
of it are not allowed.

3.23.3 Creating a Subclass

You can create a subclass, which is a class that inherits from a superclass, of most wrapped
classes. For example, an ADL program might create a subclass of the wrapped class XFtop to add
XFbutton member instances as part of creating separate user interfaces.

Some wrapped classes, however, do not allow for the creation of subclasses. For example, the
wrapped class XFwidget is an incomplete class that exists to provide organization in the hierar-
chy of classes. Most abstract wrapped classes are in this category. One notable exception is the
ActivityManager class, an abstract class that you can use to create subclasses (see Section 4.5,
“Creating ADL Classes That Manage Activities” page 70). It is abstract because without the
information stored in its subclasses an instance of it has little use. It is the subclass that provides
the information that makes it useful.

3.23.4 Member Access

Wrapped classes can have simple and compound members, namely booleans, integers, reals,
strings, lists, intervals, times, and handles. They cannot have arrays or instances of other objects
as members. There are three operations that you can attempt on a simple or compound member of
an object: taking a handle to the member, getting the member’s value, and setting the member’s
value. The following sections describes the operations available for using those members and the
restrictions on the way they are referred to by name.

46 February 25, 1997

AthenaMuse 2.2 Documentation

Operating on Members

We call instances of wrapped classes wrapper objects. Taking a handle to a member of a wrapper
object is not allowed because the member does not necessarily exist. Some members of a wrapper
object are actually implemented by making method calls on the C++ object that implements the
wrapper instance. Other members, known as attributes, are actually contained and managed by
the underlying windowing or operating system. For instance, think of all the possible attributes of
a button, width, height, borderWidth, foreground, background,etc. The XFbutton passes manage-
ment of these attributes down to the underlying windowing system on each platform.

You cannot assign unset values to members of wrapped classes. For the most part, however, you
can get and set the members of a wrapper object just like the members of an instance of a user-
defined class. Just as a user-defined class can prevent the setting of one of its members by provid-
ing a Set_memberName method, and either not setting the member or calling the die built-in
function, a wrapped class can prevent the getting or setting of its members in a similar way. For
example, the width member of the MMimage wrapped class is read-only and attempting to set it
is a fatal error. See the documentation for wrapped classes in Chapter 6, “Wrapped Class Ref-
erence” page 111 to determine which members are accessible.

Naming of Members

As with members of user-defined objects, you can refer to each member of a wrapper object by its
name. For example, the class XFlabel has a member called width. In subclasses of XFlabel,
you simply refer to width if the subclass does not have another member with the same name that
hides it. From outside the label class, you can refer to width as a member of XFlabel by a con-
struct similar to myLabel.width or handleToMyLabel->width.

Unlike the members of a user-defined object, in a wrapper object you cannot qualify the members
of a wrapped class by the name of the base that provides it. For instance, XFfontable is a super-
class that provides the font member for other classes, such as XFtext. You cannot refer to this
font member as XFfontable::font. You can, however, refer to XFtext::font.

Qualifying self

Unlike the base objects of a user-defined object, you cannot access the base of a wrapped object
from the ADL. For instance, suppose that MySelectList is a user-defined subclass of
XFselectList. It is an error to access the XFwidget base of XFselectList from within
MySelectList using the conventional XFwidget::self because there is not necessarily an
object that properly represents this base.

3.23.5 Method Invocation

The invocation of methods works just as it does for user-defined objects, except that a method
cannot be sent to a base class of a wrapped class. In the ADL, a message goes to the appropriate
base object to invoke an overridden method of that class. Since it is not possible to access any
base object of a wrapped object, as discussed in the previous section, it is not possible to access
overridden methods.

AthenaMuse 2.2 Documentation

February 25, 1997 47

3.24 Inheritance

All variable or object members defined in a parent class are accessible in a subclass unless they
are hidden by a member of the same name. In such a case, the inherited members are still accessi-
ble, provided that you identify them using the scoping operator ParentClassName::member-
Name. Such an expression is known as a scope pair. If the parent class name is not known, you
can use the keyword inherited in place of a class name before the scoping operator to access
the nearest occurrence of an otherwise hidden member in the chain of inheritance.

You can invoke a method defined in a parent class by a message to a derived class unless the
method has been declared local in the parent class. The exceptions are the system messages
Init and Destroy, the system default constructor message Construct, and any other method
declared as a constructor by the developer. These methods are local to the class in which you
declare them by default, and you may not invoke them by a message to a derived class. The ratio-
nale for this is that these messages are sent to objects and bases during initialization and destruc-
tion. If these messages could be inherited and were not redefined in each class, they might execute
multiple times during the initialization or destruction of an object.

You can redefine or override methods in a derived class. If you want to access the version of a
method defined in a base, you can direct the message using the self keyword qualified with the
scope operator and the name of the base, provided the message executes in one of the methods of
the derived class. There is currently no way to send a message to a base of an arbitrary object
although there is a proposal to allow scope pairs with member self in member selection expres-
sions Figure 3.45.

class Dad
{

XFbutton button;
on DoIt { ... }

};

class Child : Dad
{

XFbutton button;
on Foo
{

string message;
button.width = 40; // OK. Member hides parents
'DoIt=>self; // Dad::DoIt()
inherited::button.width = 100; //Dad::button

}
};

Figure 3.44 Example of Inheritance and Member Concealment

48 February 25, 1997

AthenaMuse 2.2 Documentation

Since a user-defined class can be a subclass of multiple classes, the ADL supports multiple inher-
itance. Multiple inheritance creates ambiguity when there are methods or members defined with
the same name in two separate parent classes of the same subclass. Such ambiguous references in
a method of a subclass are an error in C++, but the methods used to detect such conflicts are com-
pute intensive and more appropriate for the compile-time type checking of C++ than the run-time
lookup of the ADL.

AM2 searches superclasses in a depth-first manner during inheritance lookup. If this order is not
appropriate, the author may use inherited declaration (unimplemented) to indicate in which
subclass a method or member should be sought. The keyword inherited introduces such a dec-
laration, followed by a base class name, the scoping operator, the type of the inherited member in
the base, and the member name. After such a declaration, the member name refers to the similarly
named member in the specified base, even if that member is not the first of that name in inherit-
ance order. Figure 3.46 provides an example.

The choice of depth-first search is arbitrary but simple, and has the virtue that it establishes an
unambiguous priority among parent classes. In the examples in Figure 3.46, Child is more
closely related to Dad and GrandDad than it is to Mom.

The usage of the keyword derived in a scope pair with a member name or with the self key-
word parallels the usage of the inherited keyword. The expression derived::self, when it
appears in a method of a base of a derived object, refers not to the base but to the whole derived
object. Likewise, derived:: prefixed to a member name refers to the member not (necessarily)
in the base but rather the first occurrence of the member in inheritance order in the whole derived
object. The rationale for the derived keyword is to provide part of the functionality of virtual
functions in C++. You can divide this functionality in two parts:

class A
{
 on DoIt { ... }
};

class B : A
{
 on DoIt
 {
 ...
 'DoIt => A::self;
 }
};

B b;

on Init
{
 'DoIt => b.A::self; // proposal; not implemented
}

Figure 3.45 Example of Inheritance and Method Concealment

AthenaMuse 2.2 Documentation

February 25, 1997 49

• To implement a regulated polymorphism where C++ pointers to base combined with virtual
functions allow the developer to treat instances of related classes as part of the same collection
and still to have the instances retain the specific behavior of their classes

• To allow communication from a base to the full derived object

ADL handles provide a freer, though less safe, version of C++’s polymorphism. Indeed, since
handles are untyped, they provide total polymorphism. There is no check that an object will
understand a message until the message is received at run-time. The polymorphism provided by
C++ virtual functions is therefore unnecessary. But communication from base to derived object
can be very important, especially in the case of mix-in classes. The derived keyword provides
this communication. (For an implementation of the derived keyword, refer to the example pro-
gram in Figure 4.11, “A Class Inheriting from the ActivityManager Class” page 76.)

3.25 Object Initialization

An ADL description of an AM2 application consists of class definitions and initialized instances of
those classes. Most class definitions include object members that are instances of other classes.

class GrandDad
{

on Go { ... }
}

class Dad : GrandDad
{

XFbutton button;
on DoIt { ... }

};

class Mom
{

XFbutton button;
on DoIt { ... }};
on Go { ... }

class Child : Dad, Mom
{

inherited Mom::XFbutton button; // unimplemented
on Foo
{

string message;
button.width = 40; // Uses Mom::button
'DoIt => self; // Uses Dad::DoIt
'Go => self; // Uses GrandDad::Go

}
};

Figure 3.46 Multiple Inheritance and Scope Example

50 February 25, 1997

AthenaMuse 2.2 Documentation

The initialization of these instances is what gives an AM2 application its particularity. It is what-
makes one interface screen different from another and what distinguishes a particular interface
button from the next.

The ADL provides several mechanisms for initializing object instances. Each of these is optional,
and each is applied successively. The initial state of an object is the result of these cumulative and
possibly overlapping initializations. The complete initialization sequence for an ADL object is as
follows.

1. The ADL creates the object. That is, the ADL allocates storage for the object so it has an
address.

2. The ADL creates and initializes all bases and members recursively, each set in declaration
order. (Creation means allocation, as discussed in the first step. Initialization refers to all of
the steps discussed in this list.)

3. A constructor message is sent to the object and handled if the corresponding method exists. If
a special constructor is specified in the object definition or new statement, that is the construc-
tor message sent, it must be handled or the system generates an error. If the object definition
or a new statement does not specify a special constructor, then the default Construct mes-
sage is sent without arguments. This message is optional, so the system does not generate an
error if there is no corresponding Construct handler.

4. The optional initializor block, if it exists, executes as if it were a method of the object being
initialized. All assignments in the initializor block are treated as foreign.

5. The ADL queries the asset manager about the object, and applies any assets that pertain to the
object.

6. The ADL sends an optional Init message to the object. If there is an appropriate handler, it
executes. Otherwise it is ignored.

Let us illustrate this sequence with a few examples:

In this case, aInstance and bInstance are instances of the class MyClass. We
initialize aInstance in the following steps:

class MyClass
{
 Member Declarations;
 upon Construct { ... }
 upon Create : handle h { ... }
 on Init { ... }
};

MyClass aInstance { Initializor Block};
MyClass {'Create, &aInstance} => bInstance;

Figure 3.47 Simple Initialization Example

AthenaMuse 2.2 Documentation

February 25, 1997 51

1. Create the class instance aInstance.

2. Create and initialize all members of aInstance using this procedure starting at the first step.

3. Call the Construct method on the object aInstance since there is no special constructor
specified.

4. Execute the initializor block that follows the declaration of aInstance as a scope (see Sec-
tion 3.26, “Scope” page 52). Member reference follows the pattern of a method inside
MyClass. That is, the user may refer to members by simple member name rather than the
combination aInstance.memberName. Member protection, however, follows the rules for
an external reference. Assignment to class members from within an initializor block invokes
the appropriate Set_ method.

5. Consult the asset database to locate any resources that apply to the class MyClass and the
instance aInstance, and apply them to the instance.

6. Call the Init method.

The initialization of bInstance is similar except that it calls the special constructor Create
instead of the default Construct, and it does not execute an initializor block.

Constructor methods require comment since their definition uses a special syntax. In general,
bases need not know anything about their derived instances. But there are circumstances where
this is not the case. For instance, windowing systems generally refuse to create widgets without
knowing the parent widget. In the ADL, widget containment is implemented as class membership.
That is, a manager widget contains its child widgets as members. If those child widgets are sub-
classes of the base wrapped widgets, then the initialization of the subclassed child widgets must
inform the wrapped bases of their parent during processing of the constructors.

As an example, consider a specialization of the base button class, XFbutton, called
ExitButton. ExitButton has special behavior, background color and label. If we go to create
a manager that contains an exit button, then the constructor for this ExitButton must somehow
inform the base XFbutton of its manager parent. The ADL distinguishes constructor method def-
initions in order to add the mechanism to make this possible. Figure 3.48 illustrates this.

Constructor definitions start with the keyword upon instead of on. The constructor body can be
preceded by an optional init block that specifies constructor calls for direct bases. The construc-
tor messages in this block must correspond to special constructors defined in the bases. The con-
structor messages in the init block are evaluated in the scope of the constructor execution so
they have access to the constructor arguments.

upon selector [: type1 arg1, ... , typen argn]
[init { CtorMessage1 => base1, ... , CtorMessagen => basen }]
{

Method Declarations
Method Statements

}

Figure 3.48 Constructor Method Syntax

52 February 25, 1997

AthenaMuse 2.2 Documentation

The SetAttributes (see Figure 3.37, “Sample SetAttributes Call” page 39) method allevi-
ates a scoping problem for constructors and initializor blocks. Initializor blocks provide the appli-
cation developer far greater flexibility in initializing object members than constructors, but
because they have object method scope, they cannot refer to variable values from the scope in
which the object is being initialized. A special constructor that takes an attribute/value list as its
sole argument can import an arbitrary set of values from the initializing scope and use them to ini-
tialize the object, thus circumventing the fixed argument list of the special constructor and the
restricted scope of the initializor block.

3.26 Scope

A scope is a region of a program in which a variable or set of variables has definition. In AM2,
each class (see Section 3.20, “Class Definition” page 40) and method definition (see Section
3.21, “Method Definition” page 41) as well as each initializor block forms a scope (see Section
3.25, “Object Initialization” page 49).

AM2 scopes are of two kinds, transparent and opaque. The variables defined in an enclosing scope
are also visible in an enclosed transparent scope. In an enclosed opaque scope, they are not.
Method definitions form transparent scopes and class definitions and initializor blocks opaque
ones. Class definitions are visible in the current scope and in all enclosed transparent scopes as
you would expect. Classes defined at the top level of an application are also visible everywhere.

You can access members and variables from the enclosed scope using the syntax for object mem-
ber reference if an enclosed scope has been named (see Section 3.19, “Object Member Refer-
ence” page 38). Occasionally, you may need to refer to a global object, although avoid doing so
wherever possible. Consider two application modules that are never simultaneously visible, but
which each possess a button that puts its own module to sleep and calls up the other. These would
normally be implemented as instances of module classes. The button actions for each must be able
to send a wake up message to the other module, and must therefore be able to see the name of the
other module in the enclosing application scope.

The ADL, therefore, allows you to specify that a symbol has one of two kinds of scoping:

• Local scope is the default. The object or variable is destroyed upon exit from the scope in
which it is defined. Separate declaration is not necessary.

• Application scope is specified by the keyword global and indicates that the symbol is visi-
ble in the scope in which the global declaration occurs, but it is actually defined in the top
level application scope.

The keyword global must accompany and precede a type specifier (e.g., string) or class name
in a declaration. If the declaration refers to a global instance of an anonymous class, there is no
class name to use as the type specifier. In this case, you can use the key word anonymous as a type
specifier. You can combine global scope with the (.) or (->) operators. The global decla-
ration merely designates where to look for the left-most member of a (.) or (->) chain.

AthenaMuse 2.2 Documentation

February 25, 1997 53

Note that an enclosed scope cannot refer to an enclosing scope without a global declaration. Pro-
gramming languages typically make the identifiers of an enclosing scope visible to an enclosed
scope. Our aim here is to increase the modularity of the ADL by minimizing name clashes. This
should encourage the reuse of interface and module templates and the development of template
libraries. An enclosing scope can make one of its members visible inside an enclosed opaque
scope by passing a handle to the member as an argument to a custom constructor.
(see Section 3.17, “Dynamic Objects and Storage Management” page 36).

class Aclass
{

XFbutton aButton;
. . .

};

class Bclass
{

on Foo
{

global Aclass aInstance;
aInstance.aButton.width = 40;

}
};

Aclass aInstance;
Bclass bInstance;

Figure 3.49 Scope Example

54 February 25, 1997

AthenaMuse 2.2 Documentation

3.27 Assets

Assets allow the customization of AM2 applications on several levels. They also help to separate
the implementation of an interface and its look and feel.

You can initialize any variable in an ADL program using assets, thereby allowing these items to
be customized on a per platform, per installation, per user, and per application basis. Note that dif-
ferent platforms may support different degrees of customization. For example, Macintosh and
Windows 3.1 systems do not have separate user accounts.

Suppose an author builds an application containing a button that causes the application to exit. In
the U.S., you might use the label “Quit.” However, in Norway you would probably use the label
“Avslutt.” You can create the two labels using assets without making modifications to the actual
program code.

AM2 assets correspond roughly to X Window System resources, Microsoft Windows 3.1 and
Windows NT .INI files, and Macintosh preferences. However, AM2 uses its own asset mechanism
rather than the native one for each platform in order to provide a portable, common interface. An
ADL programmer or an application editor need only create one asset file, for use with the ADL
code on all platforms.

3.27.1 Asset File Structure

Asset files are ADL code files containing application data initializationsthat the user can custom-
ize. There are three types of asset blocks: class, member and global. Class and member asset
blocks are associated with an identifier and can contain statements, class asset blocks, or member
asset blocks. When an asset block is applied to an object, any nested asset blocks are then applied
when creating members of that object. Also, any statements it contains are evaluated in the con-
text of the object being created, after evaluation of the izor block and before sending the Init
message.

Class Asset Blocks

The assets in class asset blocks apply to all objects of the named class except those that are cre-
ated dynamically (see Section 3.17, “Dynamic Objects and Storage Management” page 36).
They typically appear at the top level, i.e., not embedded in any other asset block. Top-level
class asset blocks do not, however, affect , dynamically created objects (see “Global Asset
blocks” on page 54).

Member Asset Blocks

The assets in a member asset block apply to the member with the same name in the class associ-
ated with the most closely enclosing class or member asset block.

Global Asset blocks

Global asset blocks are evaluated immediately after being parsed, before the application has been
completely defined or instantiated. This is intended to be used to set paths for the library mecha-
nism. Any statements are evaluated in the scope of the wrapped asset manager class.

AthenaMuse 2.2 Documentation

February 25, 1997 55

Global asset blocks can contain class asset blocks but not member asset blocks or other global
asset blocks. Such class asset blocks are then associated with both the heap and the application
class, and are applied to all objects, including dynamically created objects.

Assets and the Library Mechanism

Libraries are an abstraction that allow collections of files, both for code and for data, to be
grouped without worrying about portable pathnames. Library mappings, that is associations
between library and directory names, can be made in platform, installation, and user dependant
asset files. Files in these libraries can then be accessed via the statement ”file”@”libraryname”
both in uses statements and elsewhere in ADL code, such as in media element constructors. The
AppLib library automatically maps to the directory containing the original ADL file given on the
command line. The wrapped asset manager handles library mappings. To set a library path, use
the ’SetLibrary method, and to retrieve a mapping use the ’GetLibrary method. Note that the
path returned by ’GetLibrary always ends in a directory separator that so you can concatenate
it directly to a file or subdirectory name. For example, lines 3-5 of Figure 3.51 retrieve the path
for the AppLib library, append the name of the code subdirectory, and then set the library named
MyCode to this new path. The uses statement on line 7 then includes mybutton.adl from that
library. So if the ADL program being run were /mit/ceci/user/demo/buttons.adl, it
would be including /mit/ceci/user/demo/code/mybutton.adl. Similarly, the second
example constructs an MMimage named mBird using the file bird.gif from the same directory
as the main ADL program.

// class asset block:
// all buttons under here will be red
class assets XFbutton
{

background = ’red;
}

// member asset block:
// the member “theExitButton” of this class will be labelled “Quit”
member assets theExitButton
{

label = ’Quit;
}

// global asset block:
// all objects of class ExitButton in the application (including
// dynamically created objects) will be labelled “Avslutt”
global assets
{

class assets ExitButton
{

label = ’Avslutt;
}

}

Figure 3.50 Asset Block Examples

56 February 25, 1997

AthenaMuse 2.2 Documentation

3.27.2 Assets and Precedence

You can determine precedence in the asset mechanism using these simple rules to determine
which assets will be applied to an object. Assets that have higher precedence are evaluated later,
causing their values to override any assigned earlier.

• At any level, member asset blocks have higher precedence than class asset blocks.

• Assets specified closer to the current object have higher precedence. The distance is deter-
mined by the number of containers between declarations.

• Values set using assets are inherited unless the derived class possesses a member of the same
name as the attribute being set by assets in the base class. For example, if the class exitBut-
ton inherits from XFbutton, any asset set for the class XFbutton will apply to the
instances of exitButton.

The order of initialization is crucial in understanding the effect of asset specifications (see Sec-
tion 3.25, “Object Initialization” page 49). For instance, in the example involving exitButton
described above, if the exitButton constructor sets attribute label to "Exit", but the user’s
asset file sets all XFbutton labels to "XFbutton", an exitButton will have label "Exit".
Why? Because the derived constructor is executed after the assets for the base class are consulted.

3.27.3 Example of Using Assets

Figure 3.52 and Figure 3.53 present hello.adl, rewritten to use assets. Notice that it is broken
up into separate asset and code files. As a convention, the asset file has a .am extension. In this
example the asset file is explicitly included via a uses statement, but the asset specifications
could just as well have been placed in the platform specific asset files. On UNIX, for instance, the
assets in the file .am2rc in the user’s home directory are read in during application startup.

1 global assets
2 {
3 { ’SetLibrary,
4 ’MyCode,
5 ({’GetLibrary, ’AppLib} => self) + ”code” } => self;
6 }
7 uses ”mybutton.adl”@”MyCode”;

MMimage {’MEimage, {’MAfile, ”bird.gif”@”AppLib”}} => mBird;

Figure 3.51 Library Mechanism Examples

AthenaMuse 2.2 Documentation

February 25, 1997 57

uses ”hello.am”;

class exitButton : XFbutton
{

upon Construct
{

Pressed = {’Exit, theApp};
}

};

class Greetings : XFtop
{

exitButton hello;
} myGreetings;

Figure 3.52 hello.adl Using Assets

class assets Greetings
{

member assets hello
{

label = ”Hello, world!”;
height = 40;
width = 200;

}
height = 40;
width = 200;

}

class assets exitButton
{

label = ’Exit; // This gets overriden by the member assets above!
}

Figure 3.53 hello.am

58 February 25, 1997

AthenaMuse 2.2 Documentation

3.28 Program Structure

An ADL program consists of a succession of the following elements in any order:

• class (including anonymous) definitions

• global variable definitions, including global object definitions with initializor blocks

• global method definitions

• uses statements

Global variables and global methods are implicit members of an anonymously declared instance
or subclass of the system-defined application class, theAppClass.

You can use the uses statement to include the contents of a file or files that replace the statement
at parse time. If multiple uses statements referring to the same file are parsed, the file is still
included only once. A uses statement has two forms:

In the first form, the statement asks for the file named “fileName” to be loaded from the library
named “libraryName”. In the second form, it asks for the file named “fileName” to be loaded
from the same library as the file in which the statement occurs. AM2 designates the files in the
application file’s directory to be "AppLib".

uses "SlideViewer.cl"; // defines class SlideViewer
class SlideShow
{

SlideViewer myViewer;
. . .

};

Figure 3.54 Uses Example

uses “fileName”@”libraryName”;

uses “fileName”;

Figure 3.55 Uses Statement Forms

AthenaMuse 2.2 Documentation

February 25, 1997 59

Chapter 4 Using Activities in ADL

Newcomers to AM2 often find the idea of activity management a difficult concept to master. Once
you learn it, however, you will find it one of the most powerful features of the system. In this sec-
tion we provide a detailed guide to activity management.

Activities in AM2 provide the basic mechanism by which objects handle events generated by user
actions in applications. Activities also handle events that occur in AM2 applications due to a timer
or arriving network messages. For example, a standard AM2 button object provides a way to
notify other objects when the application user presses it. In the terminology of activity manage-
ment, the button manages the pressed activity. Similarly, events corresponding to an activity
trigger that activity.

All objects that manage activities maintain a list of things to do when events trigger those activi-
ties. This is, in essence, a list of messages that AM2 sends to objects when the triggering occurs.
The ADL programmer can add and delete things from this list.

We discuss the use of activity management in five stages, each described in a separate subsection:

• Section 4.1, “Using the Pressed Attribute” page 60

• Section 4.2, “Using Notification Request Objects” page 62

• Section 4.3, “Using Other Types of System-defined NRO Classes” page 65

• Section 4.4, “NROs Derived from System-defined NROs” page 69

• Section 4.5, “Creating ADL Classes That Manage Activities” page 70

• Section 4.6, “Creating Customized NROs” page 78

• Section 4.7, “Using Activities for Notification of Subscriptions” page 80

60 February 25, 1997

AthenaMuse 2.2 Documentation

4.1 Using the Pressed Attribute

One of the most common uses of activities is the use of button objects. For example, one often
places buttons in a multimedia application that, when pressed by the user, trigger some computa-
tion or presentation. This use of buttons is so common that AM2 provides a shortcut to simplify
the general activity mechanism in such cases.

The wrapped class XFbutton creates a simple button on the screen. (see Section 6.2.9, “XFmes-
sageDlg” page 136 for detailed documentation on the class.) The XFbutton class provides typical
attributes such as width, height, (x,y) location on the screen, foreground and background colors,
and a text label. For example, the following code is a very simple ADL program that puts a button
at coordinates (50,50) inside an instance of an object that is a subclass of the XFtop shell class

In this example, there is a single instance of a class that inherits from the XFtop wrapped class.
The anonymous keyword in line 1 indicates that this class has no name; only this instance of the
class is named. (In this case, this instance is named myApplication.) The anonymous class has
a single member, a button object name aButton defined in lines 3 and 4.

This ADL program draws the button on the screen. Clearly, we need a way of assigning the trigger
event when the user presses the button. The XFbutton class supports a special member called
Pressed. You can assign this special member a list that instructs the program to take some
action when the user clicks the mouse on that button. In its simplest form the Pressed attribute is
a list that has two values: a string giving the name of the method invoked, and a handle to the
object that receives a message when the user presses the button. For example, the assignment

aButton.Pressed = {‘Exit, theApp};

registers the fact that the message Exit goes to the built-in handle theApp. This is a predefined
message that terminates the program when sent to the application.

The example in Figure 4.2 displays some text information. Suppose we want to have a help button
in an application that displays some text information when pressed. The ADL program below
shows this using an instance of the XFtext wrapped class which is initially not visible (done by
setting the visible attribute to FALSE), and reversing that attribute when the user presses the
button.

1 anonymous:XFtop
2 {
3 XFbutton aButton {x=50; y=50; height=100; width=200;
4 label=”Push Me”;};
5 } myApplication {height=300; width=400;};

Figure 4.1 A Simple ADL Application with a Button

AthenaMuse 2.2 Documentation

February 25, 1997 61

In this example there are two buttons, one to exit the application and one to trigger the visibility of
the help text. The special constructor method named Construct automatically receives a mes-
sage when the application starts, and sets the Pressed attributes for these buttons. The assign-
ment statement in line 14 sets the Pressed member so that the message BPress goes to the
variable self. (The variable self is an automatically-generated handle that references the
object itself.) Thus when the user presses the button, the BPress method that starts on line 17
executes. This method changes the text of the label on the help button and, on line 25, reverses the
visibility of the text object.

You can also use the Pressed attribute to send a message to a method that requires one or more
arguments. For example, suppose we wanted to create two buttons which, when pressed, move an
instance of a label ten pixels to the right or left respectively. To do this, let’s create a method that
changes the x attribute of the label by n pixels, where n is an argument to the method. For exam-
ple, if the name of the label object is myLabel, then the following method would move it:

on MoveLabel: integer n
{

myLabel.x = myLabel.x + n;
}

1 anonymous:XFtop
2 {
3 XFbutton helpButton {x=50; y=50; height=50; width=150;
4 recomputeSize=FALSE; label=”Help”;};
5 XFbutton exitButton {x=250; y=50; height=50; width=100;
6 recomputeSize=FALSE; label=”Exit”;};
7 XFtext helpText {x=50;y=100;height=100;width=200;wordWrap=TRUE;
8 visible=FALSE; editable=FALSE;
9 text=”This is an example of a help message.”;};
10
11 upon Construct
12 {
13 exitButton.Pressed = {‘Exit, theApp};
14 helpButton.Pressed = {‘BPress, self};
15 }
16
17 on BPress
18 {
19 if (helpText.visible) {
20 helpButton.label = “Help”;
21 }
22 else {
23 helpButton.label = “Remove Help”;
24 }
25 helpText.visible = ! helpText.visible;
26 }
27 } myApplication {height=300; width=400;};

Figure 4.2 An Example of a Help Button

62 February 25, 1997

AthenaMuse 2.2 Documentation

If we name the two buttons leftButton and rightButton, we set their Pressed members as
follows:

leftButton.Pressed = {{‘MoveLabel, -10}, self};
rightButton.Pressed = {{‘MoveLabel, 10}, self};

4.2 Using Notification Request Objects

Using the Pressed attribute gives rise to some limitations. First, application developers fre-
quently want a button to trigger a number of different actions, yet the Pressed attribute can send
a message to a single method only. If you reset the Pressed member of a button, you lose the old
setting. Second, the method that receives a message from the Pressed method cannot have argu-
ments. This makes it impossible to provide the method receiving the message information such as
the (x,y) coordinates of the mouse at the time the event occurs. In AM2, these more general uses
of activities are supported through the use of Notification Request Objects, or NROs.

There are standard NRO classes provided in AM2.1 Some are system-defined and some are user-
defined (see Section 3.23, “Wrapped Classes” page 44 for a discussion of classes.) With the
exception of NROs used to handle timer events (described in Section 4.3.2, “Timer NROs” page
67) an NRO is an object that has the following four members:

• Activity name: a string naming the activity, to satisfy notification requests

• Target object: a handle to the object that receives notification when an event triggers the
activity

• Target method: a string providing the name of the method to receive a message when an
event triggers the activity

• Client data: an arbitrary piece of information that can by of any AM2 data type.

Note that the second and third of the NRO members on the list above are identical to the members
used in setting the Pressed attribute of button objects.

The base NRO class is the Nro wrapped class. It has a special constructor named Create that
takes the four arguments listed above. The following example defines an instance of an NRO for
an activity named MouseDown. This NRO requests that the message ButtonDown go to the target
object self along with the string “ClientData” as an argument:

Nro {‘Create, ‘MouseDown, self, ‘ButtonDown, “Client data”} => downNro;

Each object that manages an activity must have at least two methods: Subscribe and
Unsubscribe. These methods have as their sole argument a handle to an NRO. The Subscribe
method registers the NRO for notification when an event triggers the activity named in that NRO.
For example, suppose you created an NRO named downNro as shown above. The following
statement would subscribe that NRO to the button named myButton:

1 NRO wrapped classes are the only current exception to the conventionthat wrapped class names begin with
two capital letters. The NRO classes could have been given the names NRgeneral, NRtimer, NRmouse --
but they weren’t. No one remembers why. Instead they bear the slightly more readable names Nro, Tim-
erNro and MouseNro.

AthenaMuse 2.2 Documentation

February 25, 1997 63

{‘Subscribe, &downNro} => myButton;

After this statement executes, downNro is registered with the MouseDown activity of the button
object. Whenever the user clicks the mouse on that button, the message ButtonDown goes to the
object pointed to by self.

The Subscribe method actually returns a value that is often ignored by ADL programmers. This
value is a handle that indicates whether or not the subscription successfully completed. The return
value is NULL if the subscription is not performed and a handle to the subscribed NRO otherwise.

The Nro class assumes that the receiving method has three arguments in the following order:

• An argument of the type any that contains client data

• A list that contains strings with the names for the information sent by the activity, referred to
as the keys for the activity

• A list that contains the values for the information sent by the activity

For example, the MouseDown activity (and all other standard activities that describe mouse
events) provides six pieces of information when it sends its message to the target method. These
six items in the lists of keys and values are as follows:

1. x: an integer giving the x location of the mouse when the user presses the mouse button

2. y: an integer giving the y location of the mouse when the user presses the mouse button

3. button: an integer with the number of the pressed button on the mouse (The interpretation
of this number is platform-dependent.)

4. shift: a boolean that is TRUE if the shift key is down when the user presses the mouse button

5. command: a boolean that is TRUE if the key designated as the command key is down when
the user presses the mouse button (The definition of the key that corresponds to the command
key is platform-dependent.)

6. modifier: a boolean that is TRUE if a key designated as a modifier key is down when the user
presses the mouse button (The interpretation of the key that corresponds to the modifier key is
platform-dependent.)

It is important to note that the (x,y) coordinates returned by any mouse activity are given rela-
tive to the upper left corner of the widget where the mouse event occurred.

An example of an ADL program that includes a method with the appropriate arguments follows.
In this example, the method named ButtonDown outputs the names and values of the arguments
it receives.

In Figure 4.3, the NRO named downNro subscribes to the button myButton. When the user
presses the mouse button, the method ButtonDown receives a message. This method outputs the
client data (in this case, the string “Client data”) from the NRO and then outputs the name
and value pairs by going through the entries on the list one by one.

64 February 25, 1997

AthenaMuse 2.2 Documentation

A typical output from this application is as follows:

Client data is Client data
Name=x Value=27
Name=y Value=24
Name=button Value=1
Name=shift Value=TRUE
Name=command Value=TRUE
Name=modifier Value=FALSE

Note that in this example, the shift and control keys are held when the button is pushed down.
Also, the (x,y) coordinates sent when an event triggers the activity are with respect to the upper
left corner of the object managing the activity, which in this case is the button.

1 anonymous:XFtop
2 {
3 XFbutton myButton {x=50; y=50; height=50; width=150;
4 recomputeSize=FALSE; label=”Press Here”;};
5 XFbutton exitButton {x=250; y=50; height=50; width=100;
6 recomputeSize = FALSE; label=”Exit”;};
7 Nro {‘Create, ‘MouseDown, self, ‘ButtonDown,
8 “Client data”} => downNro;
9
10 upon Construct
11 {
12 exitButton.Pressed = {‘Exit, theApp};
13 {‘Subscribe, &downNro} => myButton;
14 }
15
16 on ButtonDown: any clientData, list keys, list values
17 {
18 any tempValue;
19 integer count=1;
20 echo(“Client data is” & toString(clientData)+”\n”);
21 while (count <= length(keys)) {
22 echo(“Name=”+toString(at(count, keys)) &
23 “Value=” + toString(at(count, values))+”\n”);
24 count = count+1;
25 }
26 }
27 } myApplication {height=300; width=400;};

Figure 4.3 An Example Using an NRO

AthenaMuse 2.2 Documentation

February 25, 1997 65

4.3 Using Other Types of System-defined NRO Classes

4.3.1 Mouse NROs

Objects can subscribe to any activity using the standard NRO class. There are some cases, how-
ever, where use of special classes makes programming simpler. These special NRO classes are
tailored to a particular activity and usually provide simpler argument lists than the general NRO
class, making it easier to write the target method.

For example, the use of NROs for mouse events is so common that AM2 provides a special NRO
for these events. This NRO returns the client data and the six relevant items about the event in
separate variables. Thus, the MouseNro wrapped class sends a message that has seven arguments
to the target method:

1. A value of type any containing the NRO’s client data

2. An integer with the x coordinate where the mouse-related activity occurred

3. An integer with the y coordinate where the mouse-related activity occurred

4. An integer with the number of the button that was pressed

5. A boolean that is TRUE if the shift key was pressed when the event activity occurred

6. A boolean that is TRUE if the command key was pressed when the event activity occurred

7. A boolean that is TRUE if the modifier key was pressed when the event activity occurred

It is important to emphasize that the use of any of the special NRO forms is entirely optional. It is
always possible to use the general NRO object described in Section 4.2, “Using Notification
Request Objects” page 62.

The ADL program in Figure 4.4 illustrates the use of special NROs that track the press and
release, and the movement of the mouse on a simple shell widget. To do this, we use three differ-
ent activities: MouseDown, MouseUp and MouseMove. The example uses one instance of the
MouseNro class for each activity. The code below shows the complete application.

66 February 25, 1997

AthenaMuse 2.2 Documentation

1 anonymous:XFtop
2 {
3 XFlabel reportLabel {x=10; y=10; height=50; width=250;
4 recomputeSize=FALSE; label=””;};
5 XFbutton exitButton {x=250; y=50; height=50; width=100;
6 recomputeSize = FALSE; label=”Exit”;};
7 MouseNro {‘Create, ‘MouseDown, self, ‘MouseTrack,
8 “Down”} => downNro;
9 MouseNro {‘Create, ‘MouseUp, self, ‘MouseTrack,
10 “Up”} => upNro;
11 MouseNro {‘Create, ‘MouseMove, self, ‘MouseTrack,
12 “Move”} => moveNro;
13
14 upon Construct
15 {
16 exitButton.Pressed = {‘Exit, theApp};
17 {‘Subscribe, &downNro} => self;
18 {‘Subscribe, &upNro} => self;
19 {‘Subscribe, &moveNro} => self;
20 }
21
22 on MouseTrack:any clientData, integer xval, integer yval,
23 integer button, boolean shift, boolean command,
24 boolean modifier
25 {
26
27 reportLabel.label = “Mouse” & clientData + “:x=” +
28 toString(xval) & “y=”+toString(yval);
29 }
30 } myApplication {height=300; width=400;};

Figure 4.4 Using MouseNro Objects

AthenaMuse 2.2 Documentation

February 25, 1997 67

4.3.2 Timer NROs

ADL provides a general purpose timer that you can use to trigger actions at pre-specified intervals.
To use this timer, subscribe an instance of a class called TimerNro to the application using the
special handle named theApp. In a perfect computational environment, the timer activity would
always occur when scheduled. However the main event loop of AM2 must handle many events,
the duration of which may not be known beforehand. For this reason an actual timer event may be
delayed or even missed. In order to help application developers cope with this possibility, Tim-
erNro sends a message with two integer arguments to its clients:

1. A value called late that is the number of milliseconds between the exact time the activity is
scheduled and the time it is actually triggered

2. A value called missed that is the number of successive triggering of timer events missed due
to delays

For example, consider a simple stopwatch that counts seconds from the time you first press the
button until you press it a second time. This clock needs to count intervals of 1000 milliseconds
and trigger an activity after each interval. You can do it in the ADL by subscribing the NRO cre-
ated by the following definition:

TimerNro {‘Create, 1000, self,‘ClockTick, NULL} => clockNro

The first argument of the Create message is the requested interval (in milliseconds) between trig-
gering of the clock activity. The next three arguments are: the target of the activity’s message, the
name of the method to receive the message, and a value that can be any ADL type used for con-
veying client information.

Figure 4.5 shows an ADL program that implements a stopwatch. The example creates three but-
tons: one for starting the watch, one for stopping the watch, and one for exiting the application.
The variable named clock counts the number of seconds once the start button is pressed, and a
label displays the elapsed seconds.

The method ClockTick handles the timer activity. The values provided as arguments by the
activity manager give information about the time at which the activity is actually triggered. Line
28 in Figure 4.5 uses the value of the missed argument to correct the counter of seconds.

68 February 25, 1997

AthenaMuse 2.2 Documentation

1 anonymous:XFtop
2 {
3 XFbutton start {x=5; y=5; height=30; width=60;
4 label=’Start;};
5 XFbutton stop {x=70; y=5; height=30; width=60;
6 label=’Stop;};
7 XFbutton clear {x=135; y=5; height=30; width=60;
8 label=’Clear;};
9 XFbutton exit {x=135; y=45; height=30; width=60;
10 label=’Exit;};
11 XFlabel timeValue {x=5; y=45; height=30; width=125;
12 borderColor=’red;borderWidth=1;
13 recomputeSize=FALSE;};
14
15 TimerNro {‘Create, 1000, self, ‘ClockTick,
16 NULL}=>clockNro; integer clock;
17
18 upon Construct
19 {
20 start.Pressed = {‘Start, self};
21 stop.Pressed = {‘Stop, self};
22 clear.Pressed = {‘Clear, self};
23 exit.Pressed = {‘Exit, theApp};
24 ‘Clear => self;
25 }
26
27 on ClockTick: any cd, integer late, integer missed
28 {
29 clock = clock + 1 + missed;
30 timeValue.label = toString(clock);
31 }
32
33 on Start
34 {
35 {‘Subscribe, &clockNro} => theApp;
36 }
37
38 on Stop
39 {
40 {‘Unsubscribe, &clockNro} => theApp;
41 }
42
43 on Clear
44 {
45 clock = 0;
46 timeValue.label = ‘0;
47 }
48
49 } top { height = 80; width = 200; title=”Timer Demo”;};

Figure 4.5 Example Using A Timer

AthenaMuse 2.2 Documentation

February 25, 1997 69

4.4 NROs Derived from System-defined NROs

AM2 also comes with a library of special-purpose NROs that you can use in ADL programs.
Unlike the system-defined (or wrapped class) NROs described in Section 4.2, “Using Notifica-
tion Request Objects” page 62 and Section 4.3, “Using Other Types of System-defined NRO
Classes” page 65, these library NROs are written in the ADL. They are classes derived from the
Nro wrapped class. You can use them by including the file nro.adl in the standard ADL library.

One such NRO is the vanillaNro class. This NRO sends only the client data in its messages. For
example, suppose we want to simplify our mouse tracking program shown above so that it only
reports the type of the last mouse action, not the location. In this case, the (x,y) coordinates of the
mouse activity are not needed. We could instead use three instances of the vanillaNro object
defined as follows:

 vanillaNro {‘Create, ‘MouseDown, self, ‘MouseTrack,
 “Down”} => downNro;
 vanillaNro {‘Create, ‘MouseUp, self, ‘MouseTrack,
 “Up”} => upNro;
 vanillaNro {‘Create, ‘MouseMove, self, ‘MouseTrack,
 “Move”} => moveNro;

We can then rewrite the MouseTrack method as show in Figure 4.6.

An even simpler NRO available in the standard library that sends no arguments when an event
triggers the activity. This is the simpleNro class. Any method that handles an activity subscribed
to using a simpleNro must have no arguments.

For example, we could rewrite the mouse tracking program in Figure 4.6 so that each of the three
activities being subscribed to send a message to a different method. In this case, we could use the
simpleNro class instead of the vanillaNro class, as follows:

 simpleNro {‘Create, ‘MouseDown, self, ‘MousePush,
““} => downNro;

 simpleNro {‘Create, ‘MouseUp, self, ‘MouseRelease,
 ““} => upNro;
 simpleNro {‘Create, ‘MouseMove, self, ‘MouseChange,
 ““} => moveNro;

In this case, the method named MouseTrack shown in Figure 4.6 would be replaced by three
simpler methods named MousePush, MouseRelease and MouseChange,as shown in Fig-
ure 4.7.

1 on MouseTrack: string clientData
2 {
3 reportLabel.label = “Mouse” & clientData & “activity”;
4 }

Figure 4.6 New Version of MouseTrack Method Using vanillaNros

70 February 25, 1997

AthenaMuse 2.2 Documentation

4.5 Creating ADL Classes That Manage Activities

When application authors create their own classes, they often want these classes to manage activ-
ities. They can do it in two ways: design the new class so that it inherits from a class that already
manages activities, or have the new class inherit from a wrapped class called ActivityManager
that provides the general activity management mechanism to the new class. The first case applies
when the base class you inherit from already manages the activity of interest or when you want to
add a new activity to the base class. The second case gives you the flexibility to define an entirely
new class that manages its own activities. We explore each of these cases below.

4.5.1 Inheriting An Existing Activity From a Class That Manages Activities

The first situation is the creation of a class that inherits from an existing class, such as XFtop,
XFbutton, XFlabel or any of the other wrapped classes that have built-in activity management.
In this case, the author does not need to do anything special. The inheritance mechanism in AM2
automatically gives the new class all the activity management capabilities of the class it inherits
from.

Consider creating a subclass of the XFtop shell widget, which has the property that it always dis-
plays the (x,y) coordinates of the mouse in its upper left corner. This type of widget might be
useful as a building block in a still image editor that allows the user to crop and scale photographs.
The ADL class named LocationTop shown in Figure 4.8 accomplishes this. This new ADL class
inherits all the activity management capabilities of the XFtop wrapped class. Thus, it accepts
Subscribe and Unsubscribe messages and sends messages to any subscribed target object
when an event triggers an activity. All of these properties are the result of AM2’s inheritance
capabilities.

The NROs in this class subscribe to both self (the handle to the object itself) and the instance of
XFlabel. This is necessary because the XFlabel object can be thought of as though it were “on
top” of the instance of LocationTop, to which it belongs. Any mouse-related events on the
label trigger the activities of the label. They are not passed through to the underlying XFtop. If
lines 17 through 19 were removed from the class declaration, the label would act as a “hole” in the
widget; events may trigger the activities of the label, but there are no registered NROs and the
activities of the label would therefore have no effect.

1 on MousePush
2 {
3 reportLabel.label = “Mouse down activity”;
4 }
5 on MouseRelease
6 {
7 reportLabel.label = “Mouse up activity”;
8 }
9 on MouseChange
10 {
11 reportLabel.label = “Mouse move activity”;
12 }

Figure 4.7 Methods Using simpleNro Objects

AthenaMuse 2.2 Documentation

February 25, 1997 71

1 class LocationTop:XFtop
2 {
3 XFlabel reportLabel {x=0; y=0; height=50; width=250;
4 recomputeSize=FALSE; alignment=’left; label=””;};
5 MouseNro {‘Create, ‘MouseDown, self, ‘MouseLocation,
6 ““} => downNro;
7 MouseNro {‘Create, ‘MouseUp, self, ‘MouseLocation,
8 ““} => upNro;
9 MouseNro {‘Create, ‘MouseMove, self, ‘MouseLocation,
10 ““} => moveNro;
11
12 upon Construct
13 {
14 {‘Subscribe, &downNro} => self;
15 {‘Subscribe, &upNro} => self;
16 {‘Subscribe, &moveNro} => self;
17 {‘Subscribe, &downNro} => reportLabel;
18 {‘Subscribe, &upNro} => reportLabel;
19 {‘Subscribe, &moveNro} => reportLabel;
20 }
21
22 on MouseLocation:any clientData,integer xval,integer yval
23 {
24 reportLabel.label = “x=”+toString(xval) &
25 “y=”+toString(yval);
26 }
27 };

Figure 4.8 A Class Inheriting from XFtop Class

72 February 25, 1997

AthenaMuse 2.2 Documentation

4.5.2 Creating a New Activity

Note: Many AthenaMuse 2 users will not need to create classes that manage activities. This sec-
tion can be skipped without any loss of continuity in the presentation.

In some situations, an application developer using ADL needs to add a new activity to a class that
inherits activity management from a base class. Consider a class that displays a color palette. We
would like such a class to have an activity called ColorSelected that provides the name of the
chosen color in the message sent when an event triggers the activity. Since our color palette class
inherits from the AM2 wrapped class XFlayout, which already manages activities, our new class
automatically has the capability to manage any activity. We need only add the new activity and
define what should be done when an event triggers the activity.

Figure 4.9 shows an implementation of the ColorPalette class. This ADL code is a simplified
version of a more general color palette provided in the ADL standard library. In the simplified ver-
sion the color palette has exactly eight colors, the buttons for these colors are fixed in size, and the
layout of the eight colored buttons in the palette is horizontal. All of these restrictions are relaxed
in the more complete version.

The ColorPalette class inherits from the XFlayout class, thereby inheriting its members,
methods and activity management capabilities of that class. The member colorList in the Col-
orPalette class (defined on lines 5 and 6) provides the names of the colors in the palette. The
other class member, buttonArray, is an array of lists. After an instance of a ColorPalette is
constructed, each element of this array is a list of two handles: a handle to a button and a handle to
an NRO for that button. The index for this array is an integer between one and eight, and corre-
sponds to the positions of the elements in the colorList.

The most significant component of this example is line 9, which causes the initialization of the
member ActivityInfo. This list is inherited from the base class XFlayout. The sublist in
ActivityInfo provides the information about managing additional activities; each entry in the
list corresponds to a different new activity. The general form for the sublists is:

{<name of activity>, {<keyname1>,<keyname2>, ...}}

Thus, in Figure 4.9 the name of the new activity is ColorSelected, and the single key provided
to any target of this activity has a single entry called Color.

The Construct method for the ColorPalette class simply sets the default height and width of
the palette. The Init method for the ColorPalette class starting at line 19 does most of the
work of setting up the buttons and handles in the class. It uses the new operator to create instances
of buttons and NROs from the heap, and then stores the handles to these buttons and NROs as ele-
ments of the buttonArray. It also subscribes an NRO to each button, using the background
color in each of the buttons as the client data in the vanillaNro instance. Thus, when a user
presses any of the eight buttons, the ColorChosen method of the ColorPalette receives a
message with the color of the button as the client data.

AthenaMuse 2.2 Documentation

February 25, 1997 73

1 uses “nro.adl”@”StdLib”;
2 class ColorPalette: XFlayout
3 {
4 /* This list provides the colors in the palette. */
5 list colorList = {‘white, ‘black,’red, ‘blue, ‘green,
6 ‘yellow, ‘tan, ‘gray};
7 list buttonArray<integer>;
8 list ActivityInfo = {{“ColorSelected”, {“Color”}}};
9
10 upon Construct
11 {
12 height=30; width=240; borderWidth=1;
13 }
14 /* This method creates the buttons and the color patch */
15 on Init
16 {
17 integer count=0; handle hButton, hNro;
18 while (count < 8) {
19 hButton = new {‘Create, self} =>XFbutton {height=30;
20 width=30; label=””; recomputeSize=FALSE;};
21 hButton->x = count*30;
22 count = count+1;
23 hButton->background = at(count, colorList);
24 hNro = new {‘Create, ‘Pressed, self, ‘ColorChosen,
25 at (count, colorList)} => vanillaNro;
26 {‘Subscribe, hNro} => hButton;
27 buttonArray[count] = {hButton, hNro};
28 }
29 }

30 /* This method deletes all allocated instances */
31 on Destroy
32 {
33 integer count=1;
34 while (count <= 8) {
35 delete at(1, buttonArray[count]);
36 delete at(2, buttonArray[count]);
37 count = count+1;
38 }
39 }
40 /*This method handles callback when button is pressed */
41 on ColorChosen: string cdata
42 {
43 {‘TriggerNotification, ‘ColorSelected, {cdata} }=>self;
44 }
45 }; /* end of class ColorPalette */

Figure 4.9 Example of Class With Added Activity

74 February 25, 1997

AthenaMuse 2.2 Documentation

The Destroy method starting on line 36 recovers the memory allocated for buttons and NROs
when an instance of a ColorPalette is created. This method automatically receives a message
whenever a ColorPalette is no longer valid or when the delete operator is applied to a han-
dle to a ColorPalette object. The implementation of this method loops through the array of
buttons and deletes the buttons and their corresponding NROs.

The method named ColorChosen is the target for the message sent when a user presses any of
the eight buttons. This method simply calls the method TriggerNotification, which is inher-
ited in any class derived from a class that manages activities. It is this method that then sends mes-
sages to every NRO subscribed to the activity. For example in line 49, the message takes the
form:

 {‘TriggerNotification, ‘ColorSelected, {cdata} } => self;

Note that the TriggerNotification method always takes two arguments: a string giving the
name of the activity that was triggered and a list of values transmitted to the target. In this case,
the activity name is ColorSelected, and the list of values has the name of the selected color.

Figure 4.10 illustrates how the ColorPalette class might be used. The most notable aspect of
this program is that once implemented, the activitymanagement capabilities of the ColorPal-
ette class are treated exactly the same as the corresponding capabilities of standard wrapped
classes such as XFbutton and XFtext.

1 anonymous: XFtop
2 {
3 ColorPalette myPalette{height=45;};
4 Nro {‘Create, ‘ColorSelected, self, ‘EchoColor, ““} =>
5 selectNro;
6 XFlabel colorLabel {x=10; y=50; height=50; width=200;
7 recomputeSize=FALSE; label=””;};
8 XFbutton exitButton {y=110; x=10; height=50; width=100;
9 label=”Exit”;};
10
11 upon Construct
12 {
13 exitButton.Pressed = {‘Exit, theApp};
14 {‘Subscribe, &selectNro} => myPalette;
15 }
16
17 on EchoColor: any cd, list names, list values
18 {
19 colorLabel.label = “Chosen color is” & at(1, values);
20 }
21 } myApplicaton {height=200; width=350;};

Figure 4.10 Example Using the ColorPalette Class

AthenaMuse 2.2 Documentation

February 25, 1997 75

4.5.3 Creating Classes That Inherit From the ActivityManager Class

Note: Many AthenaMuse 2 users will not need to create classes that manage activities. This sec-
tion can be skipped without any loss of continuity in the presentation.

Another situation of interest to the ADL programmer is the need to create a class that manages
activities but does not inherit from a standard wrapped class that manages activities. In this situa-
tion, the programmer inherits from an ADL class called ActivityManager which supplies the
needed functionality.

The ActivityManager class is an example of a class designed specifically for inheritance pur-
poses. It has the following functionality:

• It provides a way to specify a list of activity names to be managed. This list is called
ActivityInfo and is an attribute of the ActivityManager class.2

• It handles Subscribe and Unsubscribe messages for the activities it manages.

• It provides a method called TriggerNotification that can receive a message
whenever an event triggers an activity. This method sends all subscribed NROs the
appropriate messages.

Consider a situation where we want to create a general class of movable objects. Any object
inheriting from this class has the property of tracking the motion of the mouse when clicked. In
addition, any object that inherits from the Movable class has an activity called Update, trig-
gered when the user releases the mouse while moving the object. The values provided when the
event triggers the Update activity are the new (x,y) coordinates of the object. This type of
generic class can be combined with specific user interface classes to create specific types of mov-
able classes, such as movable buttons, labels, or text.

Classes such as Movable are intended for use as a base class in combination with other classes.
For example, a class might inherit from both the XFlabel wrapped class and the Movable class,
thereby inheriting the activities, members and methods of both base classes. This type of class is
often referred to as a mix-in class.

Figure 4.11 displays the ADL code that implements the Movable class. The member
ActivityInfo declares the name of the new activity (Update) and the list of keys for that
activity. The example uses three instances of the MouseNro class to subscribe to the MouseUp,
MouseDown and MouseMove activities.

The Construct method subscribes the three NROs to the object itself. Note that the Subscribe
messages in this method on lines 12 through 14 are sent to the handle derived::self. The
derived keyword in ADL indicates that the message goes to the object that is at the end of the
chain of inheritance (i.e. the member of the “most derived” class).

2 In future releases of AM2, the ActivityInfo attribute may be implemented as a common attribute, i.e. an
attribute that is shared by all members of the class. The value of this attribute should therefore not be
changed.

76 February 25, 1997

AthenaMuse 2.2 Documentation

This is necessary because the MouseDown, MouseUp and MouseMove activities are not activities
managed by the Movable class. Rather, they are managed by whatever class we mix-in with the
Movable class. Sending the Subscribe message to derived::self ensures that the NROs are
subscribed to the correct activity manager.

Lines 17 through 22 implement the method named Down that receives a message when the
MouseDown activity is triggered. This method stores the location of the mouse when the button
pressed.

The method Move shown in lines 24 through 29 change the (x,y) coordinates of the object when
the mouse has been moved. Note again that we must use the derived keyword before the
attributes x and y because they do not belong to the Movable class; they must exist in the class
derived from the Movable class.

1 /* generic class for movable objects */
2 class Movable: ActivityManager
3 {
4 list ActivityInfo = { {‘Update, {‘x, ‘y}} };
5 MouseNro {‘Create, ‘MouseDown, self, ‘Down, NULL} => downNro;
6 MouseNro {‘Create, ‘MouseUp, self, ‘Up, NULL} => upNro;
7 MouseNro {‘Create, ‘MouseDrag, self, ‘Move, NULL} => moveNro;
8 integer oldX, oldY; /* used to store (x,y) of mouse press */
9
10 upon Construct
11 {
12 {‘Subscribe, &downNro} => derived::self;
13 {‘Subscribe, &moveNro} => derived::self;
14 {‘Subscribe, &upNro} => derived::self;
15 }
16 /* This method is messaged when the MouseDown activity is triggered */
17 on Down: any cd, integer xval, integer yval, integer button,
18 boolean shift, boolean command, boolean modifier
19 {
20 oldX = xval; /* store (x,y) coordinates of mouse press */
21 oldY = yval;
22 }
23 /* This method is messaged when the MouseMove activity is triggered */
24 on Move: any cd, integer xval, integer yval, integer button,
25 boolean shift, boolean command, boolean modifier
26 {
27 derived::x=derived::x + xval-oldX; /* update x coordinate */
28 derived::y=derived::y + yval-oldY; /* update y coordinate */
29 }
30 /* This method is messaged when the MouseUp activity is triggered */
31 on Up: any cd, integer xval, integer yval, integer button,
32 boolean shift, boolean command, boolean modifier
33 {
34 {‘TriggerNotification, ‘Update,{derived::x,derived::y}}=>self;
35 }
36 }; /* end of class Movable */

Figure 4.11 A Class Inheriting from the ActivityManager Class

AthenaMuse 2.2 Documentation

February 25, 1997 77

The last method, Up, triggers the Update activity notification by sending the
TriggerNotification message. It provides the new (x, y) coordinates of the object as part
of them message, and then disarms the object. Figure 4.12 shows a simple case using the class.
Lines 2 through 4 declare a new class named MovableLabel that inherits from both the XFlabel

wrapped class and the user-defined Movable class. The new class needs no additional methods or
members since it inherits all its useful functions from it base classes.

Lines 7 through 26 declare an anonymous class derived from the XFtop wrapped class. This class
has an instance of a MovableLabel and an instance of an XFlabel. The latter of these two is used
to display the (x,y) coordinates of the former. The NRO named updateNro subscribes to the
Update activity. This NRO causes the method ChangeLocation to receive a message when the
Update activity is triggered. This method, defined in lines 21 through 25, changes the value of
the label named location to indicate the new coordinates of MovableLabel.

1 /* Create a class of Movable buttons */
2 class MovableLabel : XFlabel, Movable
3 {
4 }; /* end of class MovableLabel */
5
6 /* Create top window */
7 anonymous: XFtop
8 {
9 MovableLabel newLabel {x=20; y=20; height=40;
10 width=100; label=’MoveMe; borderWidth=1;};
11 XFlabel location {x=0; y=200; height=40; width=100; };
12 Nro {‘Create, ‘Update, self, ‘ChangeLocation, NULL} => updateNro;
13
14 upon Construct
15 {
16 {‘Subscribe, &updateNro} => newLabel;
17 location.label = “x=” + toString(location.x) &
18 “y=” + toString(location.y);
19 }
20
21 on ChangeLocation: any cd, list keys, list vals
22 {
23 location.label = “x=” + toString(at(1, vals)) &
24 “y=” + toString(at(2,vals));
25 }
26 } myTop {width=300; height=250; title=”Movable Label”;};

Figure 4.12 An Example Using the Movable Class

78 February 25, 1997

AthenaMuse 2.2 Documentation

4.6 Creating Customized NROs

Note: Many AthenaMuse 2 users will not need to create NROs. This section can be skipped with-
out any loss of continuity in the presentation.

Some advanced users of AM2 may find it useful to create their own, customized NRO classes. For
example, in the user-defined ColorPalette class shown in Figure 4.9, we use the standard
NRO that provides the usual three arguments (client data, the list of the names of the values
returned and the corresponding list of values). Since all the target message method really needs is
the name of the color selected, most of this information goes unused. You might develop a cus-
tomized NRO that only provides a string containing the name of the selected color as its argu-
ment.

To create specialized NROs, it is necessary to understand how the standard Nro wrapped class
works. This class has a special constructor named Create that stores its four arguments in mem-
bers of the Nro class. These four members are declared as follows:

string mActivity; // the activity name3

string mMethod; // the name of the method to receive a
 // message when the activity is triggered

handle mClient; // handle to the client object to receive
 // a message when the activity is triggered

any mClientData; // any client data

A new class that inherits from the Nro class automatically has these four members.

A second key aspect of the Nro class is the method HandleActivity. This is the method that
receives a message whenever an event triggers an activity. It always receives the list of value
names and the corresponding list of values sent by the activity as its arguments. In the standard
NRO, this method is as follows:

on HandleActivity: list keys, list values
{

{mMethod, mClientData, keys, values} => mClient;
}

The key to writing a new type of NRO is to define a new class that inherits from the standard
NRO but provides a new version of the HandleActivity method, which sends the arguments of
interest to the target method. Figure 4.13 shows a new NRO class called ColorNro.

Note that the ColorNro class has a special constructor named Create that appears to do nothing
even though its base class, Nro, has the same special constructor. This is needed because special
constructors are never inherited. The useful work done by this special constructor is accom-
plished by initializing the base class using ADL’s base class initialization feature (the code block
following the init keyword). In this case, the special constructor sends a base class initialization
message to the Nro class. The HandleActivity method in the ColorNro class overrides the
method with the same name in the Nro base class. In line 9, the client of the activity (mClient)
receives a message invoking the target method (mMethod) with the only argument being the first
element on the list of values. This element contains the name of the color.

3 The member mActivity is a “read only” attribute. It should never be changed after it is initialized.

AthenaMuse 2.2 Documentation

February 25, 1997 79

Figure 4.14 shows how the example program in Figure 4.10 can be modified to make use of the
customized NRO.

1 class ColorNro: Nro
2 {
3 upon Create: string act, handle cli, string mtd, string cd
4 init {{‘Create, act, cli, mtd, cd} => Nro}
5 { }
6
7 on HandleActivity: list keys, list values
8 {
9 {mMethod, at(1,values)} => mClient;
10 }
11 };

Figure 4.13 Example of a Custom NRO

1 anonymous: XFtop
2 {
3 ColorPalette myPalette{height=45;};
4 ColorNro {‘Create, ‘ColorSelected, self, ‘EchoColor, ““} =>
5 selectNro;
6 XFlabel colorLabel {x=10; y=50; height=50; width=200;
7 recomputeSize=FALSE; label=””;};
8 XFbutton exitButton {y=110; x=10; height=50; width=100;
9 label=”Exit”;};
10
11 upon Construct
12 {
13 exitButton.Pressed = {‘Exit, theApp};
14 {‘Subscribe, &selectNro} => myPalette;
15 }
16
17 on EchoColor: string colorName
18 {
19 colorLabel.label = “Chosen color is” & colorName;
20 }
21 } myApplicaton {height=200; width=350;};

Figure 4.14 Revised Example Using ColorPalette and Custom NRO

80 February 25, 1997

AthenaMuse 2.2 Documentation

4.7 Using Activities for Notification of Subscriptions

Note: Many AthenaMuse 2 users will not need this feature. This section can be skipped without
any loss of continuity in the presentation.

There are some situations when it is important to know if an object has any NROs subscribed to
one or more of its activities. For example, suppose you wanted to develop a new class of buttons
that have the property that the button’s label is presented in different colors depending on whether
or not any NROs are subscribed to its Pressed activity. In this situation, AM2 can provide noti-
fication whenever the number of NROs subscribed to an activity changes from zero to one or
more, or vice versa. This capability is a standard feature of all activities.

In AM2, all activities have an associated second activity with the same name as the original fol-
lowed by a question mark (?). You can use it for subscription notification. Thus, if an object has a
Pressed activity then it automatically manages an activity named Pressed? that is triggered
whenever the number of NROs subscribed to the Pressed activity changes from zero to one or
from one to zero.

AthenaMuse 2.2 Documentation

February 25, 1997 81

Chapter 5 Example ADL Programs

The following sections are designed to provide annotated examples of working ADL programs:

• Section 5.1, “Toggle Button Class” page 81

• Section 5.2, “A Simple Image Viewer Class” page 88

• Section 5.3, “A Picture Button Class” page 92

• Section 5.4, “A Video Viewer Class” page 99

These programs should help those who like to learn by association and example.

5.1 Toggle Button Class

In this example, we develop an ADL class that provides a user interface button that changes its
label when pressed. Each label corresponds to a different value for some variable, thereby allow-
ing any ADL program using the button to set other variables or take some action that depends on
the new value. Since the toggle button has most of the characteristics of a regular XFbutton
object, it is natural for the ToggleButton class to inherit from XFbutton.

A typical situation where such a button is useful is a case where we need a button to set a value
with two mutually exclusive options. For example, we want to have a button that when pressed
sets a value that is used to determine if video will be played with or without subtitles. The button
has two possible labels: “Show Subtitles” and “Hide Subtitles”. Each time the user presses the
button the label changes from one value to the other, and the value stored by the button shifts from
TRUE to FALSE.

You can configure the button so that you can set the number and contents of possible labels when
the button is created. To do this, the ToggleButton class has two members that are lists. The
first, called labelList, is a list of character strings corresponding to the set of labels the button
may display. The second list, called valueList, holds the corresponding values.

The integer member currentPosition stores the number of the currently displayed list ele-
ment. Each time the user presses the button, the value of currentPosition changes. In addi-
tion, a member called buttonValue holds the currently active value for the button. Because the
values can be of any type (list, integer, handle, etc.), the member of buttonValue is of the
ADL type any.

82 February 25, 1997

AthenaMuse 2.2 Documentation

We also provide the toggle button with default labels “Yes” and “No”, with corresponding values
of TRUE and FALSE. The defaults are set up so that the initial label is the string “Yes” and the ini-
tial value of the button is TRUE. You can override these defaults when using the ToggleButton
class.

5.1.1 ADL Implementation of the ToggleButton Class

Here is the ADL code for the ToggleButton class, with detailed comments.

Line 1 declares the class named ToggleButton and indicates that this class
derives from the XFbutton class.

Line 3 declares the member labelList to be of type list and initializes its
value to a list of two strings, “Yes” and “No”. These strings are the
default labels for the button unless the programmer using the class changes
them.

Line 4 declares the integer member currentPosition and initializes its
value to 1. This indicates that by default the first string in the list label-
List is the initial label for an instance of a ToggleButton.

Line 5 declares an NRO (notification request object) named toggleNro. As with
all NROs, the Nro class has a special constructor called Create that has
four arguments:

a string giving the name of the activity (in this case Pressed)

a handle giving the target of the notification required (in this case
handle self indicates that the message is to be sent to
ToggleButton)

a string giving the name of the method to be messaged when the
activity occurs (in this case a method named Toggle)

arbitrary client data (in this case the handle value NULL)

Line 6 declares the member valueList to be of type list and initializes its
value to a list of two booleans, TRUE and FALSE. These are the default
values associated with the labels “Yes” and “No” for the button, unless the
programmer using the class changes them.

Line 7 declares the member buttonValue to be of type any. This member
stores the current value associated with the ToggleButton.The values
stored in buttonValue will be entries from the list valueList. The use
of the ADL data type any allows users of the ToggleButton class to
replace the default valueList with a list containing any valid data
type.

AthenaMuse 2.2 Documentation

February 25, 1997 83

Line 9 begins the special constructor method named Create. This method is
provided so that a user of the ToggleButton class can use the new opera-
tor to create instances of the class ToggleButton on the heap. In ADL,
any object that is drawn on the screen and is created dynamically at run
time needs a special constructor so that it can pass a handle to the parent

1 class ToggleButton: XFbutton
2 {
3 list labelList = {‘Yes, ‘No};
4 integer currentPosition = 1;
5 Nro {‘Create, ‘Pressed, self, ‘Toggle, NULL} => toggleNro ;
6 list valueList = {TRUE,FALSE};
7 any buttonValue;
8
9 upon Create: handle hparent
10 init {{‘Create, hparent} => XFbutton}
11 { }
12
13 on Init
14 {
15 label = at(currentPosition, labelList);
16 buttonValue = at(currentPosition, valueList);
17 {‘Subscribe, &toggleNro} => self;
18 }
19
20 on ChangeValue: any newValue
21 {
22 any temp;
23 integer counter=1;
24 for temp in valueList {
25 if(getType(newValue) == getType(temp) && newValue == temp) {
26 buttonValue = temp;
27 label = at(counter, labelList);
28 currentPosition = counter;
29 return;
30 }
31 counter = counter+1;
32 }
33 }
34
35 on Toggle: any cd, list keys, list vals
36 {
37 currentPosition = currentPosition+1;
38 if(currentPosition > length(labelList)) {
39 currentPosition = 1;
40 }
41 label = at(currentPosition, labelList);
42 buttonValue = at(currentPosition, valueList);
43 }
44 }; /* end of class ToggleButton */

Figure 5.1 ToggleButton Class

84 February 25, 1997

AthenaMuse 2.2 Documentation

of the new widget. This is done through the method argument hparent.
Note that we do not need a special constructor for the case where we
declare a static instance of a ToggleButton because the standard, default
constructor Construct provided by AM2 is adequate for the task.

Line 10 is a base class initialization statement, indicated by the keyword init.
This statement ensures that when we create an instance of a
ToggleButton using the new operator, the instance of the class from
which ToggleButton derives is correctly initialized. In this case, the
ADL statement

{‘Create, hparent} => XFbutton

ensures that the Create special constructor for the base XFbutton class is
called rather than the default Construct method. Any user interface wid-
get or subclass of such a widget created from the heap using the new oper-
ator must have its parent widget explicitly set. The default Construct
method does this automatically for statically created widgets.

Line 11 is an empty body for the Create method. There are no additional initial-
izations that we need to perform here.

Line 13 is the start of an Init method. This method automatically receives a mes-
sage whenever an object of this class is constructed. This message is sent
after all the other steps in the creation of an object, i.e. after the
Construct message is sent (or when some other special constructor is
used), after the initialization block, (also called an izor) is executed, and
after any asset declarations are applied. The body of the Init method is
used to set initial values and to subscribe to the Pressed activity for the
button.

Line 15 sets the initial value of the label for the button to a value on the label-
List. The initial label is set to the currentPosition-th element of the
labelList. This allows the ADL programmer using the ToggleButton
class to set the currentPosition member in an izor block, thereby
changing the initial value of the label.

Line 16 sets the initial value of the member buttonValue. It uses the built-in
function at() to extract a value from the list valueList.

Line 17 sends the Subscribe message to the button, registering the NRO named
toggleNro. This results in the message Toggle being sent to any mem-
ber of the ToggleButton class whenever the user presses the button.

Line 18 closes the Init method.

Lines 20-21 start a method called ChangeValue. We use this method to reset the
value of the ToggleButton to some new value. It provides the ADL
programmer with a way to alter the label and corresponding value of the
ToggleButton after it is created. This feature gives the programmer a
way of changing the label without requiring the application’s user to actu-
ally press the button. The ChangeValue method uses a single argument of

AthenaMuse 2.2 Documentation

February 25, 1997 85

type any because the ToggleButton class allows the elements of the
valueList to be of any valid ADL type, including compound types such
as a list.

Line 22 declares temp to be a local variable of type any.

Line 23 declares an integer variable named counter and sets its initial
value to 1.

Line 24 begins a loop over all the values in the valueList.

Line 25 tests if the value of the argument newValue equals one of the values in
valueList. Note that this comparison is done by first testing if the value
in temp is the same as the value being checked on the list, and then by
checking if the two values are equal. This is necessary because the equality
operator (==) cannot be used on values of different types. Even though
both of the variables being compared are declared of type any, the values
they hold have definite ADL types which may not be the same.

Lines 26-29 execute when the value requested is found in valueList. This group of
statements sets the variable buttonValue, changes the label of the but-
ton to the corresponding value in labelList, sets the currentPosi-
tion member appropriately, and returns.

Line 29 updates the value of counter each time the loop over the elements in
valueList is executed.

Lines 32-33 close the loop and the method definition respectively.

Lines 35 is the start of the declaration of the method Toggle. This method is called
every time the ToggleButton is pressed.

Lines 37-40 begin by incrementing the value of the currentPosition by 1. If the
revised value of currentPosition is greater than the number of ele-
ments in the labelList (computed by applying the built-in ADL function
length() to labelList), then the currentPosition is reset to 1.
This code has the effect of moving through the labelList and wrapping
around to the start of the list when the last value on the list is reached.

Line 41 updates the value of the button label.

Line 42 updates the value of the variable buttonValue to correspond to the label
now being displayed.

Line 43 closes the Toggle method.

Line 44 ends the declaration of the ToggleButton class.

86 February 25, 1997

AthenaMuse 2.2 Documentation

5.1.2 An Example of Using the ToggleButton Class

Given the example shown above, we now turn to a simple ADL program that actually uses the
ToggleButton class. Suppose that we want to have a button on an application that sets the
background color for the main application shell widget. We might have a button that toggles
among several different colors. Each time the user presses the button, the background color of the
XFtop in which the application is running changes. In our example, we allow the user to set the
possible background colors to white, black, red, blue and green.

The ADL program shown here implements this idea.

Line 1 starts the definition of an anonymous instance (used when one or a very
few instances of the class are needed) of an object that inherits from the
ADL top level shell class, XFtop.

Lines 2-5 declare a member of this anonymous class that is an instance of a
ToggleButton named myButton. The button has a list of labels and val-
ues set in an izor block that correspond to the colors we want to use as
options.

Lines 7 - 8 start the Construct method for the anonymous class. Since this is a con-
structor, it begins with the upon keyword. This method is automatically
invoked when the object is created.

Line 9 sets the initial background color of the widget to the value stored in the
buttonValue member of the ToggleButton.

1 anonymous : XFtop {
2 ToggleButton myButton {x=50; y=50; height=50; width=150;
3 recomputeSize=FALSE;
4 labelList={‘White,‘Black,‘Red,‘Blue,‘Green};
5 valueList={‘white, ‘black,‘red, ‘blue, ‘green};};
6
7 upon Construct
8 {
9 background = myButton.buttonValue;
10 myButton.Pressed = {‘ShiftBackgroundColor, self};
11 }
12
13 on ShiftBackgroundColor
14 {
15 background = myButton.buttonValue;
16 }
17
18 } myTop {height=400; width=400;};

Figure 5.2 ToggleButton Example

AthenaMuse 2.2 Documentation

February 25, 1997 87

Line 10 sets the value of the Pressed attribute of myButton (corresponding to the
Pressed activity of the button) to a list that gives the name of the
method to be invoked when myButton is pressed, and the target of the
method. In this case, the method ShiftBackgroundColor of the anony-
mous instance that is the shell widget (as indicated by the special handle
self, automatically defined for every ADL instance) is messaged when the
button is pressed. Note that this could also be done by declaring an appro-
priate constructed notification request object and then subscribing that
object to myButton. We discuss this further in the next subsection below.

Lines 13-16 define the method ShiftBackgroundColor. This method resets the
background color of the shell to the current value stored in myButton.

Line 18 closes the definition of the anonymous subclass of the standard shell wid-
get. It gives the widget the name myTop and uses an izor block to set the
widget’s width and height.

5.1.3 Implementation Options

One of the interesting aspects of button widgets that the toggle button example illustrates is the
use of notification request objects (NROs) and the Pressed attribute of a button. In the ADL
code for the class ToggleButton, we intentionally use an NRO to register for the Pressed
activity, while in the ADL program that uses the ToggleButton class we set the Pressed
attribute. It is reasonable to ask why we did not use the Pressed attribute in defining the Tog-
gleButton class.

The answer to this question requires a clear understanding of the Pressed attribute. Basically,
setting the Pressed attribute is a shortcut that has the effect of subscribing an implicit NRO to a
button’s Pressed activity. However, this way of setting an activity handler has two limitations:
only one method can be registered in this way, and the method must not require any arguments be
passed when the activity is triggered. If the Pressed attribute of a button is set more than once,
only the last setting takes effect. All earlier settings are lost.

Thus, if we set the Pressed attribute in the class definition for ToggleButton rather than sub-
scribing to the activity using an explicit NRO, we force users of the ToggleButton class to not
use the Pressed attribute, but rather subscribe an NRO instead. If the users of the
ToggleButton class erroneously reset the Pressed attribute, the ToggleButton will no longer
work correctly. This makes the ToggleButton class far less useful and leads to hard-to-diag-
nose errors when the class is used incorrectly.

The implementation of ToggleButton could be improved in several ways. First, we have not
included any error checking to make sure that the number of items in valueList is equal to the
number of items in labelList. We could rewrite the Construct method so that if the lists pro-
vided by the user are of different lengths, the longer of the lists is truncated so that they the lists
actually used by the ToggleButton have the same length.

88 February 25, 1997

AthenaMuse 2.2 Documentation

Another improvement would be to make some of the values in the ToggleButton “read only”
from any ADL statement outside the scope of the object class. In ADL, this is done by defining a
“Set_” method for such variables. For example, it makes sense that the member buttonValue
should never be set outside of the class; only the class methods Init, ChangeValue and
Toggle should be able to alter this member. To do this, we could add the following method to
the ToggleButton class:

This method turns any assignment statement outside the ToggleButton class with the member
valueButton on the left hand side into a null operation.

5.2 A Simple Image Viewer Class

In the second example we explore the creation of a simple image viewer. This class has the ability
to display a still image from a file. It is “reloadable” in the sense that the same viewer can be used
to display different images, one at a time. We implement the viewer so that the construction of the
viewer is separate from the loading of an image into the viewer, allowing us to create viewers at
the start of an application and load images when needed.

5.2.1 ADL Implementation of the Viewer Class

Line 1 defines the beginning of the Viewer class. This class inherits from the
XFtop class.

Line 3 defines the handle pimage. This stores the handle to the image being
displayed.

Line 4 defines an instance of the XFvisual class named screen. This is the dis-
play surface for the image.

Line 5 defines a string named currentImage. This holds the name of the file
containing the image to be displayed.

Lines 7 - 10 define the Construct method. This method is the default constructor for
the class. It simply sets the visibility of the object to FALSE so that it does
not appear on the user’s display until it is loaded with an image.

Line 12 - 16 provide an alternative special constructor called ConstructAndLoad.
This is used when the image is to be loaded at the same time a viewer is
constructed. The constructor sets the visible attribute to FALSE and invokes
the method LoadImage.

Line 18 begins the LoadImage method. This has a single argument containing a
string with the name of the file where the image to be loaded is stored.

1 on Set_buttonValue: any val
2 { }

Figure 5.3 ToggleButton Set_buttonValue Example

AthenaMuse 2.2 Documentation

February 25, 1997 89

1 class Viewer : XFtop
2 {
3 handle pimage;
4 XFvisual screen {x=0; y=0;borderWidth=0; height=640; width=480;};
5 string currentImage = "";
6 /* standard constructor */
7 upon Construct
8 {
9 visible = FALSE;
10 }
11 /* special constructor that also loads image */
12 upon ConstructAndLoad: string iname
13 {
14 visible = FALSE;
15 {'LoadImage, iname} => self;
16 }

17 /* load a new image */
18 on LoadImage: string imageName
19 {
20 IOfile imageFile;
21 XFmessageDlg {'Create, self} => openFailDialog
22 {title="File Open Failed";
23 message="Attempt to open file failed:"; dialogIcon="warning";
24 buttonSet="ok";};
25 /* check if image is already displayed */
26 if(currentImage == imageName) {
27 visible = TRUE;
28 return;
29 }
30 /* delete old image */
31 if(?pimage) {
32 delete pimage;
33 }
34 /* check if new image file can be opened */
35 {'OpenNative, imageName, 'ReadOnly} => imageFile;
36 if('Fail=>imageFile) {
37 openFailDialog.message = openFailDialog.message & imageName;
38 'PostModal => openFailDialog;
39 return;
40 }
41 'Close => imageFile;

Figure 5.4 Simple Image Viewer Class

90 February 25, 1997

AthenaMuse 2.2 Documentation

Line 20 defines an instance of the IOfile wrapped class. This is used to open and
read the file where the image is stored.

Lines 21-24 defines an instance of the XFmessageDlg wrapped class. This is used for
simple dialog boxes. In this case, we use it to display warning and error
messages associated with loading the image file.

Lines 26-29 test if the file is already loaded into the viewer. If so, then the viewer is
made visible and the method returns.

Lines 31-33 test whether the value of pimage (the handle to the image being dis-
played) is set. If it is already set, then the image the handle points to is
deleted.

Line 35 attempts to open the image file by sending the OpenNative message to
imageFile.

Lines 36-40 test whether the image file was successfully opened. If it was not opened,
then the message in the dialog box is set and the dialog box is posted by
sending it the PostModal message. The method then returns if the image
file could not be opened.

Line 41 closes the image file.

Lines 36-40 test whether the image file was successfully opened. If it was not opened,
then the message in the dialog box is set and the dialog box is posted by
sending it the PostModal message. The method then returns if the image
file could not be opened.

42 /* create new image object */
43 pimage = new {'Construct, {'MEimage, {'MAfile, imageName}}}
44 =>MMimage;
45 screen.height = pimage->height;
46 screen.width = pimage->width;
47 /* display the image */
48 {'PresentOn, &screen} => pimage;
49 height = pimage->height;
50 width = pimage->width;
51 currentImage = imageName;
52 title = imageName;
53 visible = TRUE;
54 }

55 on Destroy
56 {
57 if(pimage != UNSET) {
58 delete pimage;
59 }
60 }
61 }; /* end of class Viewer */

Figure 5.4 Simple Image Viewer Class

AthenaMuse 2.2 Documentation

February 25, 1997 91

Lines 43-44 use the new operator to construct an image object on the heap by sending
the Construct message to the MMimage class.The type of file and the
name of the file are sent as a list argument to the MMimage class.

Lines 45-46 set the width and height of the XFvisual on which the image is displayed.

Line 48 uses the PresentOn method to cause the image to be displayed on the
visual.

Lines 49-50 set the height and width of the shell widget containing the viewer.

Lines 51-53 set the value of the currentImage, the title of the shell widget and set
the visibility of the entire viewer to TRUE, making it appear on the display.

Lines 51-53 set the value of the currentImage, the title of the shell widget and set
the visibility of the entire viewer to TRUE, making it appear on the display.

Lines 55-60 implement a destructor method named Destroy for the class. This method
deletes the image pointed to by pimage if that value is set.

Line 61 ends the definition of the Viewer class.

5.2.2 Example Use of the Viewer Class

The table below shows a simple ADL application that makes use of the Viewer class. This appli-
cation provides a text field for the user to input the name of the file to be displayed, a button
labelled “Load” to load that file into a viewer, and an exit button to end the application.

1 anonymous: XFtop
2 {
3 XFtextField fileName {x=5; y=5; height=50; width=300;};
4 XFbutton loadButton {x=5; y=60; height=50; width=100;
5 label="Load";};
6 XFbutton exitButton {x=115; y=60; height=50; width=100;
7 label="Exit";};
8 Viewer myViewer;
9
10 upon Construct
11 {
12 loadButton.Pressed = {'LoadViewer, self};
13 exitButton.Pressed = {'Exit, theApp};
14 }
15
16 on LoadViewer
17 {
18 {'LoadImage, fileName.text} => myViewer;
19 }
20 } myTop {height=200; width=400;};

Figure 5.5 Image Viewer Class Example

92 February 25, 1997

AthenaMuse 2.2 Documentation

Line 1 declares this to be an anonymous instance inheriting from the XFtop class.

Lines 2-7 declare an instance of an XFtextField and two buttons, one labelled
Load and the other labelled Exit.

Line 8 declares the variable myViewer to be an instance of the Viewer class.
This is used to display images.

Lines 10 -14 provide the default constructor for the application. The Construct
method sets the Pressed attributes of the load and exit buttons. When the
load button is pressed, the method LoadViewer is messaged.

Lines 16-19 define the method named LoadViewer. This method messages the
LoadImage method of the Viewer and provides the name of the file given
in the text widget as an argument.

Line 20 closes the anonymous class’s definition and uses an initialization (izor)
block to set the height and width of the shell that displays when the appli-
cation starts.

5.3 A Picture Button Class

In this example we create a class, called PictureButton, that behaves like a standard AM2 but-
ton but has an image displayed within its borders rather than a text label. This class manages an
activity called Pressed that accepts subscriptions from standard ADL Notification Request
Objects (NROs).

As with a standard ADL button, the PictureButton class shows a highlighted border when the
mouse is pressed down on it. The button triggers the activity when the mouse is released, but only
if the release occurs while the mouse is still positioned on top of the image. This allows the user of
the PictureButton to change his or her mind after the mouse is depressed by rolling the mouse
cursor outside of the image.

By default, a PictureButton object is sized automatically to the match the size of the image
inside of it. The programmer using the PictureButton class can change the position in the but-
ton where the image is displayed and can override the default size or the image by cropping or
zooming. This is done by resetting any of the following six members of the class:

1. xloc - An integer indicating the starting x position where the upper left corner of the image is
displayed. This defaults to 0.

2. yloc - An integer indicating the starting y position where the upper left corner of the image is
displayed. This defaults to 0.

3. clipW - An integer indicating the clipped width of the image that is displayed. The default
value of -1 is used to indicate that the width of the image is not to be clipped.

4. clipH - An integer indicating the clipped height of the image that is displayed. The default
value of -1 is used to indicate that the height of the image is not to be clipped.

AthenaMuse 2.2 Documentation

February 25, 1997 93

5. offsetX - An integer indicating where along the x dimension in the source image the dis-
played image is to start. This value is used to clip the left side of the image. The default value
is 0, indicating no clipping.

6. offsetY - An integer indicating where along the y dimension in the source image the dis-
played image is to start. This value is used to clip the top of the image. The default value is 0,
indicating no clipping.

5.3.1 ADL Implementation of the PictureButton Class

Here is the ADL code for the PictureButton class, with detailed comments on specific lines.

1 class PictureButton: XFvisual
2 {
3 string fname; /* name of file where image is stored */
4 handle pimage; /* handle to image object */
5 boolean armed = FALSE; /* flag for whether button is armed */
6 boolean hilighted = FALSE; /* flag for whether button is hilighted */
7 string hilightColor = "LightYellow"; /* highlight color for border */
8 string nohilightColor = "Black"; /* regular color for border */
9 Nro {'Create, 'MouseDown, self, 'ShowDown, {}} => nroDown;
10 Nro {'Create, 'MouseUp, self, 'ShowUp, {}} => nroUp;
11 MouseNro {'Create, 'MouseMove, self, 'ShowMove, {} } => nroMove;

12 /* parameters for image presentation */
13 boolean defaultSize=TRUE; /* use width and height of image */
14 integer xloc=0; /* location where image is presented */
15 integer yloc = 0; /* "" */
16 integer clipW= -1; /* the clipping width--default no clip */
17 integer clipH = -1; /* the clipping height--default no clip */
18 integer offsetX = 0; /* the x offset of source image */
19 integer offsetY = 0; /* the y offset of source image */
20 list ActivityInfo = {{'Pressed, {}}};
21 list Pressed={};
22 Nro {'Create, 'Pressed, NULL, "",TRUE} => nroPress;

Figure 5.6 PictureButton Class

94 February 25, 1997

AthenaMuse 2.2 Documentation

23 /* Construct method for class */
24 upon Construct: string f
25 {
26 {'Startup,f} => self;
27 }
28 /* Create method for class */
29 upon Create: string f, handle hparent
30 init {{'Create, hparent} => XFvisual}
31 {
32 {'Startup,f} => self;
33 }
34 on Startup: string f
35 {
36 fname = f;
37 borderColor = nohilightColor;
38 borderWidth = 1;
39 }

40 /* Init method to load image,present, scale image and register NROs*/
41 on Init
42 {
43 pimage = new {'Construct, {'MEimage, {'MAfile, fname}}} =>MMimage;
44 if(defaultSize) {
45 height = pimage->height - offsetY;
46 width = pimage->width - offsetX;
47 if(clipW > 0) {
48 width = clipW-offsetX;
49 }
50 if(clipH > 0) {
51 height = clipH-offsetY;
52 }
53 }
54 else {
55 {'Zoom, toReal(width)/toReal(pimage->width),
56 toReal(height)/toReal(pimage->height)} => pimage;
57 }
58 {'PresentClipped, self, xloc, yloc,clipW, clipH,
59 offsetX, offsetY} => pimage;
60 {'Subscribe, &nroDown} => self;
61 {'Subscribe, &nroUp} => self;
62 {'Subscribe, &nroMove} => self;
63 }

Figure 5.6 PictureButton Class

AthenaMuse 2.2 Documentation

February 25, 1997 95

64 /* Method called when mouse is moved */
65 on ShowMove: any whatever, integer xval, integer yval, integer nbut,
66 boolean shift, boolean command, boolean modifier
67 {
68 if (armed && xval>=0 && xval < width && yval>=0 && yval<height) {
69 borderColor = hilightColor;
70 hilighted = TRUE;
71 }
72 else if(armed &&(xval<0 || xval>=width || yval<0 || yval>=height)) {
73 borderColor = nohilightColor;
74 hilighted=FALSE;
75 }
76 }

77 /* Method called when mouse is pressed */
78 on ShowDown: any whatever, list keys, list values
79 {
80 armed = TRUE;
81 hilighted = TRUE;
82 borderColor = hilightColor;
83 }

84 /* Method called when mouse is released */
85 on ShowUp: any whatever, list keys, list values
86 {
87 if (armed) {
88 armed = FALSE;
89 borderColor = nohilightColor;
90 if (hilighted){
91 {'TriggerNotification, 'Pressed, {}} => self;
92 if (Pressed != {}) {
93 at(1, Pressed) => at(2, Pressed);
94 hilighted = FALSE;
95 }
96 }
97 }

98 /* destructor method for the class */
99 on Destroy
100 {
101 delete pimage;
102 }
103 }; /* end of class PictureButton */

Figure 5.6 PictureButton Class

96 February 25, 1997

AthenaMuse 2.2 Documentation

Line 1 declares the beginning of the definition of the PictureButton class. This
class inherits from the XFvisual class. The inheritance from the XFvi-
sual class provides the ability to display an image and manage standard
mouse activities such as MouseDown, MouseUp and MouseMove.

Line 3 declares the member fname. This is a string that is used to hold the name
of the file that stores the image for the button.

Line 4 declares a handle member named pimage. This stores the handle to the
MMimage object that holds the actual image that appears on the Picture-
Button object.

Lines 5-6 declare two boolean members. The first of these, called hilighted, is a
flag that indicates whether the border around the button is highlighted. This
value is set to TRUE when the mouse is depressed on the PictureButton.
The second boolean, armed, is set to true when the button is armed (i.e.
when a release of the mouse on the image results in the Pressed activity
being triggered.)

Lines 7- 8 declare the members hilightColor and nohilightColor. These
strings contain the names of the colors used for the border of the Pic-
tureButton. They are initialized to their default values of LightYellow
and Black respectively. The programmer using the class can override
these defaults.

Lines 9-11 declare three NRO members of the class. These three NROs are used to
deal with MouseDown, MouseUp and MouseMove activity. The first two
are instances of the Nro class. The NRO for the MouseMove activity is an
object of the MouseNro class because we will use the (x,y) coordinates of
MouseMove events in the activity handler method, ShowMove.

Line 13 declares the boolean member defaultSize. This is set TRUE when if the
button is to be sized to match the image displayed within it.

Lines 14-19 declare the six integer values that describe the clipping and scaling of
the image to be displayed. They are all initialized to their default values.

Line 20 declares a list named ActivityInfo. This list is used by the ADL
activity manager to determine what additional activities (beyond those in
the base classes) are to be managed. In this case, the Pressed activity is
added.

Line 21 declares the member Pressed. This value is set by the user of the Pic-
tureButton class to set the target and message to be sent when the button
is pressed.

Line 22 creates an NRO that will be used by the Pressed activity. It is initialized
with its target set to NULL.

Lines 24-27 define the special constructor Construct. This method just invokes the
method named Startup.

AthenaMuse 2.2 Documentation

February 25, 1997 97

Lines 29-33 define the special constructor Create. This method is used when an
instance of the PictureButton class is created from the heap. It send the
base class initialization message to the XFvisual base class, informing that
class about the handle to the parent of the widget. It then invokes the
method named Startup.

Line 34 defines the method called Startup. This method is invoked by both the
Create and Construct methods. Its sole argument is the name of the file
containing the image to display.

Line 36 assigns the argument f to the member fname. This member contains the
name of the file that stores the image.

Line 37 assigns the default color nohighlightColor to the widget’s border-
Color.

Line 38 sets the value of the widget’s borderWidth to 1.

Line 40 begin the Init method for the class. This method is automatically invoked
as the last step in the creation of any object in AM2.

Line 43 uses the new operator to create an instance of the MMimage object. Con-
struct, the special constructor for this object, is messaged with a list
argument that has a string with the type of the element (MEimage), and a
list containing a pair of values, specifically the type of image storage
(MAfile), and the name of the file that stores the image (fname). The
handle pimage is assigned the handle returned by the special construc-
tor.

Lines 45-46 set the height and width of the PictureButton to the height and
width of the image if the button is supposed to be sized automatically.

Lines 47-51 determine the clipped width and height of the button.

Lines 55 -56 are executed if the image is to be zoomed to a preset size. They invoke the
Zoom method on the image.

Lines 58-59 causes the image to be presented in the button.

Lines 60 -62 subscribe the NROs to the object.

Lines 65 -76 implement the ShowMove method that is messaged whenever a Mouse-
Move activity is triggered. This method checks if the button is armed from
an earlier MouseDown event. If it is, the method turns the highlighting of
the image on and off depending on whether the mouse is located inside or
outside the button. This gives the user visual feedback as to whether releas-
ing the mouse will cause the button to be pressed.

Lines 78-83 implement the ShowDown method. This method is messaged when the
NRO downNro is triggered. The method arms and highlights the button.

Lines 85- 98 implement the ShowUp method. This method is messaged when the NRO
upNro is triggered. The method checks if the button is armed. If it is, the
value of armed and borderColor are reset, and the method checks

98 February 25, 1997

AthenaMuse 2.2 Documentation

whether the button is highlighted. If it is highlighted, then it calls the
TriggerNotification method. This method is part of the activity man-
agement mechanism. In this case, the implementation of TriggerNoti-
fication is inherited from the XFvisual base class. The
TriggerNotification method takes two arguments: the name of the
activity and the list of values to be sent to the target of the activity. In
this case, the Pressed activity is triggered and the argument list is empty.

The ShowUp method also checks to see if the Pressed member of the
PictureButton class has been set. This member is a list that can be set
by the user of the class as a shortcut for setting a single action to be taken
when the button is pressed. This mechanism exactly parallels the use of the
Pressed member in standard ADL button widgets.

Lines 100-103 define the Destroy method for the class. This method is automatically
messaged whenever an instance of the class is deleted. This occurs when an
automatic instance of that type goes out of scope or when the delete
operator is called on an instance created using the new operator. The
Destroy method deletes the memory allocated for the MMimage instance
where the image was stored.

Line 104 is the end of the definition of the class PictureButton.

5.3.2 An Example Using the PictureButton Class

Given the code shown above, we now turn to a simple ADL program that uses the PictureBut-
ton class. The example puts an instance of a PictureButton on the screen along with a text
label for that button. Pressing the PictureButton reverses the visibility of the label. Here is the
ADL code.

Line 1 starts the definition of an anonymous instance of an object that inherits
from the ADL top level shell class, XFtop. (We use anonymous to create
a single instance or very few instances of a class.)

Lines 3-4 declare a member of this anonymous class that is an instance of a Pic-
tureButton named button1. The image that is displayed on the button
is in the file dragon.gif. The button has a border that is two pixels wide
and is at (x,y) coordinates (50,75).

Line 5 declares an XFlabel at coordinates (120,300) that has the text label
Picture of Dragon.

Lines 6-7 declare an XFbutton at coordinates (50,350) that is 45 pixels high and
100 pixels wide. This button has no border and its size is not adjusted
depending on the space needed for the button’s label. The button contains
the text Exit.

Line 9 declares an instance of an Nro. This NRO’s activity is Pressed and it
sends a message to the BPress method of self when triggered.

AthenaMuse 2.2 Documentation

February 25, 1997 99

Lines 10-14 define the Construct method for the shell object. The body of this
method subscribes nroPressed to the PictureButton and sets the
Pressed attribute of the XFbutton named exitButton so that the Exit
message is sent to the application when that button is pressed.

Lines 16-20 define the method BPress. This is the method invoked when the Pressed
activity of PictureButton is triggered. The body of this method reverses
the visible attribute of the label.

Line 21 closes the declaration of the shell widget. The height and width of the
shell widget are set in an izor block.

5.4 A Video Viewer Class

In this example, we create the VCR class using the wrapped class MMmovie.

5.4.1 ADL Implementation of the VCR class

The ADL code for the VCR class is given below. Detailed comments on specific lines are below.

1 class VCR : XFlayout
2 {
3
4 handle Screen = NULL;
5 handle Movie = NULL;
6 handle PlayButton = NULL;
7 handle RewindButton = NULL;
8 handle PauseButton = NULL;
9 handle FastForwardButton = NULL;

1 anonymous: XFtop
2 {
3 PictureButton {‘Construct, “dragon.gif”} => button1
4 {borderWidth = 2; x = 50; y = 75;};
5 XFlabel mylabel {x=120;y=300;label=”Picture of Dragon”;};
6 XFbutton exitButton {x=50; y=350; height=45; width=100;
7 borderWidth=0; recomputeSize=FALSE; label=”Exit”;};
8 Nro {‘Create, ‘Pressed, self, ‘BPress, {}} => nroPress;
9
10 upon Construct
11 {
12 {‘Subscribe, &nroPress} => button1;
13 exitButton.Pressed = {‘Exit, theApp};
14 }
15
16 on BPress: any cdata, list keys, list values
17 {
18 mylabel.visible = !mylabel.visible;
19 }
20 } myTop {height=400; width=500; title=”Picture Button Demo”};

Figure 5.7 PictureButton Class Example

100 February 25, 1997

AthenaMuse 2.2 Documentation

10 handle StopButton = NULL;
11
12 string MovieTitle = "";
13 boolean Paused = FALSE;
14
15 upon Create : handle VisualParent, list SizePosition, string InitialMovie
16 init { {'Create, VisualParent} => XFlayout }
17 { integer Xpos;
18 integer Ypos;
19 integer Width;
20 integer Height;
21
22 Xpos = first(SizePosition);
23 Ypos = at(2, SizePosition);
24 Width = at(3, SizePosition);
25 Height = at(4, SizePosition);
26
27 x = Xpos;
28 y = Ypos;
29 width = Width;
30 height = height;
31
32 MovieTitle = InitialMovie;
33
34 } // End of Create Method
35
36 upon Construct
37 {
38 MovieTitle = "";
39 } // End of Construct Method
40
41 on Init
42 {
43 integer ButtonWidth;
44
45 ButtonWidth = width/5;
46
47 Screen = new {'Create, self} => XFvisual {
48 visible = TRUE;
49 x = 0;
50 y = 0;
51 };
52 Screen->width = width;
53 Screen->height = height - 20;
54
55 PlayButton = new {'Create, self} => XFbutton{
56 visible = TRUE;
57 label = ">";
58 fontRequest = {'Helvetica, 14, {'bold}, 'roman};
59 };
60 PlayButton->x = 0;
61 PlayButton->y = height - 20;
62 PlayButton->width = ButtonWidth;
63 PlayButton->height = 20;

AthenaMuse 2.2 Documentation

February 25, 1997 101

64 PlayButton->Pressed = {'Play, self};
65
66 RewindButton = new {'Create, self} => XFbutton{
67 visible = TRUE;
68 label = "<<";
69 fontRequest = {'Helvetica, 14, {'bold}, 'roman};
70 };
71 RewindButton->x = ButtonWidth;
72 RewindButton->y = height - 20;
73 RewindButton->width = ButtonWidth;
74 RewindButton->height = 20;
75 RewindButton->Pressed = {'Rewind, self};
76
77 PauseButton = new {'Create, self} => XFbutton{
78 visible = TRUE;
79 label = "||";
80 fontRequest = {'Helvetica, 14, {'bold}, 'roman};
81 };
82 PauseButton->x = 2*ButtonWidth;
83 PauseButton->y = height - 20;
84 PauseButton->width = ButtonWidth;
85 PauseButton->height = 20;
86 PauseButton->Pressed = {'Pause, self};
87
88 FastForwardButton = new {'Create, self} => XFbutton{
89 visible = TRUE;
90 label = ">>";
91 fontRequest = {'Helvetica, 14, {'bold}, 'roman};
92 };
93 FastForwardButton->x = 3*ButtonWidth;
94 FastForwardButton->y = height - 20;
95 FastForwardButton->width = ButtonWidth;
96 FastForwardButton->height = 20;
97 FastForwardButton->Pressed = {'FastForward, self};
98
99 StopButton = new {'Create, self} => XFbutton{
100 visible = TRUE;
101 label = "[]";
102 fontRequest = {'Helvetica, 14, {'bold}, 'roman};
103 };
104 StopButton->x = 4*ButtonWidth;
105 StopButton->y = height - 20;
106 StopButton->width = ButtonWidth;
107 StopButton->height = 20;
108 StopButton->Pressed = {'Stop, self};
109
110 {'SetMovie, MovieTitle} => self;
111
112 } // End of Init Method
113
114 on SetMovie : string NewMovieTitle
115 {
116 if (isValid(Movie)) {
117 delete Movie;

102 February 25, 1997

AthenaMuse 2.2 Documentation

118 Movie = NULL;
119 }
120
121 if (NewMovieTitle != "") {
122 Movie=new{'Construct,{'MEavi,{'MAfile,NewMovieTitle}}}=> MMmovie;
123 {'RegisterOn, Screen} => Movie;
124 }
125
126 MovieTitle = NewMovieTitle;
127 'UpdateButtons => self;
128
129 } // End of SetMovie Method
130
131 on UpdateButtons
132 {
133 if (isValid(Movie)) {
134 PlayButton->disabled = FALSE;
135 RewindButton->disabled = FALSE;
136 PauseButton->disabled = FALSE;
137 FastForwardButton->disabled = FALSE;
138 StopButton->disabled = FALSE;
139 }
140 else {
141 PlayButton->disabled = TRUE;
142 RewindButton->disabled = TRUE;
143 PauseButton->disabled = TRUE;
144 FastForwardButton->disabled = TRUE;
145 StopButton->disabled = TRUE;
146 }
147
148 } // End of UpdateButtons Method
149
150 on Show
151 {
152 visible = TRUE;
153 } // End of Show Method
154
155 on Hide
156 {
157 visible = FALSE;
158 } // End of Hide Method
159
160 on Play
161 {
162 integer a, b;
163 list l;
164 interval i;
165 if (isValid(Movie)) {
166 if (! Paused) {
167 'Present => Movie;
168 }
169 else {
170 'Resume => Movie;
171 }

AthenaMuse 2.2 Documentation

February 25, 1997 103

172 Paused = FALSE;
173 }
174 } // End of Play Method
175
176 on Rewind
177 {
178 integer a, b;
179 list l;
180 interval i;
181
182 if (isValid(Movie)) {
183
184 if (((Movie->position) - 10) > Movie->startPosition) {
185 a = (Movie->position) - 10;
186 }
187 else {
188 a = Movie->startPosition;
189 }
190
191 if (! Paused) {
192 b = Movie->endPosition;
193 }
194 else {
195 b = a;
196 }
197
198 l = { {TRUE, a}, {TRUE, b}};
199 i = toInterval(l);
200
201 {'PlayInterval, i} => Movie;
202
203 }
204
205 } // End of Rewind Method
206
207 on Pause
208 {
209 integer a;
210 list l;
211 interval i;
212 if (isValid(Movie)) {
213 if (! Paused) {
214 'Pause => Movie;
215 Paused = TRUE;
216 }
217 else {
218 'Resume => Movie;
219 Paused = FALSE;
220 }}
221 } // End of Pause Method
222
223 on FastForward
224 {
225 integer a, b;

104 February 25, 1997

AthenaMuse 2.2 Documentation

226 list l;
227 interval i;
228
229 if (isValid(Movie)) {
230
231 if (((Movie->position) + 10) < Movie->endPosition) {
232 a = (Movie->position) + 10;
233 }
234 else {
235 a = Movie->endPosition;
236 }
237
238 if (! Paused) {
239 b = Movie->endPosition;
240 }
241 else {
242 b = a;
243 }
244
245 l = { {TRUE, a}, {TRUE, b}};
246 i = toInterval(l);
247
248 {'PlayInterval, i} => Movie;
249
250 }
251
252 } // End of FastForward Method
253
254 on Stop
255 {
256 integer a;
257 list l;
258 interval i;
259
260 if (isValid(Movie)) {
261
262 'Stop => Movie;
263 Paused = FALSE;
264
265 a = Movie->startPosition;
266 l = { {TRUE, a}, {TRUE, a}};
267 i = toInterval(l);
268
269 {'PlayInterval, i} => Movie;
270
271 }
272
273 } // End of Stop Method
274
275 }; // End of VCR Class Definition
276
277
278 anonymous : XFtop
279

AthenaMuse 2.2 Documentation

February 25, 1997 105

280 {
281 VCR myVcr{x = 10; y = 10; width = 400; height = 300;};
282
283 upon Construct
284 {
285 {'SetMovie, "NAME.avi"} => myVcr;
286 'Show => myVcr;
287
288 } // End of Construct Method
289 } mytop{width = 410; height = 310;};
290 */

Line 1 declares VCR class as a subclass of XFlayout. In other words, the VCR
class inherits behavior from the XFlayout class.

Lines 4-13 declare internal variables used by the class such as button handles, the title
of the current movie and a boolean value that tracks whether the current
movie is paused or not.

Line 15 declares the "Create" method as a constructor using the "upon" key word.
This method will takethree arguments including a visual parent, a list con-
taining the size and position of the VCR and an initial movie title.

Line 16 initializes the base class of the VCR by sending the visual parent to the
XFlayout inherited class.

Lines 17-20 declares internal variables to be used within the method. These variables do
not exist outside of this method and are used for readability.

Lines 22-25 assigns each variable the appropriate value from the list which describes
the coordinates and its width and height of the VCR.

Line 32 saves the filename for the initial movie to an internal class variable for later
use.

Line 34 ends the declaration of the "Create" method.

Line 36 declares the "Construct" method as a constructor using the "upon" key
word. This method takes no arguments and can only be used when the
"visual parent" of the VCR can be found by asking the windowing system.
Use this method when you statically create a VCR (see application exam-
ple below).

Line 38 ensures that the "MovieTitle" variable is properly set to the default
value.

Line 39 ends the declaration of the "Construct" method.

Line 41 begins the declaration of the "Init" method. This method is used to ini-
tialize internal variables, to create and position buttons and to initialize the
movie to be played, if any.

Line 43 declares an internal method variable used to calculate and store the width
of the buttons.

106 February 25, 1997

AthenaMuse 2.2 Documentation

Line 45 calculates the width of all of the buttons based on the width of the VCR.

Line 47 creates a new instance of the "XFvisual" class and stores the new handle
in the variable "Screen".

Lines 48-50 initialize some of the attributes of the newly created XFvisual, such as
coordinates and visibility.

Line 52 sets the width of the "Screen" to be the same width of the VCR.

Line 53 sets the height of the "Screen" to be as large as possible but still leave
room for the VCR buttons.

Line 55-59 creates a new instance of the "XFbutton" class and stores the new handle
in a variable. Some of the attributes of the new button are set including the
"label", visibility and font to be used.

Lines 60-63 these lines set the other attributes of the newly created button, namely the
coordinates and width and height of the button.

Line 64 this sets the both the method name and object called when the button is
pressed. In this case, the method "Play" will be sent to the "self" i.e. the cur-
rent instance of the VCR class. This completes the declaration of the "Play"
button for the VCR class.

Lines 66-108 these lines follow the same format and pattern as Lines 55-64, creating the
"Rewind", "Pause", "Fast Forward" and "Stop" buttons of the VCR
class. Pay particular attention to the "label" attribute of each button and
Lines 75, 86, 97 and 108 which set the appearance of the button and the
response of the button when pressed, respectively.

Line 110 calls the method "SetMovie" with the argument "MovieTitle" within
the VCR class. This call activates the internal method responsible for load-
ing the initial movie and preparing it for viewing.

Line 112 ends the declaration of the "Init" method.

Line 114 begins the declaration of the "SetMovie" method. The "SetMovie"
method takes one argument in the form of a string which contains either
a movie filename or an empty string. This method is responsible for prepar-
ing a movie to be viewed within the VCR class.

Line 116 this line checks to see if a current, valid movie exists.

Line 117 if a valid movie is currently loaded, delete the "old" movie.

Line 118 then, after deletion, reinitialize the "Movie" handle to NULL. This allows
error checking should the new movie title be the empty string.

Line 121 this line checks to see if the "NewMovieTitle" is the empty string.

Line 122 if not, a new instance of MMmovie is created using the "NewMovieTitle"
and the handle is stored in the internal variable "Movie".

Line 123 registers the new movie for display on the "Screen" of the VCR.

107 February 25, 1997

AthenaMuse 2.2 Documentation

Line 126 stores the new movie title in the internal variable "MovieTitle".

Line 127 this line calls the method "UpdataButtons" within the VCR class. This
method is responsible for enabling and disabling the VCR control buttons.

Line 129 ends the declaration of the "SetMovie" method.

Line 131 begins the declaration of the "UpdateButtons" method. This method
enables or disables the VCR control buttons depending on whether a valid
movie is loaded or not.

Line 133 checks to see of the handle stored in the internal variable "Movie" is valid.

Lines 134-138 if it is valid, all of the buttons are enabled so the user may use them to con-
trol viewing.

Lines 140-145 otherwise, the buttons are disabled so they may not be used.

Line 148 ends the declaration of the "UpdateButtons" method.

Line 150 begins the declaration of the "Show" method. This method displays the
VCR (but does not start a movie playing).

Line 152 sets the VCR class visibility attribute to TRUE.

Line 153 ends the declaration of the "Show" method.

Line 155 begins the declaration of the "Hide" method. This method hides the VCR
(but does not stop a movie from playing).

Line 157 sets the VCR class visibility attribute to FALSE.

Line 158 ends the declaration of the "Hide" method.

Line 160 begins the declaration of the "Play" method. This method is responsible
for playing a valid movieor unpausing a valid, currently paused move.

Line 163 this line checks to ensure that a valid movie is loaded.

Line 164 if there is a valid movie loaded, this line checks to see if the movie is
paused.

Line 165 if the movie is not paused, it is "Present"-ed which begins playing the
movie on the "Screen".

Lines 167-168 if the movie is paused, it is "Resume"-ed which unpaused and continues
the movie.

Line 171 sets the "Paused" state variable equal to FALSE.

Line 172 this line ends the "if" statement ensuring a valid movie is loaded.

Line 174 ends the declaration of the "Play" method.

Line 176 begins the declaration of the "Rewind" method.

Lines 178-180 declare variables to be used within the "Rewind" method. These variables
will be used to declare segments of the movie to be displayed.

Line 182 checks to ensure the current movie is valid.

108 February 25, 1997

AthenaMuse 2.2 Documentation

Line 184 if the current movie is valid, this line checks to see if the movie can be
"rewound" 10 frames withoutmoving before the "starting position"
of the movie.

Line 185 if the current position can be moved back 10 frames, the variable "a" is set
to the current position minus 10.

Lines 187-188 if the current position can not be moved back 10 frames, the variable "a" is
set to the starting position of the movie.

Line 191 this line checks to see if the movie is currently paused.

Line 192 if the movie is not paused, the variable "b" is set to the "ending posi-
tion" of the current movie.

Lines 194-195 if the movie is currently paused, the variable "b" is set equal to the variable
"a".

Line 198 this line sets the variable "l" equal to a list that is formatted to be converted
into an interval of the movie that can be displayed. The format says that the
variable "a" is the first value of the interval and will be included within the
bounds of the interval and the variable "b" is the second value of the inter-
val and will also be included within the bounds of the interval.

Line 199 converts the list variable "l" into an interval and stores the value in the vari-
able "i".

Line 201 displays the interval of the movie defined by "i".

Line 203 ends the "if" statement ensuring a valid movie is loaded.

Line 205 ends the declaration of the "Rewind" method.

Line 207 begins the declaration of the "Pause" method.

Line 209 checks to make sure a valid movie is currently loaded.

Line 210 if there is a valid movie loaded, this line checks to see if the movie is cur-
rently paused.

Line 211 if the movie is not currently paused, pause the movie and set the variable
"Paused" equal to TRUE.

Lines 214-216 if the movie is currently paused, unpause the movie and set the variable
"Paused" equal to FALSE.

Line 219 this line ends the "if" statement ensuring a valid movie is loaded.

Line 221 ends the declaration of the "Pause" method.

Line 223 begins the declaration of the "FastForward" method.

Lines 225-227 declare variables to be used within the "FastForward" method. These
variables will be used to declare segments of the movie to be displayed.

Line 229 checks to ensure the current movie is valid.

109 February 25, 1997

AthenaMuse 2.2 Documentation

Line 231 if the current movie is valid, this line checks to see if the movie can be
"fast forwarded" 10 frames without moving beyond the "ending
position" of the movie.

Line 232 if the current position can be moved forward 10 frames, the variable "a" is
set to the current position plus 10.

Lines 234-235 if the current position can not be moved forward 10 frames, the variable
"a" is set to the endingposition of the movie.

Line 238 this line checks to see if the movie is currently paused.

Line 239 if the movie is not paused, the variable "b" is set to the "ending posi-
tion" of the current movie.

Lines 241-242 if the movie is currently paused, the variable "b" is set equal to the variable
"a".

Line 245 sets the variable "l" equal to a list that is formatted to be converted into an
interval of the movie that can be displayed. The format says that the vari-
able "a" is the first value of the interval and will be included within the
bounds of the interval and the variable "b" is the second value of the inter-
val and will also be included within the bounds of the interval.

Line 246 converts the list variable "l" into an interval and stores the value in the vari-
able "i".

Line 248 displays the interval of the movie defined by "i".

Line 250 ends the "if" statement ensuring a valid movie is loaded.

Line 252 ends the declaration of the "FastForward" method.

Line 254 begins the declaration of the "Stop" method.

Lines 256-258 declare variables to be used within the "Stop" method. These variables
will be used to move the movie back to the beginning.

Line 260 this line checks to see if the current movie is valid.

Line 262 if the movie is valid, stop the movie.

Line 263 resets the "Paused" variable to FALSE. A stopped movie is no longer
paused.

Line 265 sets the variable "a" to the "starting position" of the movie.

Line 266 sets the variable "l" equal to a list that is formatted to be converted into an
interval of the movie that can be displayed. The format says that the vari-
able "a" is the first value of the interval and will be included within the
bounds of the interval and the variable "a" is also the second value of the
interval and will also be included within the bounds of the interval. This
interval defines a point in the movie to be displayed, in this case, the begin-
ning of the movie.

110 February 25, 1997

AthenaMuse 2.2 Documentation

Line 267 converts the list variable "l" into an interval and stores the value in the vari-
able "i".

Line 269 displays the interval of the movie defined by "i" effectively showing the
first frame of the movie and stopping.

Line 271 ends the "if" statement ensuring a valid movie is loaded.

Line 273 ends the declaration of the "Stop" method.

Line 275 ends the declaration of the VCR class.

Line 277 begins a comment which includes a small, sample application which uses
the VCR class. In order to use the sample application, the programmer will
need to remove the "comment" markers.

Line 278 declares an "anonymous" subclass of the class XFtop. These are often
used as the main windowfor applications.

Line 281 statically declares the creation of a VCR object and sets the values for x,
y, width and height. In performing this type of object creation, the
"Construct" method of the object is called. The name of the VCR object
within the "anonymous" class is "myVcr".

Line 283 begins the declaration of the "Construct" method for the "anonymous"
class.

Line 285 calls the "SetMovie" method of the VCR object "myVcr" with the argu-
ment "NAME.avi". The programmer should change "NAME.avi" to an
appropriate, sample .avi file.

Line 286 calls the "Show" method of the VCR object "myVcr" effectively making
the VCR object visible and usable by the user.

Line 288 ends the declaration of the "Construct" method for the "anonymous"
class.

Line 289 completes the declaration of the "anonymous" class and creates an
instance of the "anonymous" class named "mytop" along with setting the
initial width and height of the "anonymous" class.

Line 290 this marks the end of the "comment" markers surrounding the sample
application.

AthenaMuse 2.2 Documentation

February 25, 1997 111

Chapter 6 Wrapped Class Reference

Wrapped classes are C++ classes in AM2 that are visible in the ADL (see Section 3.23,
“Wrapped Classes” page 44). They provide an interface to the AM2 library in the ADL. In the
sections that follow, we describe the following seven types of system-defined wrapped classes, as
well as list their methods, members, and activities:

• Section 6.1, “Activities and Application Services” page 113

• Section 6.2, “User Interface” page 123

• Section 6.3, “Multimedia” page 171

• Section 6.4, “Input/Output” page 199

• Section 6.5, “External Processes” page 233

• Section 6.6, “Database” page 239

• Section 6.7, “Data Structures” page 255

You can use wrapped classes as is, or create a subclass to add additional features. This chapter
describes the system-defined wrapped classes that come with the ADL. To learn how to create
your own wrapped classes see Section Appendix B, “Creating Wrapped Classes” page 271.

By convention, wrapped classes possess names that start with two capital letters specifying the
module, followed by one or more concatenated words, all but the first of which are capitalized.
For instance, XFmenuCommand is the wrapped class used to implement menu items that initiate
commands. The initial two letters, “XF”, indicate that this wrapped class belongs to the user inter-
face module along with other classes like XFbutton and XFtextField. The exception to this
convention are the wrapped classes implementing notification request objects (Nro, MouseNro
and TimerNro) and the abstract wrapped classes ActivityManager and AttributeManager.

Nothing prevents ADL programmers from following a similar convention in developing his or her
own classes. In general, preexisting module prefixes should be avoided, except in instances where
the developer is prototyping an ADL class that he or she intends to replace with a similarly named
wrapped class at a later date.

112 February 25, 1997

AthenaMuse 2.2 Documentation

The important features of a wrapped class are divided into four areas:

• Superclasses indicate inheritance, which is a key concept that is critical to fully understand-
ing the behavior of each class. To help in understanding the inheritance relationships within
and between classes, inheritance diagrams will be provided. As the legend for each class will
show, black boxes indicate classes and gray boxes indicate abstract classes (see Section 3.24,
“Inheritance” page 47).

• Methods are used to provide much of the advanced functionality of the wrapped classes. You
can use methods of wrapped classes exactly like methods of user-defined ADL classes (see
Section 3.21, “Method Definition” page 41).

Constructors are special methods which are distinguished by starting with the keyword upon
rather than the keyword on. Use constructors only when creating instances of objects; if no
default constructor is listed for a class, then you must specify one of the constructors listed
when creating the instance of the class. We do not list the Init method and the Destroy
method because you should never call them directly.

• Attributes are similar to the members of user-defined ADL classes (see Section 3.20, “Class
Definition” page 40). However, attributes of wrapped classes may be designated as “read-
only,” or have side effects when changed. Also, some classes provide easy access to fre-
quently used activities through special attributes.

In the lists of members, the Access column indicates whether you can set the attribute at cre-
ation time (C), whether you can also set it after creation (S), and whether you can read it (G).
In both the lists of attributes and activities, names in gray indicate features that are not yet
implemented.

• Activities provide asynchronous notification of events. You can trigger activities by the
mouse, keyboard, network, or other things outside the application. Although there is no direct
equivalent in the ADL, you can write classes in the ADL to provide a similar notification
mechanism. See Chapter 4, “Using Activities in ADL”for more information.

AthenaMuse 2.2 Documentation

February 25, 1997 113

6.1 Activities and Application Services

The classes included in this section are used by almost every AM2 application, but the ADL user
may often be unaware of their existence. MCapplication is a base class to every application
class, but the user should not (indeed, can not) declare it explicitly. The ActivityManager and

AttributeManager classes are likewise abstract base classes for any wrapped class that supports
activities (see “Using Activities in ADL” on page 59) or attributes (see “Member Access” on
page 45), and many applications can be written using the Pressed member rather than the under-
lying notification request classes Nro, MouseNro, and TimerNro. On the other hand, the ser-
vices provided by these classes are fundamental. For example, every ADL program should use the
‘Exit message provided by the MCapplication class. Detailed documentation for the these
classes are provided in the following sections:

• Section 6.1.1, “MCapplication - Abstract” page 115

• Section 6.1.2, “Activity Manager - Abstract” page 116

• Section 6.1.3, “Attribute Manager - Abstract” page 118

• Section 6.1.4, “Nro” page 118

• Section 6.1.5, “MouseNro” page 120

• Section 6.1.6, “TimerNro” page 121

The class inheritance tree for the Activities and Application Services (AAS) of AM2 appears in
Figure 6.1. Inheritance relationships are shown by the black lines that connect the boxes. Moving
from the top to the bottom of the figure, classes inherit from those where a connection exists and
they become more specific as you go down the tree. Classes with more that one connection to a
superclass are said to have a multiple inheritance relationship

114 February 25, 1997

AthenaMuse 2.2 Documentation

Figure 6.1 Activities and Applications Services Wrapped Classes Inheritance Tree

AthenaMuse 2.2 Documentation

February 25, 1997 115

6.1.1 MCapplication - Abstract

This class serves as the implicit base of every application class, but should not be used explicitly,
either as the class of any member or the base of a user defined class. That is, the global level of
every ADL application (theApp Class) inherits from the MCapplication wrapped class
although its name never appears in the program. This class provides certain application services
that do not fit naturally into any other wrapped class. These include interaction with the event
loop, registration of certain error handling methods for mathematical built-in functions, and sub-
scription for timers and idle time work procedures. In order to invoke MCapplication meth-
ods, the user should send the appropriate message to theApp, an instance of theAppClass.

Superclasses

None

Methods

on Exit

Exit the event loop and terminate the application after returning to the event loop and execut-
ing all queued asynchronous messages and propagating all constraints. This means that any
statement after the method invocation in the calling method executes: 'Exit => theApp;
Use the Die() built-in for emergency exits.

on Sync

Normally attribute updates take effect, asynchronous messages are delivered, and constraints
propagate when an activity callback returns control to the event loop. This method forces
these actions to be taken immediately.

on SetFatalErrors: list errorList

The mathematical built-ins recognize six named types of errors (see page 266). Two of these
are fatal (DOMAIN, SING) and the other four (OVERFLOW, UNDERFLOW, TLOSS, PLOSS) are
ignored by default. You can change this behavior by invoking this method on theApp. The
single argument in the message should be a list of lists. Each sublist should be a pair consist-
ing of a string specifying the name of an error type and a boolean constant (TRUE, FALSE)
indicating whether or not the error is to be treated as fatal.

on SetBypass: integer nEvents

Normally the AM2 event loop follows a strict priority model. High priority I/O events are
always processed before timer events, which are processed before normal user interface
events, which are processed before idle time events (work procedure callbacks). But this
strict model can lock out the processing of user interface events indefinitely, say during a long
stretch of software media decompression. This method inverts the event loop for the process-
ing of one event every nEvents events. Normally, an inverted cycle of the event loop starts
with checking for a user interface event, then a timer event, and finally a high priority I/O
event. If the WorkProcBypass message has been sent to theApp with an argument of TRUE,
however, then the inverted cycle will start with checking for an idle time notification request
(work procedure) and will only go on to check for user interface events if none is found.

116 February 25, 1997

AthenaMuse 2.2 Documentation

on WorkProcBypass: boolean includeWorkProc

If the includeWorkProc is TRUE, then an inverted event cycle (see the previous method)
includes checking for idle time notification. Otherwise, it does not. WorkProcBypass can be
called repeatedly to toggle the value on and off.

Attributes

None

Activities

This class supports periodic timers and idle time work procedures via a mechanism that resembles
activities, although it does not use the ActivityManager base class. From the point of view of
the developer there is no difference. The developer should subscribe for the Tick activity used by
the Nro or TimerNro classes, which contains an Extra member that specifies the timer interval in
milliseconds.

Examples

“A Simple ADL Application with a Button” page 60

6.1.2 Activity Manager - Abstract

This class is described for reference only. For further informaiton on how to use activites in ADL
programs (see Section 4.5.3, “Creating Classes That Inherit From the ActivityManager
Class” page 75).

Superclasses

None

Methods

on Subscribe: handle hNro, handle hTarget return handle

Register for the activity specified in the Nro pointed to by hNro, making the object pointed to
by hTarget the recipient of the future notification. This method returns a NULL handle if the
subscription is refused, otherwise the value of hNro.

on Unsubscribe: handle hNro, handle hTarget return handle

Unregister the subscription for the object pointed to by hTarget for the activity specified in
the Nro pointed to by hNro. Return a NULL handle if the subscription could not be removed
for any reason, otherwise the value of hNro.

Activity Keys Description

Tick integer late, missed periodic timer notification

Idle none application idle

Figure 6.2: MCapplication Activities

AthenaMuse 2.2 Documentation

February 25, 1997 117

on TriggerNotification : string activityName, list valueList, handle hTarget

Trigger a notification for the activity activityName sent to the ADL object pointed to by
hTarget. The notification message will have the selector activityName and three arguments:

1) the client data supplied in the subscribed Nro of type any;

2) a list of strings that supplies the keys for the activity, drawn from ActivityInfo member;

3) a list of values, valueList, that match the keys in 2.

The message Triggernotification is usually only sent if the programmer has defined a
class with it's own, non-standard activities. See the example in section 3.4.2.

on IsAnyoneSubscribed : string activityName, handle hTarget return boolean

Check if the object pointed to by hTarget has subscribed for activity activityName.
Return TRUE or FALSE.

Attributes

Activities

None

Example

Table 4.11, “A Class Inheriting from the ActivityManager Class,” on page 76

Table 4.12, “An Example Using the Movable Class,” on page 77

Attribute Type Description Access

ActivityInfo List This member is normally read-only, unless the user
has subclassed ActivityManager to define his or her
own activity. See the discussion in section 3.4.2.
ActivityInfo is a specially formatted list of lists in
which each sublist has the form { activityName,
listOfActivityKeys }.

CG

Figure 6.3: Activity Manager Attributes

118 February 25, 1997

AthenaMuse 2.2 Documentation

6.1.3 Attribute Manager - Abstract

This class is an abstract class which manages attributes in the underlying operating or windowing
system so that they appear to the ADL programmer as if they are members of the wrapped classes.
Most of the User Interface (XF) classes inherit from AttributeManager because attributes of
the window system components like width or foreground (color) are really maintained by the
underlying window system code and are not stored as actual members of the wrapped user inter-
face classes (see “Wrapped Classes” on page 44).

Superclasses

None

Methods

on Commit

Normally attributes are not updated until after an activity callback returns just before the next
activity is dispatched for processing. The user can force updating of an object’s attributes by
sending a ‘Commit to the object.

Attributes

None

Activities

None

Example

None

6.1.4 Nro

This class implements a general notification request object that is more efficient than a pure ADL
version. For a general discussion of the use of this class, see Chapter 3 “Using Activities in
ADL” page 59, and for a specific discussion of using a generic NRO, see Section 4.2, “Using
Notification Request Objects” page 62 .

Superclasses

None

Methods

upon Create: string activity, handle client, string method, any clientData

Create a notification request object for the specified activity that invokes method on the client
with the argument clientData as the first argument of the callback message.

AthenaMuse 2.2 Documentation

February 25, 1997 119

upon CreateExtra: string activity, handle client, string method, any clientData, any extra

Same as the previous with the exception that it initializes the member Extra to the value extra.

on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in a derived NRO class.
This method is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding data in the
same order.

on Lookup: string key, list keys, list values return any

Lookup up key in the notification attribute-value pairs specified by keys and values and return
the appropriate value. This method should become class common, when common is imple-
mented.

Attributes

Activities

None except for the actvityName? activities (see “Using Activities for Notification of Subscrip-
tions” on page 80).

Example

Table 4.3, “An Example Using an NRO,” on page 64

a. For further explanation, see Section 4.6, “Creating Customized NROs” page 78.

Attribute Type Description Access

mActivity string name of activity for which notification is requested CG
mExtra any extra notification request data CG
mClient handle notification target object CSG
mMethod string notification target method CSG
mClientData any user-supplied notification argument CSG

Figure 6.4: Nro Attributesa

120 February 25, 1997

AthenaMuse 2.2 Documentation

6.1.5 MouseNro

This class implements a special notification request object for mouse activities that is more effi-
cient than a pure ADL version. This NRO is used with all of the supported mouse activities in wid-
gets. For a further discussion of MouseNro, see Section 4.3.1, “Mouse NROs” page 65.

Superclasses

Section 6.1.4, “Nro” page 118

Methods

upon Create: string activity, handle client, string method, any clientData

Create a mouse notification request object for the specified activity that invokes method on the
client with the argument clientData as the first argument of the callback message.

on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in a derived NRO class.
This method is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding data in the
same order. For the list of attributes corresponding to mouse activities see “Basic Widget
Activities” on page 127.

Attributes

None

Activities

None

Example

Table 4.4, “Using MouseNro Objects,” on page 66

AthenaMuse 2.2 Documentation

February 25, 1997 121

6.1.6 TimerNro

This class implements a special notification request object for timers that is more efficient than a
pure ADL version. This NRO is used with the Tick activity of MCapplication base to the
application class (see “MCapplication - Abstract” on page 115). For further information about
the TimerNro, see Section 4.3.2, “Timer NROs” page 67.

Superclasses

Section 6.1.4, “Nro” page 118

Methods

upon Create: integer ival, handle client, string method, any clientData

Create a notification request object for the Tick activity that invokes method on the client
every ival milliseconds with the argument clientData as the first argument of the callback
message.

on HandleActivity: list keys, list values

Should not be called from the ADL, although it may be overwritten in a derived NRO class.
This method is called as part of the notification sequence. keys contains the string names of
the attributes pertaining to this notification, and values, contains the corresponding data in the
same order.

Attributes

None

Activities

None

Example

“Example Using A Timer” page 68

122 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 123

6.2 User Interface

The class inheritance tree for the User Interface (XF) wrapped classes appears in Figure 6.5. As
the legend shows, black boxes indicate classes and gray boxes indicate abstract classes. Docu-
mentation for all classes in this tree appears in this section.

• Section 6.2.1, “XFwidget - Abstract” page 125

• Section 6.2.2, “XFcontainable - Abstract” page 128

• Section 6.2.3, “XFcontainer - Abstract” page 128

• Section 6.2.4, “XFcontainableContainer - Abstract” page 129

• Section 6.2.5, “XFtop” page 129

• Section 6.2.6, “XFlayout” page 131

• Section 6.2.7, “XFvisual” page 133

• Section 6.2.8, “XFhtml” page 134

• Section 6.2.9, “XFmessageDlg” page 136

• Section 6.2.10, “XFsimple - Abstract” page 138

• Section 6.2.11, “XFfontable - Abstract” page 138

• Section 6.2.12, “XFlabel” page 139

• Section 6.2.13, “XFbutton” page 141

• Section 6.2.14, “XFtoggleButton - Abstract” page 142

• Section 6.2.15, “XFcheckBox” page 143

• Section 6.2.16, “XFradioButton” page 144

• Section 6.2.17, “XFselectList” page 148

• Section 6.2.18, “XFtext” page 151

• Section 6.2.19, “XFtextField” page 153

• Section 6.2.20, “XFscrollBar” page 156

• Section 6.2.21, “XFmenuItem - Abstract” page 159

• Section 6.2.22, “XFmenuLabeledItem - Abstract” page 159

• Section , “” page 160

• Section 6.2.24, “XFmenuCommand” page 161

• Section 6.2.25, “XFmenuSeparator” page 162

• Section 6.2.26, “XFfont” page 164

• Section 6.2.27, “XGPainter” page 167

124 February 25, 1997

AthenaMuse 2.2 Documentation

Figure 6.5: User Interface Wrapped Classes Inheritance Tree

AthenaMuse 2.2 Documentation

February 25, 1997 125

6.2.1 XFwidget - Abstract

XFwidget, the base class for all windowed widgets, defines all common attributes and activities.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

None

126 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Attribute Type Description Default Access

x integer x-coord upper left outside corner of
widget

0 CGS

y integer y-coord upper left outside corner of
widget

0 CGS

width integer widget width (in pixels), including bor-
der

100 CGS

height integer widget height (in pixels), including
border

100 CGS

borderWidth
(only on UNIX)

integer width of the border surrounding the
widget

0 CGS

foreground
(only on UNIX)

string foreground drawing color for the wid-
get

platform CGS

background
(limited on NT)

string background drawing color for the wid-
get (unavailable on NT for XFmes-
sageDlg, XFhtml, XFcheckBox,
XFradioButton, XFtext, XFselectList,
XFtextField, XFfont nor any classes
derived from XFmenuItem)

platform CGS

borderColor string color of the border surrounding the
widget

platform CGS

visible boolean Status of the widget relative to the
screen;
if set to TRUE, the widget is displayed.

TRUE CGS

disabled boolean Determines if widget receives user
input. When set to TRUE, widget is
disabled and doesn’t receive keyboard
or mouse input.

FALSE CGS

systemLook boolean Specifies if widget should maintain the
look of the platform. Setting this to
TRUE may override other attributes on
the widget.

FALSE CG

Figure 6.6: Basic Widget Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 127

Activities

Example

None

Activity Keys Description

MouseUp integer x, y, button
boolean shift, control,
modifier

mouse button released

MouseDown same mouse button pressed

MouseDblClick same mouse button double-clicked

MouseMove same mouse moved

MouseDrag same mouse moved while button held down

Destroyed none widget destroyed

Shown none widget displayed

Hidden none widget removed from display

Resized integer width, height widget resized

Moved integer x, y widget moved

FocusIn
(only on UNIX)

none widget gained input focus

FocusOut
(only on UNIX)

none widget lost input focus

Refresh integer x, y,
integer width, height

widget redrawn

Help none help requested for widget

KeyPressed string character, bool-
ean shift,
boolean command,
boolean modifier

key pressed in widget

KeyRepeat same key held down in widget

Figure 6.7: Basic Widget Activities

128 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.2 XFcontainable - Abstract

The XFcontainable class is an abstract class that defines the interface and behavior of all con-
tainable widgets such as XFbuttons, XFtextFields, and so on. A widget is said to be
“containable” if it can be placed as a child of another widget (the container).

Superclasses

Section 6.2.1, “XFwidget - Abstract” page 125

Methods

None

Attributes

None

Activities

None

Example

None

6.2.3 XFcontainer - Abstract

The XFcontainer class is an abstract class that defines the interface and behavior of all con-
tainer widgets such as the XFtop. A widget is said to be a container if it can contain or hold other
widgets as children.

Superclasses

Section 6.2.1, “XFwidget - Abstract” page 125

Methods

None

Attributes

None

Activities

None

Example

None

AthenaMuse 2.2 Documentation

February 25, 1997 129

6.2.4 XFcontainableContainer - Abstract

The XFcontainableContainer class is an abstract class that defines the interface and behavior
of all containable widgets which are also containers such as XFlayout and XFvisual.

Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Section 6.2.3, “XFcontainer - Abstract” page 128

Methods

None

Attributes

None

Activities

None

Example

None

6.2.5 XFtop

The XFtop class is a top-level widget, most commonly used as a container for other widgets. It
defines the standard appearance for the primary windows of an application. XFtop defines two
basic areas: a menu bar and a work area. The menu bar area is optional and is created only if there
is a menu attached to the XFtop.

Superclasses

Section 6.2.3, “XFcontainer - Abstract” page 128

Methods

upon Construct

Default constructor.

130 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

Example

This code creates an instance of an anonymous class derived from XFtop and assigns appropriate
values for some of the XFtop’s attributes.

1 // In order to use XFtop as a container we use inheritance
2
3 anonymous : XFtop
4 {
5 // ... Some useful members here ...
6 // ... We can put other widgets here ...
7
8 } topShell { width = 200; height = 300; title = “ModuleName”;};

Attribute Type Description Default Access

title string caption to be displayed in the widget’s
title bar

“XFtop” CGS

windowStyle list Specifies the style for the widget’s dec-
orations. This list should be composed
of zero (0) or more of the following
style names: “titleBar”, “resizeCon-
trol”, and “windowFrame”.

{“titleBar”,
“resizeCon-
trol”, “window-
Frame”}

CG

menuBar handle defines a handle to the XFmenu object
associated with this XFtop

NULL CGS

Figure 6.8: XFtop Attributes

Activity Keys Description

Active none topShell has been activated

Deactive none topShell has been deactivated

MenuCommand string command,
 list commandPath

a menu command was selected

Figure 6.9: XFtop Activities

AthenaMuse 2.2 Documentation

February 25, 1997 131

6.2.6 XFlayout

The XFlayout class represents a widget that acts as a manager and container for other widgets.
As a manager, it provides simple geometry management for children widgets and does not force
positioning or sizes on them.

Superclasses

Section 6.2.4, “XFcontainableContainer - Abstract” page 129

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

Attributes

None

Activities

None

Example

1 // Create a class derived from XFlayout to contain to XFlabel objects
2 class Canvas : XFlayout
3 {
4 XFlabel screen
5 {
6 x=35; y=20; width=135; height=100; background=“steelBlue”;
7 label = ““; borderWidth = 5; borderColor = “darkOrchid”;
8 };
9
10 XFlabel title
11 {
12 x = 50; y = 150; width = 100; height = 30; label = “Layout”;
13 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
14 };
15 };
16
17 anonymous : XFtop
18 {
19 // Create an instance of the XFlayout derived class
20 Canvas layout {x=100; y=50; width=200; height=200; visible=FALSE;};
21
22 XFbutton controller
23 {
24 x = 100; y = 270; width = 70; height = 40; label = “Show”;

132 February 25, 1997

AthenaMuse 2.2 Documentation

25 recomputeSize = FALSE; background = “grey”;
26 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
27 };
28
29 XFbutton quitButton
30 {
31 x = 230; y = 270; width = 70; height = 40; label = “Quit”;
32 background = “grey”;
33 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
34 };
35
36 // This method changes the visibility of the XFlayout when called
37 // Note that because the XFlayout contains another two objects,
38 // their visibility also changes
39 on ChangeVisibility
40 {
41 if (layout.visible) { controller.label = “Show”; }
42 else { controller.label = “Hide”; }
43 layout.visible = !layout.visible;
44 }
45
46 on Exit
47 {
48 “Exit” => theApp;
49 }
50
51 upon Construct
52 {
53 controller.Pressed = {“ChangeVisibility”, self };
54 quitButton.Pressed = {“Exit”, self };
55 }
56
57 } top {width = 400; height = 350; background = “grey”;};

AthenaMuse 2.2 Documentation

February 25, 1997 133

6.2.7 XFvisual

The XFvisual class provides a display surface for media objects. Since this class inherits from
XFcontainableContainer, it can provide very simple geometry management of multiple wid-
get children.

Superclasses

Section 6.2.4, “XFcontainableContainer - Abstract” page 129

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

Attributes

None

Activities

None

Example

1 anonymous : XFtop
2 {
3 // Create an XFvisual to display an image
4 XFvisual screen
5 {
6 x = 40; y = 20; width = 320; height = 200;
7 };
8
9 handle hPicture;
10 upon Construct
11 {
12 width = 300;
13 height = 200;
14 // Create the image to display
15 hPicture = new {“Construct”, {“MEimage”,
16 {“MAfile”,”dragon.gif”}}} => MMimage;
17
18 // Add the XFvisual object as the sink for this image
19 {“AddSink”, &screen} => hPicture;
20 “Show” => hPicture;
21 ExitButton.Pressed = {“Quit”, self };
22 }
23
24 XFbutton ExitButton

134 February 25, 1997

AthenaMuse 2.2 Documentation

25 {
26 x = 150;
27 y = 240;
28 width = 100;
29 height = 60;
30 label = “Quit”;
31 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”};
32 };
33
34 on Quit
35 {
36 “Exit” => theApp;
37 }
38
39 } topShell { width = 400; height = 320; title = “XFvisual example”;};

6.2.8 XFhtml

This class provides a display surface for MMhtml objects.

Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on SetFont: string targetElementType, handle anXFfont

Sets the font for all elements of tag type targetElementType in this HTML display sur-
face; currently, targetElementType can be “H1”, “H2”, “H3”, “H4”, “H5”, “H6”, “LIST-
ING”, “PLAIN”, “ADDRESS”, “FIXED”, “ITALIC”, “BOLD”, and “NORMAL”.

Attributes

None

AthenaMuse 2.2 Documentation

February 25, 1997 135

Activities

Example

The methods XFhtml and MMhtml work together (see Section 6.3.12, “MMhtml” page 195).

Activity Keys Description

AnchorPressed integer element_id,
string anchor_name, text,
href

A hyperlink anchor has been pressed and
released. The anchor pressed is contained in
anchor_name.

HTMLSubmitForm string href, method,
integer attribute_count,
list attribute_names,
attribute_values

An HTML submit button (for forms) has been
pressed and released

ImageMapPressed string image_src,
integer x, y, element_id,
string anchor_name,
href, text

An inlined HTML image map has been pressed
and released. The key "image_src" is the URL of
the inlined image. "x" and "y" are the coordinates
of the user's mouse click within the image map.
"element_id" is for future extension only.
"anchor_name" is the name of the anchor for this
image map. "href" is the URL of the object which
contains the mapping information. "text" contains
the hypertext associated with the anchor.

Figure 6.10: XFhtml Activities

136 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.9 XFmessageDlg

The XFmessageDlg class defines a simple message dialog box, which is normally used to
present transient messages. An XFmessageDlg consists of a message symbol, a message, and a
number of push-buttons that are used to respond to the message and dismiss the dialog box.

Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on PostModal: return string

Posts dialog and forces the user to respond or dismiss the dialog.

Attributes

Activities

None

Attribute Type Description Default Access

title string text to be displayed in the widget’s title
bar

“XFmes-
sageDlg”

CGS

message string text to be displayed in the dialog. “ ” CGS

dialogIcon string Symbol to display along with the mes-
sage: one of “error”, “warning”, “infor-
mation”, or “question”

“ ” CGS

buttonSet string Set of buttons to be displayed in the
dialog box: one of: “ok”, “okCancel”,
“yesNo”, or “yesNoCancel”

“okCancel” CGS

defaultButton string The default button for the dialog box:
must be one of: “ok”, “cancel”, “yes”,
or “no”. If the specified button is not
part of the button set, this attribute is
ignored.

“ok” CGS

Figure 6.11: XFmessageDlg Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 137

Example

The following example illustrates the use of XFmessageDlg objects

1 anonymous : XFtop
2 {
3
4 // Create a message dialog to prevent the user from quitting
5 // without confirming
6 // Note that creating the QuitDialog object does NOT pop up the
7 // dialog box.
8 XFmessageDlg QuitDialog
9 {
10 title=“Quit”;
11 message=“Do you really want to exit\nthis great application?”;
12 dialogIcon=“question”;
13 buttonSet=“yesNo”;
14 defaultButton=“no”;
15 };
16
17 XFbutton ExitButton
18 {
19 x = 50;
20 y = 45;
21 width = 100;
22 height = 60;
23 label = “Quit”;
24 font=new {“Create”, “Helvetica”, 18,{“bold”},“roman”}=> XFfont;
25 };
26
27 upon Construct
28 {
29 ExitButton.Pressed = {“Quit”, self };
30 }
31
32 on Quit
33 {
34 // Post the dialog in modal mode. After returning from this call
35 // the dialog object still exists and can be posted again
36 string answer = {“PostModal”} => QuitDialog;
37 if (answer == “yes”)
38 {
39 echo(“Quitting...\n”);
40 “Exit” => theApp;
41 }
42 }
43
44 } topShell { width = 200; height = 150; title = “Modal Messages”;};

138 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.10 XFsimple - Abstract

The class XFsimple is an abstract class that defines the interface and behavior of simple widgets
that cannot contain any other widgets.

Superclasses

Section 6.2.2, “XFcontainable - Abstract” page 128

Methods

None

Attributes

None

Activities

None

Example

None

6.2.11 XFfontable - Abstract

The XFfontable class is an abstract class that defines the interface and behavior of all other
classes for which a font can be set. Some examples of such classes are the XFselectList,
XFlabel, XFbutton, and XFtext.

Superclasses

Section 6.2.10, “XFsimple - Abstract” page 138

Attributes

Activities

None

Attribute Type Description Default Access

fontRequest list specifies a request to use a certain font
to display the text in the widget

{} CGS

font handle real font used to display the text in the
widget

platform depen-
dent

CGS

Figure 6.12: XFfontable Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 139

6.2.12 XFlabel

The XFlabel class represents a static text label. This, along with the XFbutton is one of the
most widely used widgets in GUI-based applications. The XFlabel class defines the basic behav-
ior and interface to render and manage static text by controlling its color, font, alignment, and
other visual attributes.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

Attributes

Activities

None

Attribute Type Description Default Access

label string text to be displayed in widget “XFlabel” CGS

alignment string label alignment (language, left, center,
or right)

“center” CGS

marginTop
(only on UNIX)

integer amount of space between top of label
text and top margin

0 CGS

marginBottom
(only on UNIX)

integer amount of space between bottom of
label text and bottom margin

0 CGS

marginLeft
(only on UNIX)

integer amount of space between left of label
text and left margin

0 CGS

marginRight
(only on UNIX)

integer amount of space between right of label
text and right margin

0 CGS

recomputeSize boolean determines whether the widget resizes
itself to accommodate its text

TRUE CGS

Figure 6.13: XFlabel Attributes

140 February 25, 1997

AthenaMuse 2.2 Documentation

Example

The following example illustrates the use of XFlabel objects.

1 anonymous : XFtop
2 {
3 XFbutton ExitButton
4 {
5 x = 150;
6 y = 120;
7 width = 100; height = 60; label = “Quit”;
8 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”};
9 };
10
11 // Create a label that will have the current time as its text
12 XFlabel timeLabel
13 {
14 width = 400;
15 height = 100;
16 background = “darkOrchid”;
17 fontRequest = {“Helvetica”, 48, {“bold”}, “roman”};
18 // Assign the currentTime to its label attribute
19 label = toString(localTime());
20 // Always be center aligned
21 alignment = “center”;
22 // Do not change size after the label is set time by time
23 recomputeSize = FALSE;
24 };
25
26 // Create timer
27 PMclock timer; any timerKey;
28
29 upon Construct
30 {
31 ExitButton.Pressed = {“Quit”, self };
32 // Subscribe for time notification every second
33 timerKey = {“Subscribe”, 999, “Tick”, {}, self} => timer;
34 }
35
36 on Tick : list cd, list ad return boolean
37 {
38 // Assign the current time to the label
39 timeLabel.label = toString(localTime());
40 return TRUE;
41 }
42
43 on Quit
44 {
45 // Remove timer notification
46 {“Unsubscribe”, timerKey} => timer;
47 “Exit” => theApp;
48 }
49
50 } topShell { width = 400; height = 200; title = “TimeLabel”;};

AthenaMuse 2.2 Documentation

February 25, 1997 141

6.2.13 XFbutton

The XFbutton class represents a basic interface push-button. Push-buttons are one of the most
widely-used widgets in GUI-based applications. XFbutton supports activities through which an
application can perform an action in response to some user interaction. The appearance of an
XFbutton changes to make it look either pressed in when selected or raised when unselected.

Superclasses

Section 6.2.12, “XFlabel” page 139

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

Attributes

Activities

Attribute Type Description Default Access

showAsDefault boolean specifies whether the button should be
marked as the default button

FALSE CGS

Figure 6.14: XFbutton Attributes

Activity Keys Description

Pressed none button pressed and released in widget

Figure 6.15: XFbutton Activities

142 February 25, 1997

AthenaMuse 2.2 Documentation

Example

The following code creates an instance of a class derived from XFtop which contains an
XFbutton member. When the button is pressed, the application exits.

1 // Create an XFtop to be used as a module top-level widget
2 anonymous : XFtop
3 {
4 // Lets create a button member
5 XFbutton ExitButton
6 {
7 x = 50;
8 y = 20;
9 width = 100;
10 height = 60;
11 label = “Quit”;
12 };
13 // ... Some other useful members here ...
14 // Constructor for the XFtop
15 upon Construct
16 {
17 // Use special XFbutton member Pressed to subscribe
18 // for the Pressed activity When the Pressed actity occurs
19 // send the message Quit to this XFtop (self)
20 ExitButton.Pressed = {“Quit”, self };
21 }
22 // Quit Method
23 on Quit
24 {
25 echo(“Quitting...\n”);
26 “Exit” => theApp;
27 }
28
29 } topShell { width = 200; height = 300; title = “ModuleName”;};

6.2.14 XFtoggleButton - Abstract

The XFtoggleButton class represents a button widget that is either set or unset. XFtoggleButtons
are most commonly used in groups with either a one-of-many behavior, which means that only
one button in the group can be set at a time, or an n-of-many behavior, which means that any
number of buttons in the group can be set at one time. The XFtoggleButton class defines the
common members, methods, and activities for two more specific classes: see “XFcheckBox” on
page 143, and “XFradioButton” page 144.

Superclasses

Section 6.2.13, “XFbutton” page 141

AthenaMuse 2.2 Documentation

February 25, 1997 143

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on Toggle

Toggles the state of the XFtoggleButton object.

Attributes

Activities

Example

For a sample program using this class, see specific examples of ToggleButtons “XFcheckBox
and XFradioButton” see “XFradioButton” on page 144.

6.2.15 XFcheckBox

The XFcheckBox class represents a kind of toggle button, a button that is either set or unset, to be
used in groups with an n-of-many behavior (that is, any number of XFcheckBoxes in the same
group may be set at one time.) It is important to note, however, that this behavior is not enforced
by the widget itself, and the application should follow this interface guideline. An XFcheckBox
consists of an indicator (a square on all platforms) and a label area. As its name suggests, the indi-
cator tells whether a particular XFcheckBox is set or unset.

Superclasses

Section 6.2.14, “XFtoggleButton - Abstract” page 142

Attribute Type Description Default Access

set boolean determines whether the XFtoggleBut-
ton object is set or not

FALSE CGS

Figure 6.16: XFtoggleButton Attributes

Activity Keys Description

StateChange none state of the XFtoggleButton changed

Figure 6.17: XFtoggleButton Activities

144 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on Toggle

Toggles the state of the XFcheckBox object.

Attributes

None

Activities

None

Example

For a sample program using this class, see “XFcheckBox and XFradioButton” see “XFra-
dioButton” on page 144.

6.2.16 XFradioButton

The XFradioButton class represents a kind of toggle button, a button that is either set or unset, to
be used in groups with a one-of-many behavior (that is, only one XFradioButton in the same
group can be set at a time.) It is important to note that this behavior is not enforced by the widget
itself, and that the application should follow this interface guideline. An XFradioButton con-
sists of an indicator (diamond or circle depending on the platform) and a label area. As its name
suggests, the indicator tells whether a particular XFradioButton is set or unset.

Superclasses

Section 6.2.14, “XFtoggleButton - Abstract” page 142

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on Toggle

Toggles the state of the XFradioButton object.

AthenaMuse 2.2 Documentation

February 25, 1997 145

Attributes

None

Activities

None

Example

This example of the Toggle Buttons, XFcheckbox and XFradiobutton, also shows several
uses of the XFfont class.

1 // This class defines a NRO for XFradioGroup activities
2 class RadioNro : Nro
3 {
4 upon Create: string act, handle cli, string mtd, any cd init
5 {
6 {“Create”, act, cli, mtd, cd} => Nro
7 }
8 {
9 }
10 on HandleActivity: list keys, list values
11 {
12 {mMethod,mClientData,{“Lookup”,“Selection”, keys, values}
13 =>self}
14 => mClient;
15 }
16 };
17 // This class implements the one-of-many behavior that groups of
18 // XFradioButtons should follow
19 class XFradioGroup : ActivityManager
20 {
21 handle mCurrent = NULL;
22 // Define the activity StateChange
23 list ActivityInfo = { {“StateChange”,{“Selection”}} };
24
25 on AddRadioButton : handle hRadio
26 {
27 if (hRadio->set)
28 {
29 if (mCurrent == NULL)
30 {
31 mCurrent = hRadio;
32 }
33 else
34 {
35 echo(“\n***ERROR:***\n”);
36 echo(“The” & mCurrent->label &
37 “XFradioButton is already set\n”);
38 echo(“Can’t have two set XFradioButtons in the same group\n”);
39 die(“Aborting..”);
40 }
41 }

146 February 25, 1997

AthenaMuse 2.2 Documentation

42 // Subscribe with the new added XFradioButton to be
43 // notified when its state changes
44 {“Subscribe”, new {“Create”,“StateChange”, self,“Selection”,
45 hRadio} => Nro } => hRadio;
46 }
47 on Selection : handle hRadio, list keys, list values
48 {
49 if (hRadio->set)
50 {
51 if (mCurrent != NULL)
52 {
53 if (mCurrent != hRadio)
54 {
55 mCurrent->set = FALSE;
56 }
57 }
58 mCurrent = hRadio;
59 // Notify all dependents that the group state has changed
60 {“TriggerNotification”, “StateChange”, {hRadio}} => self;
61 }
62 }
63 };
64 anonymous : XFtop
65 {
66 anonymous : XFlayout {
67 // Create group of XFradioButtons to handle a one-of-many behavior
68
69 XFradioGroup mGroupBox;
70
71 XFlabel BaudRateLabel
72 {
73 x=5; y=10; recomputeSize=FALSE; alignment=“left”; width=160;
74 label=“Baud Rate”; fontRequest={“Helvtica”,14,{“bold”},“roman”};
75 };
76 // Create different XFradioButtons
77 XFradioButton baudRate1
78 {
79 recomputeSize = FALSE; x = 10; y = 30; width = 100; height = 30;
80 label=“1200”; fontRequest={“Helvetica”, 12, {“bold”}, “roman”};
81 };
82 XFradioButton baudRate2
83 {
84 recomputeSize = FALSE; x = 10; y = 60; width = 100; height = 30;
85 label=“2400”; fontRequest={“Helvetica”, 12, {“bold”}, “roman”};
86 };
87 XFradioButton baudRate3
88 {
89 recomputeSize = FALSE; x = 10; y = 90; width = 100; height = 30;
90 label=“4800”; fontRequest={“Helvetica”, 12,{“bold”},“roman”};
91 };
92 XFradioButton baudRate4
93 {
94 recomputeSize = FALSE; x = 10; y = 120; width = 100; height = 30;
95 label=“9600”; fontRequest={“Helvetica”,12,{“bold”},“roman”};

AthenaMuse 2.2 Documentation

February 25, 1997 147

96 };
97
98 // Create two XFcheckBoxes
99 XFcheckBox parity
100 {
101 recomputeSize=FALSE; set = !set; x = 160; y=30; width=150;
102 height = 30; label = “Check Parity”;
103 fontRequest = {“Helvetica”, 12, {“bold”}, “roman”};
104 };
105
106 XFcheckBox carrier
107 {
108 recomputeSize = FALSE; x = 160; y = 60; width = 150;
109 height = 30; label = “Detect Carrier”;
110 fontRequest = {“Helvetica”, 12, {“bold”}, “roman”};
111 };
112 RadioNro {“Create”, “StateChange”, self, “GroupChange”, {}}=>
113 groupNro;
114 upon Construct
115 {
116 // Add XFradioButtons to the group
117 {“AddRadioButton”, &baudRate1} => mGroupBox;
118 {“AddRadioButton”, &baudRate2} => mGroupBox;
119 {“AddRadioButton”, &baudRate3} => mGroupBox;
120 {“AddRadioButton”, &baudRate4} => mGroupBox;
121 // Subscribe for any changes in the group’s state
122 {“Subscribe”, &groupNro} => mGroupBox;
123 }
124 on Init
125 {
126 if (mGroupBox.mCurrent != NULL)
127 {
128 echo(mGroupBox.mCurrent->label + “\n”);
129 }
130 }
131 on GroupChange : any cdata, handle hRadio
132 {
133 // Print out the label of the selected XFradioButton
134 echo(hRadio->label + “\n”);
135 }
136 } layout { x = 10; y = 10; width = 300; height = 155; };
137
138 XFbutton ExitButton
139 {
140 x = 110;
141 y = 175;
142 width = 100;
143 height = 60;
144 label = “Quit”;
145 font=new{“Create”,“Helvetica”, 18, {“bold”},“roman”}=> XFfont;
146 Pressed = {“Exit”, theApp};
147 };
148 } top {height=250; width=320; title=“Communications Settings”;};

148 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.17 XFselectList

The XFselectList class represents a widget that allows selection from a list of different
choices. XFselectList displays a single column of text items or choices that can be selected in
a variety of ways, using both the mouse and the keyboard.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on AddItem: string anItem

Appends an item to the end of the list.

on InsertItem: string anItem, integer aPosition

Inserts an item at the specified position.

on GetItemPos: string anItem return integer

Returns the position of the first ocurrence of the specified item in the list. If the item is not in
the list, the method returns 0 (zero).

on GetItemCount: return integer

Returns the number of items in the list.

on GetSelectedCount: return integer

Returns the number of selected items in the list.

on GetSelectedItems: return list

Returns a list of strings containing all selected items in the list. It returns an empty list if no
items are selected.

on GetSelectedPos: return list

Returns a list of integers containing the positions of all selected items in the list. It returns an
empty list if no items are selected.

on IsPosSelected: integer aPosition return boolean

Determines if the item at the specified position is selected. Returns TRUE if the item is
selected, FALSE otherwise.

AthenaMuse 2.2 Documentation

February 25, 1997 149

on SelectAtPos: list thePositions

Selects and highlights the items at the specified positions in the list.

on DeselectAtPos: integer aPosition

Deselects and unhighlights the item at the specified position in the list.

on RemoveItem: string anItem

Removes the first ocurrence of the specified item from the list.

on RemoveAllItems

Removes all items from the list.

on RemoveAtPos: integer aPosition

Removes the item at the specified position from the list.

Attributes

Activities

Example

The following code illustrates the use of XFselectList objects

1 anonymous : XFtop
2 {
3 XFbutton deleteButton
4 {
5 x = 285; y = 75; width = 100; height = 60;
6 label = “Delete”; background = “steelBlue”;
7 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”};
8
9 XFbutton clearButton

Attribute Type Description Default Access

selectionMode string The mode in which the list should sup-
port selections. Possible values are:
“single” and “multiple”.

“single” CGS

items list the list of choices {} CGS

Figure 6.18: XFselectList members

Activity Keys Description

Selection none Item selected. This activity is also reported when an
item is deselected in a multiple selection list.

ListAction string item, integer
itemPosition

Action initiated on an item. This usually happens
when the user double-clicks on an item or presses
return or enter when an item is selected.

Figure 6.19: XFselectList activities

150 February 25, 1997

AthenaMuse 2.2 Documentation

10 {
11 x = 285; y = 195; width = 100; height = 60;
12 label = “Clear”; background = “steelBlue”;
13 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”};
14 };
15
16 XFbutton exitButton
17 {
18 x = 285; y = 315; width = 100; height = 60;
19 label = “Quit”; background = “steelBlue”;
20 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”};
21 };
22
23 XFlabel listTitle
24 {
25 x = 10; width = 250; height = 30;
26 label = “List of Items”; background = “steelBlue”;
27 fontRequest = {“Helvetica”, 14, {“bold”, “italic”}, “roman”};
28 };
29
30 // Create a selectable list
31 XFselectList itemList
32 {
33 x = 10; y = 30; width = 250; height = 335; background = “grey”;
34 fontRequest = {“Times”, 12, {“bold”}, “roman”};
35 // Allow multiple selections
36 selectionMode = “multiple”;
37 };
38
39 XFlabel textTitle
40 {
41 x = 10; y = 370; width = 250; height = 30;
42 label = “Add Item”; background = “steelBlue”;
43 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
44 };
45
46 XFtextField addField
47 {
48 x = 10; y = 400; width = 250; height = 40; background = “grey”;
49 fontRequest = {“Times”, 14, {“bold”}, “roman”};
50 };
51
52 // Create a NRO for XFtextField’s TextAccept activity
53 Nro {“Create”, “TextAccepted”, self, “Accept”, {}} => AddNro;
54
55 upon Construct
56 {
57 exitButton.Pressed = {“Quit”, self };
58 deleteButton.Pressed = {“Delete”, self };
59 clearButton.Pressed = {“Clear”, self };
60 // Subscribe for notification on XFtextField’s TextAccept activity
61 {“Subscribe”, &AddNro } => addField;
62 }
63

AthenaMuse 2.2 Documentation

February 25, 1997 151

64 on Clear
65 {
66 // Clear the list
67 “RemoveAllItems” => itemList;
68 }
69
70 on Delete
71 {
72 // If there are any items selected, delete them
73 list selection = “GetSelectedItems” => itemList;
74 string item;
75 for item in selection
76 {
77 {“RemoveItem”, item } => itemList;
78 }
79 }
80
81 on Accept : list clientData, list keys, list values
82 {
83 // If a text was entered in the textField, add it to the list of items
84 if (addField.text != ““)
85 {
86 {“AddItem”, addField.text } => itemList;
87 addField.text = ““;
88 }
89 }
90
91 on Quit
92 {
93 “Exit” => theApp;
94 }
95
96 } topShell { width = 400; height = 450;
97 background = “steelBlue”; title = “Add List”;};

6.2.18 XFtext

The XFtext class represents a multiple line text widget that allows text to be inserted, deleted,
modified, and selected.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

152 February 25, 1997

AthenaMuse 2.2 Documentation

on ScrollText: integer lines

If lines is positive it scrolls the text upward. If it is negative it scrolls the text downward.

Attributes

Activities

Example

The following code illustrates the use of XFtext objects:

1 anonymous : XFtop
2 {
3 XFbutton ExitButton
4 {
5 x = 150;
6 y = 255;
7 width = 100;
8 height = 60;
9 label = “Quit”;
10 fontRequest = {“Helvetica”, 18, {“bold”}, “roman”}};
11 };
12
13 // Create an editable text widget
14 XFtext editor
15 {
16 y = 30;
17 width = 400;
18 height = 220;
19 background = “steelBlue”;

Attribute Type Description Default Access

text string text to be displayed “ ” CGS

cursorPosition integer position of cursor in text string 0 CGS

horizontalScrollBar
(only on UNIX)

boolean determines whether the widget has a
horizontal scrollBar or not

TRUE CGS

verticalScrollBar
(only on UNIX)

boolean determines whether the widget has a
vertical scrollBar or not

TRUE CGS

editable boolean determines whether the text is read-
only or not

TRUE CGS

wordWrap boolean determines whether the widget should
break lines automatically between
words.

FALSE CGS

Figure 6.20: XFtext Attributes

Activity Keys Description

TextChange none text in widget has been changed

Figure 6.21: XFtext Activities

AthenaMuse 2.2 Documentation

February 25, 1997 153

20 // Break lines automatically
21 wordWrap = TRUE;
22 fontRequest = {“Times”, 12, {“bold”}, “roman”};
23 };
24
25 XFlabel editorTitle
26 {
27 width = 400;
28 height = 30;
29 label = “Simple Text Editor”;
30 background = “darkOrchid”;
31 fontRequest = {“Helvetica”, 14, {“bold”, “italic”}, “roman”};
32 };
33
34 upon Construct
35 {
36 ExitButton.Pressed = {“Quit”, self };
37 }
38
39 on Quit
40 {
41 “Exit” => theApp;
42 }
43
44 } topShell { width = 400; height = 320; title = “Text Editor”;};

6.2.19 XFtextField

The XFtextField class represents a single-line text widget that allows text to be inserted,
deleted, modified, and selected. As a single-line text editor, the XFtextField has a subset of the
functionality of the XFtext widget.

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

154 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

Example

The following code illustrates the use of XFtextField objects

1 anonymous : XFtop
2 {
3 XFbutton ExitButton
4 {
5 x = 150;
6 y = 255;
7 width = 100;
8 height = 60;
9 label = “Quit”;
10 font=new{“Create”,“Helvetica”,18,{“bold”},“roman”}=> XFfont;
11 };
12
13 // Create the form with XFtextField and XFlabel objects
14
15 XFlabel nameLabel
16 {
17 x = 10; y = 10; width = 80; height = 30;
18 label = “Name :”; background = “steelBlue”;
19 alignment = “language”;
20 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
21 };
22
23 XFtextField name
24 {
25 x = 100; y = 10; width = 280; height = 40;
26 background = “steelBlue”;
27 fontRequest = {“Times”, 12, {“bold”}, “roman”};
28 };
29 XFlabel ssLabel
30 {

Attribute Type Description Default Access

text string text to be displayed “ ” CGS

cursorPosition integer position of cursor in text string 0 CGS

editable boolean determines whether the text is read-
only or not

TRUE CGS

Figure 6.22: XFtextField Attributes

Activity Keys Description

TextChange none text in widget has been changed

TextAccepted none text in widget has been accepted

Figure 6.23: XFtextField Activities

AthenaMuse 2.2 Documentation

February 25, 1997 155

31 x = 10; y = 55; width = 200; height = 30;
32 label = “Social Security :”;
33 alignment = “left”;
34 background = “steelBlue”;
35 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
36 };
37 XFtextField social
38 {
39 x = 220; y = 55; width = 160; height = 40;
40 background = “steelBlue”;
41 fontRequest = {“Times”, 12, {“bold”}, “roman”};
42 };
43 XFlabel emplName
44 {
45 x = 10; y = 100; width = 100; height = 30;
46 label = “Employer :”; background = “steelBlue”;
47 alignment = “left”;
48 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
49 };
50 XFtextField employer
51 {
52 x = 120; y = 100; width = 260; height = 40;
53 background = “steelBlue”;
54 fontRequest = {“Times”, 12, {“bold”}, “roman”};
55 };
56 XFlabel addName
57 {
58 x = 10; y = 145; width = 200; height = 30;
59 label = “Address :”;
60 background = “steelBlue”;
61 alignment = “left”;
62 fontRequest = {“Helvetica”, 14, {“bold”}, “roman”};
63 };
64 XFtext address
65 {
66 x = 120; y = 145; width = 260; height = 80;
67 background = “steelBlue”;
68 fontRequest = {“Times”, 12, {“bold”}, “roman”};
69 };
70 upon Construct
71 {
72 ExitButton.Pressed = {“Quit”, self };
73 }
74 on Quit
75 {
76 “Exit” => theApp;
77 }
78 } topShell { width = 400; height = 320; background = “steelBlue”;
79 title = “Form”;};

156 February 25, 1997

AthenaMuse 2.2 Documentation

6.2.20 XFscrollBar

The class XFscrollBar provides a widget to control the scrolling of the viewing area in other
widgets. It allows users to view data that are too large to be displayed all at once, and is usually
adjacent to the widget that contains the data for viewing.

Superclasses

Section 6.2.10, “XFsimple - Abstract” page 138

Methods

upon Construct

Default constructor.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

AthenaMuse 2.2 Documentation

February 25, 1997 157

Attributes

Activities

Example

1 uses “nro.adl”@”StdLib”;
2 class colorLabel: XFlabel
3 {
4 upon Create: string bg
5 {background=bg; label=bg; x=0; y=0 width=80; height=50;}
6 };
7 class Sequence : XFlayout
8 {
9 colorLabel {“Create”, “darkOrchid”} => purple { x = 0; };
10 colorLabel {“Create”, “lightBlue”} => lightBlue { x = 80; };
11 colorLabel {“Create”, “plum”} => plum { x = 160;};
12 colorLabel {“Create”, “orange”} => orange { x = 240;};
13 colorLabel {“Create”, “red”} => red { x = 320;};
14 colorLabel {“Create”, “yellow”} => yellow { x = 400;};
15 colorLabel {“Create”, “green”} => green { x = 480;};
16 colorLabel {“Create”, “royalBlue”} => royalBlue { x = 560;};
17 list colors={“darkOrchid”,”lightBlue”,”plum”,”orange”,
18 ”red”,”yellow”,“green”,”royalBlue”};
19 };

Attribute Type Description Default Access

minimum integer the minimum value of the slider 0 CGS

maximum integer the maximum value of the slider 100 CGS

position integer the slider’s position 0 CGS

increment integer amount the position changes due to the
user’s moving the thumb1 increment

1 CGS

pageIncrement integer amount the position changes due to
user’s moving thumb 1 page increment.

10 CGS

orientation string direction the scrollbar is displayed.
Values are “vertical” and “horizontal”.

“vertical” CG

Figure 6.24: XFscrollBar Attributes

Activity Keys Description

Increment integer position Thumb’s position incremented by one.

Decrement same Thumb’s position decremented by one.

PageIncrement same Thumb’s position incremented by one page.

PageDecrement same Thumb’s position decremented by one page.

ThumbTrack same The position of the thumb changes while being
dragged.

ThumbPosition same Thumb has changed position.

Figure 6.25: XFscrollBar Activities

158 February 25, 1997

AthenaMuse 2.2 Documentation

20 anonymous: XFtop
21 {
22 Sequence samples { x = 30; y = 195; width = 640; height = 50; };
23 // Create a horizontal scrollbar that acts as a slider
24 XFscrollBar slider
25 {
26 orientation = “horizontal”;
27 x = 30; y = 245; width = 640; height = 30;
28 //Set the scroll range
29 minimum = 1; maximum = 8;
30 };
31 // Create a notification request object to subscribe for
32 // the XFscrollBar’s ThumbPosition activity
33 vanillaNro {“Create”,“ThumbPosition”,self,“ChangeColor”, {}}
34 => colorNro;
35 XFlabel colorSample
36 {
37 label = ““; x = 60; y = 30; width = 580; height = 120;
38 borderWidth = 3;
39 };
40 XFbutton ExitButton
41 {
42 x = 300; y = 290; width = 100; height = 60;
43 label=“Quit”;
44 fontRequest={“Helvetica”, 18, {“bold”}, “roman”};
45 };
46 on ChangeColor : list unused
47 {
48 // Whenever slider’s thumb changes because of user input change
49 // labels background color to the appropriate color in sequence
50 colorSample.background = at(slider.position, samples.colors);
51 }
52 on Exit
53 {
54 “Exit” => theApp;
55 }
56 upon Construct
57 {
58 {“Subscribe”, &colorNro } => slider;
59 // Initialize the color sample to the first in the sequence
60 {“ChangeColor”, {}} => self;
61 ExitButton.Pressed = {“Exit”, self };
62 }
63 } colors { width = 700; height = 360; title = “Color Sequence”;};

AthenaMuse 2.2 Documentation

February 25, 1997 159

6.2.21 XFmenuItem - Abstract

The class XFmenuItem is an abstract class that represents all the different kinds of items that can
be placed in a menu such as XFmenuSeparators, XFmenuCommands, and XFmenus.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

None

Attributes

None

Activities

None

Example

For a sample program, see “XFmenu, XFmenuCommand, and XFmenuSeparator”
(“XFmenuSeparator” page 162).

6.2.22 XFmenuLabeledItem - Abstract

The class XFmenuLabeledItem is an abstract class that represents labeled items that can be
placed in a menu such as XFmenuCommands and XFmenus.

Superclasses

Section 6.2.21, “XFmenuItem - Abstract” page 159

160 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

6.2.23 XFmenu

The class XFmenu represents a logical menu that can be instantiated into a physical menu such as
a menu bar, a pull-down menu or a pop-up menu, on demand. Applications typically create differ-
ent menu systems by creating an instance (or instances) of this class and attaching them to other
objects. For example, to create a menu bar, an application can create an XFmenu object (or
objects) and attach it to an existing XFtop object.

Superclasses

Section 6.2.22, “XFmenuLabeledItem - Abstract” page 159

Methods

upon Construct

Default constructor.

upon ConstructTop

This constructor should be used when the XFmenu object to be created is the top-most menu.

upon Create: handle hContainer

Alternate constructor; hContainer is a handle to its container menu.

Attribute Type Description Default Access

enabled boolean Defines whether the menu item is
enabled or not

TRUE CGS

label string text to be displayed in the menu item
label.

Defined by sub-
class

CGS

mnemonic
(only on UNIX)

string Defines the key that can be used in
conjunction with a modifier key to post
a PullDownMenu. Platforms that sup-
port this attribute underline the charac-
ter in the label string that matches the
mnemonic. This attribute is ignored on
the Mac platform

“ ” CGS

Figure 6.26: XFmenuLabeledItem Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 161

Attributes

Activities

None

Example

For a sample program, see “XFmenu, XFmenuCommand, and XFmenuSeparator”
(“XFmenuSeparator” page 162).

6.2.24 XFmenuCommand

The class XFmenuCommand represents menu items that initiate some command as they are
selected.

Superclasses

Section 6.2.22, “XFmenuLabeledItem - Abstract” page 159

Methods

upon Construct

Default constructor.

upon Create: handle hContainer

Alternate constructor; hContainer is a handle to its container menu.

Attribute Type Description Default Access

tearOff
(only on UNIX)

boolean Defines whether the menu is a tear-off
menu or not. This attribute works as a
hint to the platforms that support this
kind of menus

FALSE CGS

Figure 6.27: XFmenu Attributes

162 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

None

Example

For a sample program, see “XFmenu, XFmenuCommand, and XFmenuSeparator”
(“XFmenuSeparator” page 162).

6.2.25 XFmenuSeparator

The class XFmenuSeparator represents a menu item that separates other items in a menu by
drawing a horizontal line between them.

Superclasses

Section 6.2.21, “XFmenuItem - Abstract” page 159

Methods

None

Attributes

None

Activities

None

Attribute Type Description Default Access

accelerator
(onlyon UNIX)

string Defines the key that can be used in
conjunction with the command key
(Command or Ctrl) as a direct shortcut
to invoke a menu item without popping
up its menu pane. Platforms display a
readable representation of this key
sequence to the right of the item in the
menu.

“ ” CGS

Figure 6.28: XFmenuCommand Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 163

Example

1 // Create a subclass of XFmenu to include several menuItems
2 class XFtopMenu: XFmenu
3 {
4 upon Construct
5 init { “ConstructTop” => XFmenu }
6 {
7 }
8 };
9
10 anonymous: XFtop
11 {
12 // Create the logical menu structure
13 anonymous: XFtopMenu
14 {
15 anonymous: XFmenu
16 {
17 XFmenuCommand quit { label = “Quit”; accelerator = “Q”; };
18 } fileMenu { label = “File”; mnemonic = “F”; };
19 anonymous: XFmenu
20 {
21 XFmenuCommand add { label = “Add”; accelerator = “A”; };
22 XFmenuCommand reset { label = “Reset”; accelerator = “R”; };
23 XFmenuSeparator separator;
24 XFmenuCommand removeCmd { label=“Remove”; accelerator=“v”; };
25 } testMenu { label = “Test”; mnemonic = “T”; tearOff = TRUE;};
26 } mainMenu;
27
28 Nro {“Create”,“MenuCommand”,self,“MenuCommand”,{}}=> menuCmdNro;
29
30 on Init
31 {
32 // Attach the logical menu to an XFtop menuBar
33 menuBar = &mainMenu;
34 // Subscribe for any menuCommand in the physical XFtop’s menu
35 {“Subscribe”, &menuCmdNro} => self;
36 }
37
38 // This method gets called when a command is selected
39 on MenuCommand: any clientData, list keys, list values
40 {
41 string command = at(1,values);
42 // Call the command method
43 command ?=> self;
44 }
45
46 on Quit
47 {
48 “Exit” => theApp;
49 }
50
51 on Add
52 {

164 February 25, 1997

AthenaMuse 2.2 Documentation

53 // Add was selected do something
54 echo(“Add selected \n”);
55 }
56
57 on Reset
58 {
59 // Reset was selected do something
60 echo(“Reset selected \n”);
61 }
62
63 on Remove
64 {
65 // Remove was selected do something
66 echo(“Remove selected \n”);
67 }
68
69 } top { width = 100; height = 100; };

6.2.26 XFfont

The XFfont class represent font objects that are commonly used with other XF classes such as
XFlabel, XFtext and so on. This class provides constructors to create fonts from explicit infor-
mation including the font name, size, style, and encoding.

Superclasses

None

Methods

upon Create: string fontName, integer size, list style, string encoding

FontName: the name of the font, such as ‘helvetica, ‘times, ‘fixed, ‘symbol, ‘courier. Other
generic font names are defined on the Macintosh platform and will soon be defined on the
other platforms. These generic names are: “applicationFont”, “textFont”, “typewriterFont”,
and “systemFont”. To ensure better font handling across the different platforms, system con-
figurations, and languages, use of these generic names is recommended.

Size: size of the font.

Style: a list of types, which may contain any of: ‘bold, ‘italic, ‘underline, ‘underlineDouble,
‘underlineDotted, ‘superscript, ‘subscript, ‘outline, ‘smallCaps.

Encoding: one of ‘roman, ‘japanese, ‘arabic, ‘hebrew, ‘greek, ‘symbol.

This special constructor creates a font object from the given information. AthenaMuse 2
attempts to find the best match for the font requested; the members described below can be
examined to see exactly what font is being used.

AthenaMuse 2.2 Documentation

February 25, 1997 165

Attributes

Activities

None

Example

The following example shows several uses of the XFfont class.

1 uses “nro.adl”@”StdLib”;
2
3 anonymous : XFtop
4 {
5 // Create different fonts to include in selection list
6 XFfont{“Create”,“Times”,12,{},“roman”} => Times12;
7 XFfont{“Create”,“Times”,14,{},“roman”} => Times14;
8 XFfont{“Create”,“Times”,24,{},“roman”} => Times24;
9 XFfont{“Create”,“Times”,14,{“bold”},“roman”} => TimesBold;
10 XFfont{“Create”,“Times”,14,{“italic”},“roman”} => TimesItalic;
11 XFfont{“Create”,“Times”,14,{“bold”,”italic”},“roman”}=>TimesBItalic;
12 XFfont{“Create”,“Helvetica”, 12, {}, “roman”} => Helv12;
13 XFfont{“Create”,“Helvetica”, 14, {}, “roman”} => Helv14;
14 XFfont{“Create”,“Helvetica”, 24, {}, “roman”} => Helv24;
15 XFfont{“Create”,“Helvetica”, 36, {}, “roman”} => Helv36;
16 XFfont{“Create”,“Helvetica”, 14, {“bold”},“roman”} =>HelvBold;
17 XFfont{“Create”,“Helvetica”, 14, {“italic”},“roman”}=>HelvItalic;
18 XFfont{“Create”,“Symbol”,14,{}, “symbol”} => Symbol;
19
20 list fonts={&Times12, &Times14, &Times24, &TimesBold, &TimesItalic,
21 &TimesBItalic, &Helv12, &Helv14, &Helv24, &Helv36, &HelvBold,
22 &HelvItalic, &Symbol};
23
24 XFlabel fontSample
25 {
26 y = 230; width = 450; height = 100;
27 label = “The quick brown fox”;
28 background = “steelBlue”;
29 recomputeSize = FALSE;
30 };
31
32 XFselectList fontList
33 {
34 x = 75; y = 15;

Attribute Type Description Default Access

fontName string current font name platform G
size integer current font size platform G
style list list of styles for current font platform G
encoding string current font encoding platform G

Figure 6.29: XFfont Attributes

166 February 25, 1997

AthenaMuse 2.2 Documentation

35 width = 300;
36 height = 200;
37 items = {“Times 12”, “Times 14”, “Times 24”, “Times Bold”,
38 “Times Italic”, “Times Bold & Italic”,
39 “Helvetica 12”,“Helvetica 14”,“Helvetica 24”,“Helvetica 36”,
40 “Helvetica Bold”,”Helvetica Italic”, “Symbol font”};
41 // Setting the fontRequest attribute creates an XFfont object
42 // that is then assigned to the font attribute
43 fontRequest = {“Helvetica”, 12, {“bold”}, “roman”};
44 };
45
46 XFbutton ExitButton
47 {
48 x = 175;
49 y = 355;
50 width = 100;
51 height = 60;
52 label = “Quit”;
53 //Set the button’s font to be Helvetica, 18 points, and bold.
54 //Create the font dynamically and then assign it to
55 //the font attribute which expects a font handle.
56 font=new {“Create”, “Helvetica”,18, {“bold”},“roman”}=>XFfont;
57 };
58
59 // Create a notification request object for the
60 // XFselectList’s Selection activity
61 vanillaNro {“Create”,“Selection”, self “ChangeFont”,{}}=>FontNro;
62
63 upon Construct
64 {
65 ExitButton.Pressed = {“Quit”, self };
66 {“Subscribe”, &FontNro } => fontList;
67 }
68
69 on ChangeFont : list clientData
70 {
71 string item;
72 integer position = 1;
73 list selection = “GetSelectedItems” => fontList;
74 if (!isEmpty(selection))
75 {
76 position = {“GetItemPos”, at(1,selection) } => fontList;
77 fontSample.font = at(position, fonts);
78 }
79 }
80
81 on Quit
82 {
83 echo(“Quitting...\n”);
84 “Exit” => theApp;
85 }
86
87 } topShell { width = 450; height = 450;
88 background = “steelBlue”; title = “Fonts”;};

AthenaMuse 2.2 Documentation

February 25, 1997 167

6.2.27 XGPainter

The XGpainter interface provides a simple set of operations and represents the necessary state
to perform 2D drawing. Many of the methods described use lists as the representation for points
with the idea that it can be used for both 2D and 3D graphics. For instance if we were to draw a
line from (1,2) to (10,10) we would make a call similar to:

 {"DrawLine", {1,2}, {10,10} } => myPainter;

Superclasses

Section 6.2.11, “XFfontable - Abstract” page 138

Methods

upon Construct

Default constructor. This should set the members into a useful default.

upon Create: handle hParent

Alternate constructor; hParent is a handle to its container widget.

on ClearDrawingArea

Clears (erases) the entire drawing area.

on DrawPoint: list point

Draws the given point with the current penWidth and color.

on DrawPoints: list points

Draws the given points with the current penWidth and color.

on DrawLine: list point1, list point2

Draws a line from point1 to point2 with the current penWidth and color.

on DrawPolyLine: list points

Draws a line segment from the first point to the second point, then from the second point to
the third, and so on.

on DrawRectangle: list origin, integer width, integer height

Draws the outline of a rectangle with the current penWidth and color.

on FillRectangle: list origin, integer width, integer height

Fills the specified rectangle with the current color.

on DrawEllipse: list origin, integer width, integer height

Draws the outline of an ellipse specified by its bounding rectangle with the current penWidth
and color.

168 February 25, 1997

AthenaMuse 2.2 Documentation

on FillEllipse: list origin, integer width, integer height

Fills the ellipse specified by its bounding rectangle with the current color.

on DrawPolygon: list points

Draw the outline of the polygon specified by the list of points, using the current penWidth
and color.

on FillPolygon: list points

 Fills the specified polygon with the current color.

on DrawCircle: list center, integer radius

Draws the outline of the specified circle using the current penWidth and color.

on Fill Circle: list center, integer radius

Fills the specified circle of the given center and radius with the current color.

on DrawText: list startPos, string text

Draws the specified text starting at startPos using the current font.

Attributes

Activities

None

Attribute Type Description Access

drawingArea handle current drawing area.

This is a handle to an XFvisual object.

 CSG

penWidth integer current width of the pen used to draw CSG
fontRequest list font requested to be used for text operations CSG
font handle current font used for text operations CSG
color handle This is the current color to be used in graphic

operations. This is a handle to an MMcolor
object. Specifies the raster operation or logical
function to be used. Logical functions control
how the source pixel values generated by a
graphics request are combined with the destina-
tion pixel values already present on the screen.
These operations are: copy, and, or, and xor.

CSG

Figure 6.30: XGpainter Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 169

Example

This example using the XGpainter creates a class called Polygon. The anonymous instance
derived from XFtop after the Polygon class definition then uses the Polygon class to create a
filled square (in black) and a unfilled triangle in yellow.

1 XGpainter painter;
2
3 // Class for a Polygon
4 class Polygon
5 {
6 global XGpainter painter;
7
8 list points = {}; //list of vertices in form { {x1,y1}, {x2,y2} ...}
9 integer lineWidth=1; // width of drawing line
10 handle colorHandle; // handle to MMcolor object
11 string drawColor='black; // default color
12 handle drawParent; // parent widget to draw on
13 boolean fill=FALSE; // indicator for filled Polygon
14
15 // Constructor has parent widget for Polygon as argument
16 upon Construct: handle p
17 {
18 drawParent = p;
19 colorHandle= new {'CreateName, drawColor} => MMcolor;
20
21 }
22
23 // Destructor deletes the allocated MMcolor object
24 on Destroy
25 {
26 delete colorHandle;
27 }
28
29 // Method to reset the drawing color
30 on Set_drawColor: string color
31 {
32 delete colorHandle;
33 drawColor=color;
34 colorHandle = new {'CreateName, drawColor} => MMcolor;
35 painter.color = colorHandle;
36 }
37
38 // Method that draws the Polygon
39 on Draw
40 {
41
42 list fullPoints = points;
43
44 painter.drawingArea = drawParent;
45 painter.penWidth = lineWidth;
46 painter.color = colorHandle;
47
48 if(fill) {

170 February 25, 1997

AthenaMuse 2.2 Documentation

49 {'FillPolygon, points} => painter;
50 }
51 else {
52 fullPoints << first(points);
53 {'DrawPolygon, fullPoints} => painter;
54 }
55 }
56
57 }; /* end of class Polygon */
58
59 // Anonymous instance derived from XFtop that uses Polygon class
60 anonymous:XFtop {
61
62 XFvisual vis {x=30; y=30; height=200; width=400;};
63 // drawing surface
64 Polygon {'Construct, &vis} => triangle
65 {points={{100,100}, {100,200}, {200,100}};
66 drawColor='Green; lineWidth=4;};
67 Polygon {'Construct, &vis} => filledSquare
68 {points={{10,10}, {100,10}, {100,100}, {10,100}};
69 drawColor='Black; fill=TRUE;};
70
71 XFbutton quitButton {x=250; y=30; label="Quit";};
72 // The following NRO is used to Subscribe for refresh events on XFvisual
73 Nro {'Create, 'Refresh, self, 'RedrawRefresh, NULL} => redrawNro;
74
75 upon Construct
76 {
77 {'Subscribe, &redrawNro} => vis;
78 quitButton.Pressed = {'Exit, theApp};
79 'Draw => filledSquare;
80 'Draw => triangle;
81 }
82 // This method handles refresh on the XFvisual by redrawing Polygons
83 on RedrawRefresh: any cd, list names, list vals
84 {
85 'Draw => filledSquare;
86 'Draw => triangle;
87 }
88
89 } myTop {x=100; y=100; height=300; width=500;};

AthenaMuse 2.2 Documentation

February 25, 1997 171

6.3 Multimedia

Multimedia applications should be thought of as the juxtaposition and presentation of media ele-
ments to users through the user interface. The ADL contains two key features which enhance an
application designer’s ability to manage and control multimedia presentations more efficiently.

1. Multiple presentations of a single media element can be created and controlled independently.
This is more efficient than duplicating a media element in order to make and manipulate mul-
tiple presentations of it. Each presentation request for a media element returns a special type
of handle called a presentationID, which can be passed as an argument to specify which pre-
sentation of a media element to control. Each presentation exists as long as the media element
that created it exists, or until the particular presentation is removed, at which time the
presentationID handle is made invalid. In the media classes, there are frequently two alter-
native forms of a method. The form without a handle will perform the specified action on all
presentations of a media element, while the method (s) named “methodID” with a handle will
perform the action on the specified presentationID.

2. The reusability of application interfaces through the interchangeability of multimedia was a
key design goal of AM2. The MMbroker adds a subtle capability which helps the ADL pro-
grammer to achieve this goal. It allows applications to access media elements without needing
to be aware of their actual format. This makes it much easier to construct interchangeable sets
of media. For further explanation of the use of MMbroker, see Section 6.3.5, “MMbroker”
page 182.

The classes which are essential for supporting the above features are described in the first two
sections of this section, followed by descriptions of how the specific media classes take advantage
of these capabilities for different forms of media:

• Section 6.3.1, “MMbase - Abstract” page 173

• Section 6.3.2, “MMvisual - Abstract” page 174

• Section 6.3.3, “MMtemporal - Abstract” page 176

• Section 6.3.4, “MMaudioControl - Abstract” page 180

• Section 6.3.5, “MMbroker” page 182

• Section 6.3.6, “MMcolor” page 183

• Section 6.3.7, “MMimage” page 184

• Section 6.3.8, “MMdigitalAudio” page 187

• Section 6.3.9, “AVwaveForm” page 189

• Section 6.3.10, “MMmovie” page 191

• Section 6.3.11, “MMvidDiscPlayer (only on UNIX)” page 193

• Section 6.3.12, “MMhtml” page 195

The class inheritance tree diagram for the Multimedia (MM) wrapped classes of AM2 appears in
Figure 6.31.

172 February 25, 1997

AthenaMuse 2.2 Documentation

Figure 6.31: Multimedia Wrapped Classes Inheritance Tree

AthenaMuse 2.2 Documentation

February 25, 1997 173

6.3.1 MMbase - Abstract

An abstract class can not be directly created within an ADL program or used as a base of a user-
defined ADL class, so utilization of the MMbase methods, members and activities must be through
the fully-derived wrapped media classes. However, all fully derived media classes inherit from
MMbase, so they share the generic methods, members and activities listed below.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

Although the “Present” and “Dismiss” methods described below are available to all derived
media classes, they exhibit different behavior for different media types. For this reason, these
methods are repeated in the more media specific abstract classes (i.e. MMvisual, MMtemporal
and MMaudioControl). The “Remove” methods exhibit similar behavior across all classes, so
they are only described here and will not be repeated elsewhere.

on Present

Presents all existing presentations for a media element using the current settings for each
individual presentation request of the element. The entire element is presented. Activities
triggered: Depends on the actual element’s Present activities.

on PresentId: handle presentationID

Presents the element’s specified presentation request. Activities triggered: Depends on the
actual element’s Present activities.

on Dismiss

Dismisses all presentation requests for an element. A dismissed presentation is not removed
nor is the loaded data destroyed. An element that is dismissed may be thought of as being off-
stage ready to be presented again. A visual element’s Dismiss method hides the element.
Activities triggered: Depends on the actual element’s activities.

on DismissId: handle presentationID

Dismisses the element’s specified presentation request. Activities triggered: Depends on the
actual element’s activities.

on Remove

Removes all presentations of an element, which can not be presented again without creating
new presentations. Dismiss is called on the element’s presentations before they are removed.
Activities triggered: Depends on the actual element’s activities.

on RemoveId: handle presentationID

Removes the element’s specified presentation request. Activities triggered: Depends on the
actual element’s activities.

174 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

Example

None

6.3.2 MMvisual - Abstract

Any visual element type is derived from the MMvisual class.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

The following apply to all of the following methods:1

• handle hVisual -- a handle to the XFvisual

• integer x, y -- the location on the XFvisual where the image is presented

• integer clipW -- the clipping width of the presented image, -1 - don’t clip

• integer clipH -- the clipping height of the presented image, -1 - don’t clip

• integer offsetX -- the x offset from the origin of the source image

• integer offsetY -- the y offset from the origin of the source image

1 The newer PresentID, RegisterID and RemoveID methods should be used instead of “on AddSink: handle
hXFvisual return handle presentationID” (where image is placed at 0.0, no clipping) and ”on RemoveSink:
handle hXFvisual” (stops the XFvisual from displaying all presentations of the image, if clearMode is
TRUE the image is cleared). While these older methods remain available to older applications, it is highly
recommended that the newer and more powerful methods be used whenever possible.

Attribute Type Description Access

name string a user or application defined element name CSG

Figure 6.32: MMbase Attributes

Activity Keys Description

DataReady none media data available

Present none element is presented

Dismiss none element is dismissed

Destroyed none element is destroyed

Figure 6.33: MMbase Activities

AthenaMuse 2.2 Documentation

February 25, 1997 175

on Present

Registers and automatically shows all existing presentations of a media element.

on PresentID: handle presentationID

Present registers and automatically shows the specified presentation.

on PresentOn: handle hVisual return handle presentationID

on PresentAt: handle hVisual, integer x, integer y return handle presentationID

on PresentClipped: handle hVisual, integer x, integer y, integer clipW, integer clipH,

 integer offsetX, integer offsetY return handle presentationID

on Register

Registers all existing presentations of the media element but does not show the presentations.

on RegisterID: handle presentationID

Registers the specified presentation but does not show the presentation of specified handle.

on RegisterOn: handle hVisual return handle presentationID

on RegisterAt: handle hVisual, integer x, integer y return handle presentationID

on RegisterClipped: handle hVisual, integer x, integer y, integer clipW, integer clipH,

 integer offsetX, integer offsetY return handle presentationID

on Show

Maps all of the elements existing presentations onto their specified XFvisuals.

on ShowID: handle presentationID

Maps the presentation onto the specified XFvisual at the location specified.

on Hide

Hides all presentations of the image, if clearMode is TRUE, the areas are cleared.

on HideID: handle presentationID

Unmaps the specified presentation, the presentationID is not removed, and the media ele-
ment is not unloaded. Show methods may be called after a Hide method.

on Dismiss

The element stops presenting all presentations of itself, any screen updates are stopped and, if
the element is temporal, no new frames are presented. If clearMode is TRUE the images are
cleared. The presentationIDs are still valid.

on DismissID: handle presentationID

Screen updates are stopped and, if the element is temporal, no new frames are presented. If
clearMode is TRUE the image is cleared. The presentationID is still valid.

176 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

Example

None

6.3.3 MMtemporal - Abstract

MMtemporal is a base class for any element that has a temporal or sequential nature. In most
cases, positions within the data stream are addressable and the media data is presented as a series
of positions. All wrapped classes that are derived from MMtemporal share the same methods,
members and activities. For some of the derived classes the methods may have different results or
no action, for example currently you may not change the playback rate of digital audio.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

Note that some temporal methods behavior depends on the type of the specification provided:

• time - Play from current position for the amount of time.

• interval - Play the range specified within the interval (See PlayInterval).

 If either side of the interval is open, use the sequence’s start or end position.

• integer - Play at the specified Positions per second.

• real - Play at the requested rate.

Attribute Type Description Access

width integer width of image G
height integer height of image G
clearMode boolean clears presentation from the screen automatically if

presentation is hidden or removed, default TRUE
CSG

Figure 6.34: MMvisual Attributes

Activity Keys Description

DataReady none After a load is complete

Figure 6.35: MMvisual Activities

AthenaMuse 2.2 Documentation

February 25, 1997 177

on Present

“Play”s all current presentations from start to end using the current settings. Activities
triggered: Play and RateChange.

on PresentId: handle presentationID

on Play: any specification (only on UNIX)

Behavior of this method is controlled by the type of specification provided (see note above).
Activities triggered: Play and RateChange, PositionChange if seek to new location.

on PlayId: handle presentationID, any specification

on PlayAll

on PlayAllId: handle presentationID (only on UNIX)

Play the entire media element at the default or requested rate. Activities triggered: Play and
RateChange, PositionChange if seek to new location.

on PlayInterval: interval range

on PlayIntervalId: handle presentationID, interval range (only on UNIX)

Play the range specified within the interval, if either side of the interval is open use the
sequence’s start or end position. Interval values may be either timestamps or positions and
may be mixed. Please note many media types do not support playing backwards. Activities
triggered: Play and RateChange, PositionChange if seek to new location.

on PlaySeq: integer start, integer end

on PlaySeqId: handle presentationID, integer start, integer end (only on UNIX)

Play the sequence of positions starting at “start” and stopping at “end” at the default or
requested rate. Please note may media types do not support playing backwards. Activities trig-
gered: Play and RateChange, PositionChange if seek to new location.

on PlayUntil: value val (only on UNIX)

on PlayUntil: value val return handle presentationID (only on UNIX)

on Pause

on PauseId: handle presentationID (only on UNIX)

If the element is being presented, it pauses. A paused media element may be resumed.
Activities triggered: RateChange.

on Resume

on ResumeId: handle presentationID (only on UNIX)

If the element is paused, presentation continues from where it was paused. Activities trig-
gered: RateChange.

178 February 25, 1997

AthenaMuse 2.2 Documentation

on Stop

on StopId: handle presentationID

If the element is being presented or paused it is stopped, a stopped element may not be
resumed. The element is not unloaded and may receive new presentation or play commands,
but by default it starts at the beginning again. Activities triggered: Stop and RateChange.

on Seek: any location, boolean present

on SeekId: handle presentationID, any location, boolean present (only on UNIX)

Seeks to location specified by the value location. Location is relative to the beginning of the
sequence. Location may be either an integer, which is used as a media specific frame or posi-
tion, or a time value, which is used as the number of milliseconds into the sequence. If present
is TRUE and element is a visual type present the frame. Activities triggered: PositionChange

on GoStart

on GoStartId: handle presentationID (only on UNIX)

Seeks to start of sequence. Visual elements display first frame. Triggered: PositionChange

on GoEnd

on GoEndId: handle presentationID (only on UNIX)

Seeks to the end of sequence. Visual elements display last frame. Triggered: PositionChange

on Jump: any location, boolean present

on JumpId: handle presentationID, any location, boolean present (only on UNIX)

Jumps to location (an offset of the number of images from the current position). If present is
TRUE and the element is a visual type, present the frame. Triggered: PositionChange

on GoPPS: integer positionsPerSecond

on GoPPSId: handle presentationID, integer positionsPerSecond (only on UNIX)

Presents the media at the specified positions per second. Activities triggered: RateChange

on GoRate: real rate

on GoRateId: handle presentationID, real rate (only on UNIX)

Attempts to present the media at the specified rate based on default PPS = 1.0.
Activities triggered: RateChange

on ToPosition: time duration returns integer

Does not affect the media element but converts a time value into an element specific native
position, or number of positions. Positions are calculated using the default PPS.

on ToTime: integer position returns time

Does not affect the media element but converts an integer position, into an element specific
timestamp or duration. Time is calculated using the default PPS.

AthenaMuse 2.2 Documentation

February 25, 1997 179

Attributes

Activities

a. Note: The activity data returned from many temporal activities is a MDtemporalState
 value. Returned are: MDstatus status, integer position, integer PPS

Attribute Type Description Access

startPosition integer start position relative to start of media data CSG
endPosition integer end position relative to start of media CSG
position integer current position relative to start of sequence SG
timestamp time current position from start of sequence calculated

using default data rate
SG

PPS integer current Positions per Second, native media frame SG
rate real current rate calculated using default data rate

1.0 is the default rate.
SG

length integer length of the sequence in positions CSG
duration time length of the sequence in time, calculated based on

default rate
CSG

requestPPS integer request presentation rate, does not start the media. May
have no effect

CGS

requestRate real request presentation rate as multiplier of default
Positions Per Second (PPS)

CGS

Figure 6.36: MMtemporal Attributes

Activity Keysa Description

Play see footnote playing started

Start see footnote element starts, also on resume

Stop see footnote stopped, also on pause

RateChange see footnote on any rate change

StartChange see footnote after creation if the beginning location is changed

EndChange see footnote after creation if the end of sequence is changed

PositionChange see footnote seek, not called during normal movement

PositionReached must be subscribed for prior to start

Periodic sets timer, notify every clock ‘tick’

NextSample more data available

LateSample sample expected, is not ready

EndOfSequence must be subscribed for before sequence starts

DroppedSample element has skipped a sample

Figure 6.37: MMtemporal Activities

180 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.4 MMaudioControl - Abstract

MMaudioControl deals with audio gain, channel selection, and input/output selection. All
wrapped classes that are derived from MMaudioControl share the same methods, members and
activities. For some of the derived classes, the methods have different results or no action.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

on Present

on PresentId: handle presentationId

Presents the entire sound element using the current output gain and device. Activities trig-
gered: Play and RateChange.

on PresentSequence: integer start, integer end, real volume return handle presentationID

Creates, registers ad presents an audio presentation request. The start position, end position
and volume are set to the specified lvalues. The presentationID is returned.

on PresentVolume: real volume return handle presentationID (only on UNIX)

Creates, registers and presents an audio presentation request. The volume is set to the
specified level, the start and end positions default to beginning and end of data, and the
presentationID is returned.

on RegisterSequence: integer start, integer end, real volume return handle presentationID

Creates and registers an audio presentation request. The start position, end position and
volume are set to the specified lvalues. The presentationID is returned.

on RegisterVolume: real volume return handle presentationID (only on UNIX)

Creates and registers an audio presentation request. The volume is set to the specified level,
the start and end positions default to beginning and end of data, and the presentationID
is returned.

on Seek: any location, boolean present

Seeks to the location specified by the value location, the specified position is relative to the
beginning of the sequence. Location may be either a integer which is used as a media spe-
cific frame or position, or a UTtime which is used as the number of milliseconds into the
sequence. Note: An audio position is not presented upon Seek since a single sample is not
useful. Activities triggered: PositionChange.

AthenaMuse 2.2 Documentation

February 25, 1997 181

Attributes

Activities

Example

None

a. Note: The activity data returned from many audio activities is a MDaudioState value.
Returned are: MDstatus status, integer channels, real channelA, real channelB

Attribute Type Description Access

numChannels integer number of channel currently supported CSG
gain real sets output gain for all channels CSG
gainA real sets output gain for channel A (left) CSG
gainB real sets output gain for channel B (right) CSG
level real level is the current signal value for all channels G
levelA real level is the current signal value for channel A (left) G
levelB real level is the current signal value for channel B (right) G
output string specifies the local output device S
record boolean record mode CG
input string selects input device CGS

Figure 6.38: MMaudioControl Attributes

Activity Keysa Description

AudioChanged none gain for any channel changed

AudioAChanged none gain for channel A changed (left)

AudioBChanged none gain for channel B changed (right)

Figure 6.39: MMaudioControl Activities

182 February 25, 1997

AthenaMuse 2.2 Documentation

6.3.5 MMbroker

The multimedia broker acts as a media object factory. It isolates the ADL from having to declare
and call a specific constructor for the actual data format of the requested media element. The ADL
deals with abstract element types (such as image, audio, and movie) but the actual object created
by the wrapper must be the fully derived media element class that supports the specific data type
(MEgif, MEtiff, MEjpeg, etc.). The MMbroker, if given a generic element type, tests the media
data to determine the actual C++ class that must be constructed. Since the broker may construct
any media type, specification of the media element type may be supplied by external or run-time
data. The MMbroker parses media object descriptor lists. These lists define media elements and
the element’s internal objects. The format of an object descriptor list is as follows:

• The first item in the list must be a string that is the name of the requested C++ media class. A
base class name may be used if it is possible to derive the actual class of the media element
from the remaining arguments, or the media element’s data.

• Additional items in the list may include object descriptor lists for objects which are used as
members of the requested object, or an argument list.

An argument list has the following format:

• The first item must be the string “arguments”

• Additional items in the list are name/value lists with the first item an attribute name, and the
second item the value. Currently the individual name/value lists only have two items.

File access may be specified through an MAfile descriptor list, MAfile descriptor lists follow
the same format as any other object descriptor list, but in addition support a short list form:

{“MAfile”,”pathname”} The short form must be a list of two strings.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

on MakeElement: list mediaDescription return handle

The “mediaDescription” is a list which matches the format specified above. A media element
is created and a handle to it is returned.

on LoadColorNames: string filePath

Loads colors defined within the file as the color database colors. Deletes all colors currently in
the default color database. See /usr/lib/rgb.txt for file format.

on AppendColorNames: string filePath

Appends colors defined in the file to the color database. All colors currently in the default
color database remain. Multiple entries may have the same name and or color values, searches
of the database usually return the first ‘match’ found. See /usr/lib/rgb.txt for file format.

AthenaMuse 2.2 Documentation

February 25, 1997 183

Attributes

None

Activities

None

Example

None

6.3.6 MMcolor

MMcolor allows a user to define and control either RGB or HVS colors.

Superclasses

None

Methods

on construct

 Default constructor. Name is ‘none’, color is all zeros (Black).

on createName: string colorname

Creates a color name. If the default color database contains the name of the RGB, values are
set to match the name’s values, else they are set to zero (Black).

on createRGB: integer green, integer red, integer blue

Creates a color of the specified RGB settings. If the default color database contains a color
with matching RGB values, name is set to match the found color name, else is set to ‘none’.

on createHVS: real hue, real value, real saturation

Creates a color of the specified HVS settings. If the default color database contains a color
with matching RGB values name is set to match the found color name, else is set to ‘none’.

on createNamedRGB: string colorname, integer green, integer red, integer blue

Creates a color of the specified name with the specified RGB settings. Color database is not
checked.

on createNamedHVS: string colorname, real hue, real value, real saturation

 Creates a color of the specified name with the specified HVS settings.

184 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

None

Example

None

6.3.7 MMimage

Any type of image that is not a sequence of images that may be controlled, or indexed. Currently
supported image classes; MEpbm, MEgif, MEtiff, MEjpeg, MExbm and MEphotoCD only on the
Sun platform. In addition a special image class MEvideo supports a live analog video stream. The
MEvideo class is supported by MMimage since the only controls for the video stream are its place-
ment and visible state.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Methods

upon Construct: list description

Default constructor. Requires access descriptor to image. Description should be of the form
{<type>, {‘MAfile, <filename>}}, where <type> is the type of the image (one of:

Attribute Type Description Access

color handle A representation of the packed RGB values in a
32 bit integer

CSG

red integer This sets the level of red in a RGB color specifica-
tion.

CSG

green integer This sets the level of green in a RGB color specifi-
cation.

CSG

blue integer This sets the level of blue in a RGB color specifica-
tion.

CSG

hue real This sets the hue in an HVS color specification.
Range is 0.0 to 360.0

CSG

value real This sets the brightness in an HVS color specifica-
tion. Range is 0.0 to 100.0

CSG

saturation real This sets the saturation in an HVS color specifica-
tion. Range is 0.0 to 100.0

CSG

name string Specifies a user or applicaiton defined color. CSG

Figure 6.40: MMcolor Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 185

‘MEgif, ‘MEjpeg, ‘MEpbm, ‘MEphotoCD, ‘MEtiff, ‘MExbm, or ‘MEimage to auto-detect),
and <filename> is the name of the image file. An example of a constructor follows:

'Construct, { ‘MEimage, { ‘MAfile, "bigcat.gif"}}

on List: returns list

Returns an object descriptor list, which may be used to re-create the object. The returned list is
formatted to be used as the list argument to the MMbroker to MakeElement or to the class’s
Construct method which has a list argument.

on Load: return integer

Loads the image into memory. Returns zero on success.

on Unload: return boolean

Unloads any media data, closes the elements data file, stops the refreshing of the image and
returns TRUE when complete. The media element is not deleted or destroyed so it is possible
to redisplay the image with another present command. Note: all existing presentations are
removed and made invalid. If you plan on hiding and showing the image this is not the method
to call since the media data will have to be reloaded and a new presentation requested.

on SetSize: integer width, integer height

Set the image to a new size.

on Zoom: real scaleX, real scaleY

Zoom changes the size of all presentations created from this element, currently the image must
be Zoomed before the image is presented. To present the same image with different scale fac-
tors, another instance of the MMimage is required. This will change in the future. If a clip
region is not specified, the presented image is the size of the image after the Zoom.

Attributes

Activities

Attribute Type Description Access

width integer width of image G
height integer height of image G
clearMode boolean clear on remove sink automatically, default false CSG

Figure 6.41: MMimage Attributes

Activity Keys Description

DataReady none after a load is complete

Figure 6.42: MMimage Activities

186 February 25, 1997

AthenaMuse 2.2 Documentation

Example

1 global assets
2 {
3 {'SetLibrary, "Examples", "/usr/lib/Examples"} => self;
4 }
5 anonymous: XFtop
6 {
7 XFvisual visual { x=10; y=10; width = 640; height = 480;
8 background="black";
9 };
10 XFbutton bimg1 { x=200; y=500; width= 100; height = 30;
11 label="Image 1";
12 background="white"; foreground="black";
13 };
14 XFbutton bimg2 { x=350; y=500; width= 100; height = 30;
15 label="Image 2";
16 background="white"; foreground="black";
17 };
18 XFbutton bQuit { x=620; y=500; width= 50; height = 30;
19 background="white"; foreground="black"; label="Quit";
20 fontRequest={"Helvetica", 12,{"bold","italic"}, "roman"};
21 };
22
23 handle hImage;
24 upon Construct
25 {
26 bimg1.Pressed = { 'Img1, self};
27 bimg2.Pressed = { 'Img2, self};
28 bQuit.Pressed = { 'Quit, self};
29 hImage = NULL;
30 }
31 on Img1
32 {
33 if (hImage != NULL) { delete hImage; }
34 hImage = new {'Construct, { "MEimage",
35 { "MAfile", "bigcat.gif"@"Examples" }}} =>
36 MMimage;
37 {"PresentAt", &visual, 0, 0} => hImage;
38 }
39 on Img2
40 {
41 if (hImage != NULL) { delete hImage; }
42 hImage = new {'Construct, { "MEimage",
43 { "MAfile", "dragon.gif"@"Examples" }}}
44 => MMimage;
45 {"PresentAt", &visual, 0, 0} => hImage;
46 }
47 on Quit
48 {
49 delete hImage;
50 'Exit => theApp;
51 }
52 }top {x=20; y=20; width=680; height=540; background='SlateBlue;};

AthenaMuse 2.2 Documentation

February 25, 1997 187

6.3.8 MMdigitalAudio

Any type of digital audio, supported file formats include WAV, Sun au, and .SND.
MMdigitalAudio is derived from the abstract classes MMbase, MMtemporal, and
MMaudioControl. All base class methods and activities are supported.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.3, “MMtemporal - Abstract” page 176

Section 6.3.4, “MMaudioControl - Abstract” page 180

Methods

upon Construct: list description

Default constructor; Description list should follow this format where <filename> is the
name of the data file:

 ‘Construct {‘MEdigitalAudio, {‘MAfile, ‘filename},
 {‘arguments,{‘gainA, 1.0}, {‘gainB,0.0}}}

on List: returns list

Returns an object descriptor list, which may be used to re-create the object. The returned list is
formatted to be used as the list argument to the MMbroker to MakeElement or to the class’s
Construct method which has a list argument.

on Load: return boolean

Loads the media data and confirms that audio services are connected. Activities triggered:
DataReady.

188 February 25, 1997

AthenaMuse 2.2 Documentation

Attributes

Activities

None

Example

1 global assets
2 {
3 {'SetLibrary, "Examples", "/usr/lib/Examples"} => self;
4 }
5
6 anonymous: XFtop
7 {
8 XFbutton bimg1 { x=10; y=10;
9 width= 100; height = 30;
10 label="Sound 1";
11 background="black"; foreground="white";
12 };
13
14 XFbutton bimg2 { x=130; y=10;
15 width= 100; height = 30;
16 label="Sound 2";
17 background="black"; foreground="white";
18 };
19
20 XFbutton bQuit { x=300; y=10;
21 width= 50; height = 30;
22 background="black"; foreground="white";
23 label="Quit";
24 fontRequest = {"Helvetica", 12, {"bold",
25 "italic"}, "roman"};
26 };
27
28 handle hAudio;
29
30 upon Construct
31 {

Attribute Type Description Access

name string symbolic name associated with the element CGS
source string access path, must be set prior to loading CGS
masterGain real sets system output gain for all channels GS
fileFormat
(only on UNIX)

string returns the current file format
when recording is supported it may be set

CGS

output string specifies the local output device S

record boolean record mode CG

input string selects input device CGS

Figure 6.43: MMdigitalAudio Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 189

32 bimg1.Pressed = { 'Sound1, self};
33 bimg2.Pressed = { 'Sound2, self};
34 bQuit.Pressed = { 'Quit, self};
35 hAudio = NULL;
36 }
37
38 on Sound1
39 {
40 if (hAudio != NULL) { delete hAudio; }
41 hAudio = new {'Construct, {'MEdigitalAudio,
42 { 'MAfile,
43 "Violin_Concerto_in_E_Major.au"@"audioDir"},
44 { 'arguments, {'gainA, 1.0}}
45 }} => MMdigitalAudio;
46 {'PresentVolume, 1.0} => hAudio;
47 }
48 on Sound2
49 {
50 if (hAudio != NULL) { delete hAudio; }
51 hAudio = new {'Construct, {'MEdigitalAudio,
52 { 'MAfile, "wolf-2.au"@"audioDir"},
53 { 'arguments, {'gainA, 1.0}}
54 }} => MMdigitalAudio ;
55 {'PresentVolume, 1.0} => hAudio;
56 }
57 on Quit
58 {
59 delete hAudio;
60 'Exit => theApp;
61 }
62 }top {x=20; y=20; width=360; height=50; background='SlateBlue;};

6.3.9 AVwaveForm

AVwaveForm is a specialized class which visually represents a sound wave form, which may be
presented as an image.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Section 6.3.3, “MMtemporal - Abstract” page 176

Section 6.3.4, “MMaudioControl - Abstract” page 180

Section 6.3.7, “MMimage” page 184

Section 6.3.8, “MMdigitalAudio” page 187

190 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

on SetRecord: handle hAudioPresID, integer rate, integer mseconds return handle

Initializes the audio stream.The audio PresentationId defines the audio stream to be
recorded. The frequency is set. Returns an audio presentationID.

on Process: handle hAudioPresID

Begins the recording process. Audio stream, duration and frequency are set within the
presentation ID.

on MakeFreqImage: handle hAudioPresID, integer width, integer height return handle

If the Process method has not been called it is started, after Process complets the recorded
audio is converted into an image.Sound represented as a frequency graphic of given width and
height. Handle returned is a MMimage.

on MakeWaveImage: handle hAudioPresID, integer width, integer height return handle

If the Process method has not been called it is started, after Process complets the recorded
audio is converted into an image. Sound represented as an amplitude wave of given width
and height. Handle returned is an MMimage.

on BlankProcess: handle hAudioPresID

Calls Process, but no image is produced.

Attributes

Activities

None

Example

None

Attribute Type Description Access

numberToSum integer default value CSG
xJump integer sets the height of wave to be represented visually CSG
freqJump integer sets the width of wave to be represented visually CSG
minConsecutive integer sets the minimum consecutive points to be repre-

sented as a smooth curve
CSG

tooClose integer x value of height too small to be registered visually CSG
yTooClose integer y value of width too small to be registered visually CSG
minVol integer the minimum volume of sound to be registered visu-

ally
CSG

Figure 6.44: AVwaveForm Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 191

6.3.10 MMmovie

MMmovie provides the interface to all animated visual elements. If a movie element does not sup-
port audio, the audio methods perform no functions.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Section 6.3.3, “MMtemporal - Abstract” page 176

Section 6.3.4, “MMaudioControl - Abstract” page 180

Section 6.3.7, “MMimage” page 184

Section 6.3.8, “MMdigitalAudio” page 187

Methods

upon Construct: list description

Default constructor. Requires access descriptor to image. Description should be of the form
{<type>, {‘MAfile, <filename>}}, where <type> is the type of the movie (one of:
‘MEmpeg, ‘MEavi, ‘MEjpeg, ‘MEfli, ‘MEqt or ‘MEmovie to auto-detect), and <filename>
is the name of the image file. The following is an example of a construction for an MMmovie:

'Construct, {‘MEanim, {‘arguments, {‘gain, 0.3}}, {‘MAfile, "claylzrd.avi"}}

on List: return list

Returns an object descriptor list, which may be used to re-create the object. The returned list
is formatted to be used as the list argument to the MMbroker to MakeElement or to the
class’s Construct method which has a list argument.

on Load: return integer

Loads the image into memory; returns zero on success.

Attributes

None

Activities

None

Example

1 global assets
2 {
3 {'SetLibrary, "Examples", "/usr/lib/Examples"} => self;
4 }
5 anonymous: XFtop

192 February 25, 1997

AthenaMuse 2.2 Documentation

6
7 {
8 XFvisual visual { x=10; y=10;
9 width = 640; height = 480;
10 background="black";
11 };
12
13 XFbutton bStart { x=200; y=500;
14 width= 50; height = 30;
15 label="Start";
16 background="white"; foreground="black";
17 };
18
19 XFbutton bQuit { x=620; y=500;
20 width= 50; height = 30;
21 background="white"; foreground="black";
22 label="Quit";
23 fontRequest = {"Helvetica", 12, {"bold","italic"}, "roman"};
24 };
25
26 handle hMovie;
27
28 upon Construct
29 {
30 bStart.Pressed = { 'Start, self};
31 bQuit.Pressed = { 'Quit, self};
32 hMovie = NULL;
33 }
34
35 on Init
36 {
37 hMovie = new {'Construct, { "MEanim", {"arguments", {"gain", 0.3}},
38 { "MAfile", "claylzrd.avi"@"movieDir" }}} =>
39 MMmovie;
40 }
41
42 on Start
43 {
44 {"PresentAt", &visual, 0, 0} => hMovie;
45 }
46
47 on Quit
48 {
49 delete hMovie;
50 'Exit => theApp;
51 }
52 }top {x=20; y=20; width=680; height=540; background='SlateBlue;};

AthenaMuse 2.2 Documentation

February 25, 1997 193

6.3.11 MMvidDiscPlayer (only on UNIX)

MMvidDiscPlayer is a class that controls a generic video disc device. While some of its meth-
ods are similar to those of MMmovie, the class is not a media element but a device controller.

The media class model expects that devices are managed by the media elements requesting their
services. The player was made available to ADL mainly for testing and to allow run time specifi-
cation of configuration information via the asset manager.

Note: The video disc player does not display the video, but only makes the analog signal avail-
able. The media element MEvideo provides an interface to show a ‘live video stream’ the
MEvideo class is represented in the ADL as a type of MMimage since there is no control of the
video stream but only its placement and mapping.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Section 6.3.2, “MMvisual - Abstract” page 174

Section 6.3.4, “MMaudioControl - Abstract” page 180

Methods

upon Construct: list objectdescriptor

Constructs the MMvidDiscPlayer object from an object descriptor list. For the video player,
this requires device type information, serial line specification and configuration, and an
optional video disc specification.

on List: returns list

Returns an video disc object descriptor list, which may be used to re-create the object. The
returned list is formatted to be used as the list argument to the MMbroker to MakeElement or
to the class’s Construct method which has a list argument. The following is an example:

list objectList =
{‘MEvidDiscSeq,
 {‘arguments,{‘start, 12345},{‘end, 14500},{‘gainA,1.0},{‘gainB,0.0}},
 {‘MAvidDiscVol, {‘arguments,{‘volName,’Louvre_2}}}
};

on Load

If a disc is in the drive, it spins up the drive and positions the head to frame 1.

on Unload

Spins down the drive and, if supported, ejects the video disc.

on Mount

Unmounts any current disc, if it is not busy, loads the current disc, and updates the
videoDiscAgents volume list.

194 February 25, 1997

AthenaMuse 2.2 Documentation

on Unmount

Removes the disc from the videoDiscAgent’s volume table.

on PlaySeq: integer position1, integer position2, real rate

Plays the disc from position1 to position2, at a frame rate calculated based on the default rate
(30 PPS). Depending on the state of video, audio1 & audio2 each analog signal may be output.

on Pause: time duration

Stops the disc and ignores duration.

on Scan: integer speed

on Seek: integer offset, integer relativeTo

on Step: integer size

on Stop

Attributes

Activities

Note: These activities are normally only reported to the media element which may broadcast a
notify event.

Attribute Type Description Access

position any Set: integer, real or UTtime Get: integer SG
PPS integer current Positions per Second, native media frame SG
rate real SG
video boolean video output enabled CSG
audio1 boolean audio 1 output on/off CSG
audio2 boolean audio 2 output on/off CSG
index boolean frame index displayed on video CSG

Figure 6.45: MMvidDiscPlayer Attributes

Activity Keys Description

DataReady loaded

RateChange disc current speedchanged

Start special rate change

Stop special rate change

AudioAChanged channel’s state changed

AudioBChanged channel’s state changed

Figure 6.46: MMvidDiscPlayer Activities

AthenaMuse 2.2 Documentation

February 25, 1997 195

Example

None

6.3.12 MMhtml

An HTML media object.

Superclasses

Section 6.3.1, “MMbase - Abstract” page 173

Methods

upon Construct: list description

Default constructor. Description is of the form {‘MEhtml, {‘MAfile, <filename>}} or
{‘MEhtml, {‘URL, <url>}}, where <filename> is the name of the HTML file and
<url> is the URL address of the HTML document.

upon ConstructFromString: string text (only on UNIX)

Constructs an HTML object using the given text.

upon ConstructFromStream: handle hStream (only on UNIX)

Constructs an HTML object using the data extracted from hStream. As of the current release,
hStream must be a handle to an instance of an IOwebStream subclass.

on Load: return integer

Loads the HTML document into memory; returns zero on success.

on Unload: return boolean

Unloads the HTML document from memory; returns TRUE on success.

on AddSink: handle hSink

Adds a sink on which the HTML document should be displayed; hSink should be a handle to
an XFhtml or a subclass thereof.

on RemoveSink: handle hSink

Stops displaying the HTML document on a sink.

on Show

Displays the HTML document on whichever sinks have been added using AddSink.

on Hide

Stops displaying the HTML document on all sinks.

196 February 25, 1997

AthenaMuse 2.2 Documentation

on GoToAnchor: string anchor_name return boolean

Displays the part of the HTML document referenced by anchor_name at the top of the
HTML display surface; returns TRUE on success.

on GetHTMLSrc: return string

Returns the HTML document as an HTML formatted string. Please note that the HTML docu-
ment must be loaded before this method is called, otherwise an empty string is returned.

on GetURL: return string

Returns the URL address of this HTML document. If this HTML document contains a BASE
tag with an HREF attribute value, this method returns the URL contained in the BASE tag.

on GetTitle: return string

Returns the title for this HTML document; if there is no title, this method returns an empty
string.

Attributes

None

Activities

None

Example

1 uses “nro.adl”@”StdLib”;
2 anonymous: XFtop
3 {
4 handle hdoc = NULL;
5 XFhtml hyper
6 {
7 width = 700; height=650;
8 borderColor = “SlateGray”;
9 borderWidth = 2;
10 }
11 upon Construct
12 {
13 handle h = &hyper;
14 width = 700;
15 height = 650;
16 background = “gray”;
17 {‘Set_Current, “http:///test-map.html”} => self;
18 }
19 on Init
20 {
21 {‘Subscribe, new {‘Create, ‘AnchorPressed, self,
22 ‘AnchorSelected, {}} => nro} => hyper;
23 {‘Subscribe, new {‘Create, ‘ImageMapPressed, self,
24 ‘MapSelected, {}} => nro} => hyper;
25 }

AthenaMuse 2.2 Documentation

February 25, 1997 197

26 //--
27 //Given a new href, get the corresponding html text from
28 //the array, and display it in the XFhtml
29 //--
30 on Set_Current: string newCurrent
31 {
32 if (! (hdoc == NULL))
33 {
34 delete hdoc;
35 }
36 hdoc=new {‘Construct, {‘MEhtml, {‘URL, newCurrent}}} => MMhtml;
37 {‘AddSink, &hyper} => hdoc;
38 ‘Show => hdoc;
39 }
40 //---
41 //AnchorPressed activity handler
42 //--
43 on AnchorSelected: list clientData, list keys, list values
44 {
45 nro mynro;
46 string hRef = {‘Lookup, ‘href, keys, values} => mynro;
47 string refText = {‘Lookup, ‘text, keys, values} => mynro;
48 string anchor_name={‘Lookup,‘anchor_name,keys,values}=> mynro;
49
50 echo (“\nAnchorPressed Activity invoked!!!\n”);
51 echo (“anchor_name is “ + anchor_name + “\n”);
52 echo (“href is “ + hRef + “\n”);
53 echo (“reftext is “ + refText + “\n”);
54 if (anchor_name == “quit”)
55 { echo (“Good-Bye.\n”);
56 ‘Exit => theApp;
57 }
58 }
59 //--
60 //ImageMapPressed activity handler
61 //--
62 on MapSelected: list clientData, list keys, list values
63 {
64 nro mynro;
65 string image_src={‘Lookup, ‘image_src, keys, values }=> mynro;
66 string anchor_name={‘Lookup,‘anchor_name,keys,values}=> mynro;
67 string hRef = {‘Lookup, ‘href, keys, values} => mynro;
68 string refText = {‘Lookup, ‘text, keys, values} => mynro;
69 integer x = {‘Lookup, ‘x, keys, values } => mynro;
70 integer y = {‘Lookup, ‘y, keys, values } => mynro;
71 echo (“\nImageMapPressed activity invoked!!!\n”);
72 echo (“image_src is “ + image_src + “\n”);
73 echo (“x is “ + toString (x) + “\n”);
74 echo (“y is “ + toString (y) + “\n”);
75 echo (“anchor_name is “ + anchor_name + “\n”);
76 echo (“href is “ + hRef + “\n”);
77 echo (“reftext is “ + refText + “\n”);
78 }
79 } top

198 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 199

6.4 Input/Output

The purpose of the Input/Output (IO) wrapped classes are to allow different operations
that include file access, network access (ftp and http) and supports different notification of
IOstreams. Documentation for the following classes appear in this section:

• Section 6.4.1, “IOactNotify” page 201

• Section 6.4.2, “IOnwNotify” page 201

• Section 6.4.3, “IOstream - Abstract” page 202

• Section 6.4.4, “IOfile” page 205

• Section 6.4.5, “IOfileSpec” page 206

• Section 6.4.6, “IOpipe” page 207

• Section 6.4.7, “IOurl” page 208

• Section 6.4.8, “IOweb - Abstract” page 211

• Section 6.4.9, “IOftp” page 212

• Section 6.4.10, “IOhttp” page 215

• Section 6.4.11, “IOwebRequest - Abstract” page 218

• Section 6.4.12, “IOftpRequest” page 219

• Section 6.4.13, “IOhttpRequest” page 220

• Section 6.4.14, “IOwebEntity - Abstract” page 221

• Section 6.4.15, “IOftpEntity” page 222

• Section 6.4.16, “IOhttpEntity” page 222

• Section 6.4.17, “IOwebStream - Abstract” page 223

• Section 6.4.18, “IOftpStream” page 225

• Section 6.4.19, “IOhttpStream” page 227

• Section 6.4.20, “XNstream” page 229

The class inheritance tree diagram for the Input/Output (IO) wrapped classes of AM2
appears in Figure 6.47.

200 February 25, 1997

AthenaMuse 2.2 Documentation

Figure 6.47: Input/Output Wrapped Classes Inheritance Tree

AthenaMuse 2.2 Documentation

February 25, 1997 201

6.4.1 IOactNotify

This class allows notification on file stream events. It is used in combination with the IOfile
object. There must be one instance of this class for each activity.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

upon CreateFromStream: handle hStream

Creates an instance to monitor the specified stream (hStream should be a handle to an
instance of class IOfile).

on IsValidActivity: string actName return boolean

Returns TRUE if actName is a valid activity, FALSE otherwise.

Attributes

None

Activities

Example

None

6.4.2 IOnwNotify

This class allows notification on network stream events. It is used with a network stream object,
such as XNstream. There needs to be one instance of this class for each activity.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Activity Keys Description

ReadReady none data is ready for reading from port

WriteReady none OK to send data to port

ExceptionReady none exception encountered

Figure 6.48: IOactNotify Activities

202 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

upon CreateFromPort: integer port

Creates an instance to monitor the specified network port. This constructor is used when you
first waits for connection request from other AM2 application without blocking. This con-
structor is used in combination with ConnectReady activity. You cannot use this constructor
for ReadReady activity.

upon CreateFromStream: handle hStream

Creates an instance to monitor the specified stream (hStream should be a handle to an
instance of class XNstream). This constructor is used together with ReadReady activity.

on IsValidActivity: string actName return boolean

Returns TRUE if actName is a valid activity, FALSE otherwise.

on AcceptXN: return handle

Like Accept, but returns a handle to an instance of class XNstream instead.

Attributes

None

Activities

Example

None

6.4.3 IOstream - Abstract

This abstract class serves as a foundation class which contributes to the functionality of the sub-
classes IOfile and IOpipe.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Activity Keys Description

ConnectReady none connection requested

ReadReady none data is ready for reading from port (after connection
established)

WriteReady none OK to send data to port (after connection established)

ExceptionReady none exception encountered

Figure 6.49: IOnwNotify Activities

AthenaMuse 2.2 Documentation

February 25, 1997 203

Methods

on Good: return boolean

Returns true if the file is open and ready to be accessed. This returns false if the file was not
opened successfully, has been closed, or an error has occurred.

on Bad: return boolean

Returns true if the object does not contain a valid open file reference.

on Fail: return boolean

Returns true if the previous action was not successful. If this returns true then all operations
fail until Clear is called.

on Ready: return boolean

Returns true if an input or output operation (as appropriate for the type of file initially opened)
does not block.

on Eof: return boolean

Returns true if the file was opened in an input mode and the end of the file has been reached.

on SendBoolean: boolean val

on SendInteger: integer val

on SendReal: real val

on SendString: string val

on SendList: list val

on SendInterval: interval val

on SendTime: time val

on SendAny: any val

Writes specified value to the stream. These methods also accessable via ADL << operator.

on ReceiveBoolean: return boolean

on ReceiveInteger: return integer

on ReceiveReal: return real

on ReceiveString: return string

on ReceiveList: return list

on ReceiveInterval: return interval

on ReceiveTime: return time

on ReceiveAny: return any

Reads a value of specified type from file. These methods also accessable via ADL>>operator.

204 February 25, 1997

AthenaMuse 2.2 Documentation

on Oct /on Dec / on Hex

Sets output mode for numbers to the specified radix (octal, decimal, or hexadecimal, respec-
tively).

on Endl

Writes an end-of-line character to the file.

on Flush

Flushes the output stream. This has no effect on read only files.

on Text

Sets the file to text mode. In this mode, all data is converted to text before being written and
converted from text when read. If conversion cannot be performed (i.e., the following data in
the file is not of the correct format for the type being read), the operation fails.

on Binary

Sets the file to binary mode. In this mode, all data is output in binary form, and input is
assumed to be in binary form. This format is not recommended, as it is not portable. Sending
and receiving lists and intervals in binary mode fails, as does ReceiveAny.

on Tagged

Sets the file to tagged mode. In this mode, data is written as in binary mode, but preceded by a
single byte tag which determines the format of the data. Strings are proceeded by an additional
length tag. Input data is assumed to be in tagged format. Any discrepancy between expected
and received data is reported as an error.

on Word

On subsequent string input, whitespace is used as delimiters, and non-whitespace character
sequences returned.

on Line

String output is followed by a platform dependent end of line sequence, and string input
returns all characters until the next end of line, and discard the end of line sequence.

on NoDelim

String input returns all available text as a single string.

on WordDelim: string delim

Sets the whitespace characters for Word mode to the characters in delim.

on LineDelim: list delimseqs

Sets the end of line sequences for Line mode to the strings in the list given. The first string in
the list is used as the line terminator in Line mode. The list must contain only strings.

AthenaMuse 2.2 Documentation

February 25, 1997 205

Attributes

None

Activities

None

Example

None

6.4.4 IOfile

This class provides file input and output. It may be in either native or portable mode, written as
text, binary, or tagged data.

Superclasses

 Section 6.4.3, “IOstream - Abstract” page 202

Methods

upon OpenConstruct: string fName, string mode

Opens the file fName. All text written out is converted to a portable format (Unicode); binary
data is not changed. The mode argument must be one of 'ReadOnly, 'ReadWrite,
'WriteTrunc, and 'WriteAppend.

upon OpenNativeConstruct: string fName, string mode

Opens the file fName. All text written out is in the machine's native encoding format. The
mode argument must be one of 'ReadOnly, 'ReadWrite, 'WriteTrunc, and 'WriteAppend.

on Open: string fName, string mode

on OpenNative: string fName, string mode

Same as OpenConstruct and OpenNativeConstruct, except not constructors. To be used to
open a different file once the initial one has been closed.

on Close

Flushes and closes the file. Any further reads or writes fail until another file is opened with
Open or OpenNative.

Attributes

None

Activities

None

206 February 25, 1997

AthenaMuse 2.2 Documentation

Example

1 anonymous : XFtop
2 {
3 IOfile file_stream;
4 string line;
5 upon Construct
6 {
7 {‘OpenNative, “temp.txt”, ‘ReadOnly } => file_stream;
8 if (‘Good => file_stream)
9 {
10 ‘Line => file_stream;
11 while (! ‘Eof => file_stream)
12 {
13 line = ‘ReceiveString => file_stream;
14 echo(line + “\n\n”);
15 }
16 ‘Close => file_stream;
17 }
18 else {echo(“Invalid File \n”);
19 }
20 }
21 } top;

6.4.5 IOfileSpec

This is a wrapped class for file name specification. Each AM2-supported platform specifies files
in a different way: the syntax for using pathnames is different, or discouraged as on the Macintosh
platform. IOfileSpec isolates these problems in one class and, to some extent, provides automatic
conversion between different ways of specifying a file. There is no requirement that the specified
file actually exist. IOfileSpec also performs some operations on closed files, like DeleteFile.

Superclasses

None

Methods

upon CreateFileSpec: string fName

Constructor with a file name, or a full or partial path.

on DeleteFile: return integer

Deletes the specified file.

on FileExists: return boolean

Returns TRUE if a file of this name exists, FALSE otherwise.

on GetName: return string

Returns the file name without a path.

AthenaMuse 2.2 Documentation

February 25, 1997 207

on GetNameLength: return integer

Returns the length of the name that is being used in the path specification. If a path is used, the
length of the path is included in the returned result. The result is not only platform-dependent,
but also depends on how the file was specified to the constructor.

on GetPath: return string

Returns the file name together with the path with which the file was specified. On platforms
that do not use pathnames internally, a full path name is created for this function and returned.

Attributes

None

Activities

None

Example

1 anonymous : XFtop
2 {
3 handle file_object;
4 string filename;
5 string path;
6
7 upon Construct
8 {
9 filename = “temp.txt”;
10
11 file_object = new { ‘CreateFileSpec, filename } =>
12 IOfileSpec;
13
14 if (‘FileExists => file_object)
15 {path = ‘GetPath => file_object;
16 echo(“This is the path: “ + path + “ \n\n”); }
17
18 else
19 {echo(“Filename: “ + filename + “ does not exist.\n\n”); }
20 }
21 } top;

6.4.6 IOpipe

This class represents an input stream from and an output stream to an external process. The inter-
face is the same as that of the IOfile class (described on page 205) except that there are no public
constructors and the Close method is as noted here.

208 February 25, 1997

AthenaMuse 2.2 Documentation

Superclasses

Section 6.4.3, “IOstream - Abstract” page 202

Methods

On Close: return integer

Closes the pipe and waits for the external process to finish.

Note that this call can block indefinitely. Returns 0 if the process terminated normally, and a
machine dependent non-zero value otherwise.

Attributes

None

Activities

None

Example

None

6.4.7 IOurl

This class provides a Uniform Resource Locator (URL) object for parsing and constructing URL
strings formatted for the World-Wide Web.

Superclasses

None

Methods

upon Construct

 Default constructor.

on ExtractAccessMethod: string url return string

 Returns the access method in the url string. Example

 access methods are http, ftp, etc.

on ExtractAnchorName: string url return string

Returns the anchor name in the url string. According to the URL format, the anchor name is
marked by "#" in a URL string.

AthenaMuse 2.2 Documentation

February 25, 1997 209

on IsAnchorReference: string url return boolean

 Returns TRUE if this url string matches the format of a relative URL which references an
internal anchor within an HTML document. According to the current URL format, an anchor
reference URL begins with the "#" mark. This method does not verify the validity of the
anchor reference.

on MakeAbsolute: string partial_url, string base_url return string

 Expands partial_url into its full form in the context of base_url. Returns the expanded URL.
The internal anchor in partial_url is kept in the returned full form. However, the anchor in
base_url is not.

on Escape: string str return string

 Returns the escaped str from unacceptable characters using%.

on UnEscape: string str return string

 Returns the unescaped str which was previously escaped using%.

on ExtractHost: string url return string

 Returns the hostname extracted from the url.

on ExtractPort: string url return integer

 Returns the port number extracted from the URL. Returns -1 if no port was found. (Currently
this method returns -1 if a default port was found in the URL).

on ExtractPath: string url return string

 Returns the path string extracted from the url.

Attributes

None

Activities

None

Example

Given a Uniform Resource Locator, IOURL provides methods to extract different components in
the URL string.

1 string url1;
2 string url2;
3 string base_url;
4 string canon_url;
5 handle hURL;
6 string str;
7 integer port;
8
9 upon Construct

210 February 25, 1997

AthenaMuse 2.2 Documentation

10 {
11 //---------------------------------------
12 //Construct an IOurl
13 //---------------------------------------
14 hURL = new ‘Construct => IOurl;
15 //---------------------------------------
16 //child_url is a relative URL to be interpolated
17 //using the base_url
18 //---------------------------------------
19 url1 = “cgi-bin/search?name=Dole department=CE”;
20 url2 = “ sipb/sipb.html#Students “;
21 base_url=“http://www.mit.edu/mit-activities.html#Computers “;
22
23 url2 = {‘StripWhiteSpace, url2 } => hURL;
24 base_url = {‘StripWhiteSpace, base_url } => hURL;
25
26 echo (“\nPartial URL 1 is : “ + url1 + “\n”);
27 echo (“\nPartial URL 2 is : “ + url2 + “\n”);
28 echo (“Base URL is : “ + base_url + “\n”); echo (“\n”);
29 //---------------------------------------
30 //Given a parent url, expand the partial url to an
31 //absolute url using a base url.
32 //---------------------------------------
33 canon_url = {‘MakeAbsolute, url1, base_url} => hURL;
34 echo (“Expanded URL1 is : “ + canon_url + “\n”);
35
36 canon_url = {‘Escape, canon_url} => hURL;
37 echo (“Escaped URL1 is “ + canon_url + “\n”);
38
39 canon_url = {‘MakeAbsolute, url2, base_url} => hURL;
40 echo (“Expanded URL2 is : “ + canon_url + “\n”);
41
42 echo (“Expanded URL2 has the following Components: \n”);
43 echo (“--\n”);
44 //---------------------------------------
45 //Extract different components in the parent URL
46 //---------------------------------------
47
48 str = {‘ExtractAccessMethod, canon_url} => hURL;
49 echo (“ACCESS METHOD: “ + str + “\n”);
50 str = {‘ExtractHost, canon_url} => hURL;
51 echo (“HOSTNAME: “ + str + “\n”);
52 port = {‘ExtractPort, canon_url} => hURL;
53 echo (“PORT NUMBER: “); echo (port); echo (“\n”);
54 str = {‘ExtractPath, canon_url} => hURL;
55 echo (“PATH/OBJECT REFERENCE: “ + str + “\n”);
56 str = {‘ExtractAnchorName, canon_url} => hURL;
57 echo (“ANCHOR: “ + str + “\n\n”);
58 echo (“Good-Bye.\n”);
59 ‘Exit => theApp;
60 }

AthenaMuse 2.2 Documentation

February 25, 1997 211

6.4.8 IOweb - Abstract

This abstract class provides client-side World-Wide Web protocol support. It manages a network
connection to a Web server. Its subclasses include IOhttp and IOftp.

Superclasses

None

Methods

on Connect: string hostname, integer port

Establishes a connection with the server process on the specified host and port. You should
call this method only after you use the default Constructor. You should call SendRequest to
send a request.

on SendRequest: handle hRequest

 Sends hRequest to the server. You should use this method if you had previously used the
default Constructor and called Connect. "hRequest" must be a handle to an instance of an
 IOwebRequest subclass.

on Request

Sends a request to the server. It is assumed that the request info was previously specified in a
constructor such as ConstructFromURL or ConstructFromRequest.

on GetResponse: return integer

Waits for the server to return a response in blocking mode. It returns the server response status
code, or -1 on failure.

on GetEntity: return handle

 If the response contains a data entity, this method returns a handle to an instance of a
 subclass of IOwebEntity. Otherwise, it returns a NULL handle. It should be noted that
 IOwebEntity mainly allows you to access the entity headers (i.e., metainformation about a
 data entity). If an entity body is returned from the server, you should construct an instance of
 an IOwebstream subclass from the IOwebEntity in order to read the data body.

on Close

 Closes the connection with the server. Note: If you had constructed an IOwebStream to
extract data from this connection, you must not close this IOweb until you are done reading
from the data stream.

on GetURL: return string

 Returns the URL string associated with this Connection session. For HTTP connections, if
 AutoRedirected is TRUE, this method returns the new URL used for this connection object.

on Good: return boolean

 Returns TRUE if the connection is usable and that the last operation succeeded.

212 February 25, 1997

AthenaMuse 2.2 Documentation

on Fail: return boolean

 Returns TRUE if the last operation failed. The connection may still be ok.

on Bad: return boolean

 Returns TRUE if something is wrong and the connection is unusable.

on Disconnected: return boolean

 Returns TRUE if the connection is not active.

Attributes

None

Activities

None

Example

None

6.4.9 IOftp

This class provides client-side FTP protocol support. It manages a network connection to an FTP
server. It is a subclass of IOweb.

Superclasses

Section 6.4.8, “IOweb - Abstract” page 211

Methods

upon Construct

 Default constructor.You must call Connect, SendRequest, and GetResponse later.

upon ConstructFromURL: string url

Given a URL string, connects to the appropriate server. After this constructor, you can call
Request to send a request to the server. It is assumed that the URL string contains sufficient
information to send a request. The request defaults to GET. If you wish to specify methods
other than GET in your request, use ConstructFromRequest.

upon ConstructFromRequest: handle hRequest

Given an HTTP request, connects to the appropriate server. After this constructor, you can
call Request to send a request to the server. "hRequest" must be a handle to an instance of an
IOftpRequest or its subclass thereof.

on GetProtocolName: return string

 Returns the string "FTP".

AthenaMuse 2.2 Documentation

February 25, 1997 213

Attributes

None

Activities

None

Example

This program illustrates all FTP-related classes.

1 string url;
2 handle connection;
3 handle request;
4 handle entity;
5 handle stream;
6 string data;
7 string content_type;
8 integer content_len;
9 integer response_status;
10 string response_reason;
11 upon Construct
12 {
13 url = “ftp://ceci.mit.edu/pub/”;
14 //---
15 //Construct an FTP request from the URL
16 //---
17 request = new {‘Construct, url} => IOftpRequest;
18 //---
19 //Construct an IOftp and connects to the server
20 //---
21 connection = new {‘ConstructFromRequest, request} => IOftp;
22 {‘Check_Status, “connection”} => self;
23
24 {‘GetIt, request} => self;
25 ‘Close => connection;
26 echo (“Closed FTP connection and stream. Good-Bye.\n”);
27 ‘Exit => theApp;
28 }
29 on GetIt : handle aRequest
30 {
31 //---
32 //Send the request
33 //---
34 echo (“Connected!! Sending request...\n”);
35 { ‘SendRequest, aRequest} => connection;
36 {‘Check_Status, “sent request”} => self;
37 //---
38 //Get the response
39 //---
40 echo (“Requst sent. Waiting for Response...\n”);
41 response_status = ‘GetResponse => connection;
42 {‘Check_Status, “get response”} => self;

214 February 25, 1997

AthenaMuse 2.2 Documentation

43 //---
44 //Get the Data Entity
45 //---
46 entity = ‘GetEntity => connection;
47 if (entity == NULL)
48 { echo (“Sorry no data entity returned in the response.\n”);
49 ‘Exit => theApp;
50 }
51 content_type = ‘GetContentType => entity;
52 //---
53 //Get the Data Stream
54 //---
55 //Caution: connection object must be active for stream to work
56 stream = new {‘ConstructFromConnection, connection, entity } =>
57 IOftpStream;
58 if (‘Fail => stream)
59 {
60 echo (“Error opening FTP stream.\n”);
61 }
62 else
63 {
64 //--
65 //If we have plaintext, directory, or HTML, get the data.
66 //--
67 if (content_type == “text/plain” ||
68 content_type == “text/ftp-directory” ||
69 content_type == “text/html”)
70 { data = ““;
71 while (! ‘Eof => stream)
72 { data = data + ‘ReceiveStringLine => stream + “\n”; }
73 echo(“Received ftp Data is:\n”); echo(data); echo(“\n”);
74 }
75 else
76 { echo (“Ignore “ + content_type +
77 “ type in this test program.\n”);
78 }
79 }
80 ‘Close => stream;
81 delete stream;
82 } //end of method GetIt
83 //---
84 //Check_Status
85 //--
86 on Check_Status : string where
87 {
88 if (‘Fail => connection)
89 { echo (“Sorry “ + where + “ failed. Good-Bye.\n”);
90 ‘Close => connection;
91 delete connection;
92 ‘Exit => theApp;
93 }
94 }

AthenaMuse 2.2 Documentation

February 25, 1997 215

6.4.10 IOhttp

This class provides client-side HTTP/1.0 protocol support. It manages a network connection to an
HTTP server. It is a subclass of IOweb.

Superclasses

Section 6.4.8, “IOweb - Abstract” page 211

Methods

upon Construct

 Default constructor. You must call Connect, SendRequest, and GetResponse later.

upon ConstructFromURL: string url

 Given a URL string, connects to the appropriate server. After this constructor, you can call
 Request to send a request to the server. It is assumed that the URL string contains sufficient
 information to send a request. The request defaults to GET. If you wish to specify methods
 other than GET in your request, use ConstructFromRequest.

upon ConstructFromRequest: handle hRequest

 Given an HTTP request, connects to the appropriate server. After this constructor,

 you can call Request to send a request to the server. “hRequest” must be a handle

 to an instance of an IOhttpRequest or its subclass thereof.

on AutoRedirected: return boolean

 TRUE if we have been automatically redirected to another URL.

on ResponseReason: return string

 Returns the response reason returned from the server. The reason string usually explains
 why an HTTP request was not fulfilled by the server.

on GetProtocolName: return string

 Returns the string "HTTP".

Attributes

None

Activities

None

216 February 25, 1997

AthenaMuse 2.2 Documentation

Example

This program illustrates all HTTP-related classes.

1 string url;
2 handle connection;
3 handle request;
4 handle entity;
5 handle stream;
6 string data;
7 string content_type;
8 integer content_len;
9 integer response_status;
10 string response_reason;
11 //---
12 //Constructor
13 //---
14 upon Construct
15 {
16 //substitute this URL to your favorite http url for testing.
17 url = “http://abelard.mit.edu/”;
18
19 //---
20 //Construct an HTTP request from the URL
21 //---
22 request = new {‘Construct, url} => IOhttpRequest;
23
24 //The default method is GET, but you can set the
25 //method to something else, e.g. HEAD, by doing this:
26 //{‘SetMethod, “HEAD”} => request;
27
28 //Let’s see what our request line looks like...
29 echo (“Full HTTP Request line is \n”);
30 echo (‘RequestLine => request);
31
32 //---
33 //Construct an IOhttp and connects to the server
34 //---
35 connection = new {‘ConstructFromRequest, request} => IOhttp;
36
37 //Check if we have successfully connected
38 {‘Check_Status, “connection”} => self;
39
40 //---
41 //Send the request
42 //---
43 echo (“Connected!! Sending request...\n”);
44 ‘Request => connection;
45
46 //Check if request has been sent successfully
47 {‘Check_Status, “sent request”} => self;
48
49 //---
50 //Get the response

AthenaMuse 2.2 Documentation

February 25, 1997 217

51 //---
52 echo (“Requst sent. Waiting for Response...\n”);
53 response_status = ‘GetResponse => connection;
54
55 {‘Check_Status, “get response”} => self;
56
57 response_reason = ‘ResponseReason => connection;
58 echo (“Response Status Code: “ + response_status + “ \n”);
59 echo (“Response Reason: “ + response_reason + “ \n”);
60
61 //---
62 //Get the Data Entity
63 //---
64 //If we got a response, get the Data Entity
65 entity = ‘GetEntity => connection;
66
67 //it’s possible that the response does not contain any entity
68 if (entity == NULL)
69 { echo (“Sorry no data entity returned in the response. \n”);
70 ‘Exit => theApp;
71 }
72
73 //Get some metainformation on this data entity
74 content_type = ‘GetContentType => entity;
75 content_len = ‘GetContentLen => entity;
76
77 echo (“Content Type: “ + content_type + “ \n”);
78 echo (“Content Length: “); echo (content_len); echo (“\n”);
79
80 if (! (‘HasBody => entity))
81 { echo (“Sorry, no data body included in the response.\n”);
82 ‘Close => connection;
83 ‘Exit => theApp;
84 }
85
86 //---
87 //Get the Data Stream
88 //---
89 //Caution: connection object must be active for stream to work
90 stream = new {‘ConstructFromConnection, connection, entity }
91 => IOhttpStream;
92
93 if (‘Fail => stream)
94 {
95 echo (“Error opening HTTP stream.\n”);
96 }
97 else
98 {
99 //---
100 //If we have plaintext or HTML, get the data.
101 //---
102 if (content_type == “text/plain” ||
103 content_type == “text/html”)
104 { data = ““;

218 February 25, 1997

AthenaMuse 2.2 Documentation

105 while (! ‘Eof => stream)
106 {
107 data = data + ‘ReceiveStringLine => stream + “\n”;
108
109 if (‘Eof => stream)
110 { echo (“end of stream!\n”); break; }
111 }
112
113 echo(“Received HTTP Data is:\n”); echo(data); echo(“\n”);
114 }
115 else //ignore any other types of data in this test program
116 {
117 echo (“Ignore data of “ + content_type +
118 “ type in this test program.\n”);
119 }
120 }
121 ‘Close => stream;
122 ‘Close => connection;
123
124 echo (“Closed HTTP connection and stream. Good-Bye.\n”);
125 ‘Exit => theApp;
126 }
127 //---
128 //Check_Status
129 //---
130 on Check_Status : string where
131 {
132 if (‘Fail => connection)
133 { echo (“Sorry “ + where + “ failed. Good-Bye.\n”);
134 ‘Close => connection;
135 ‘Exit => theApp;
136 }
137 }

6.4.11 IOwebRequest - Abstract

This abstract class represents a client-side request to a World-Wide Web server. Its subclasses
include IOhttpRequest and IOftpRequest.

Superclasses

None

Methods

on SetMethod: string method

 Use this method to specify the request operation. For HTTP request, the methods

 may be GET, POST, or HEAD. For FTP, the only supported operation in this release

 is GET, which is the default. No validity checking of the method is performed.

 If not set, the default method is GET.

AthenaMuse 2.2 Documentation

February 25, 1997 219

on GetMethod: return string

 Returns the name of the request method contained in this request structure.

on SetEntity: handle hEntity

 Use this method to specify the data Entity you wish to send to the server as

 part of the request. This is necessary for HTTP method such as POST -- mostly

 used for sending HTML fill-out form content to the server. "hEntity" should

 be a handle to an instance of an IOwebEntity subclass.

on GetURL: return string

 Returns the URL string used to construct this request object.

on GetHost: return string

 Returns the hostname as specified in this request structure. The hostname is

 usually extracted from the URL string from which this request was constructed.

on GetPort: return integer

 Returns the port number specified in this request structure. The port number is

 usually extracted from the URL string of this request. If no port number

 is specified in the URL, a default port number (80 for HTTP) is used.

Attributes

None

Activities

None

Example

None

6.4.12 IOftpRequest

Represents an FTP request structure to an FTP server. This class is a subclass of IOwebRequest.

Superclasses

Section 6.4.11, “IOwebRequest - Abstract” page 218

220 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

upon Construct: string url

 Default constructor which constructs an FTP request using the specified URL.

Attributes

None

Activities

None

Example

For a sample program using this IOftpRequest see “IOftp” on page 212.

6.4.13 IOhttpRequest

Represents an HTTP/1.0 request structure. This class allows you to construct an HTTP request
based on a URL string. In particular, it allows you to specify various HTTP request header fields.
A request header is not sent if its value is not set. This class is a subclass of IOwebRequest.

Note: If you want to send an HTTP POST request, you should construct an instance of this class,
and set the method to POST. You should also construct an IOhttpEntity which contains the POST
data, and then use SetEntity method in this class to enclose the Entity as part of the POST request.

Superclasses

Section 6.4.11, “IOwebRequest - Abstract” page 218

Methods

upon Construct: string url

 Default constructor which constructs an HTTP request using the specified URL.

on SetUserAgent: string agentName

 Use this method to specify the user agent originating the request. The default value for this
 field is "Experimental-HTTP-Client". Please refer to HTTP/1.0 specification for detail.

on GetUserAgent: return string

 Returns the value of the User Agent header field.

on SetFrom: string fromAddress

 Sets the From header field which contains an Internet email address of the user who controls
 the requesting user agent. Please refer to HTTP/1.0 specification for detail.

AthenaMuse 2.2 Documentation

February 25, 1997 221

on GetFrom: return string

 Returns the value of the From field.

on RequestLine: return string

 Returns the full request line in HTTP/1.0 format. This method is mainly for debugging
 purposes and is subject to changes by final release.

on RequestHeaders: return string

 Returns the formatted request header fields (not including the Entity headers in HTTP/1.0
 format. This method is mainly for debugging purposes and is subject to changes.

Attributes

None

Activities

None

Example

For an example using IOhttpRequest see “IOhttp” on page 215.

6.4.14 IOwebEntity - Abstract

Represents a World-Wide Web data entity. An IOwebEntity can be enclosed within a Web
request as part of the request data. It can also be part of a Web response data returned from the
server. Its subclasses include IOhttpEntity and IOftpEntity.

Superclasses

None

Methods

on SetContentType: string type

 Use this method to specify the content type of this entity. This method is only meaningful if
this entity is to be included as part of a Web request. The content type string should follow the
MIME content type format, e.g., text/plaintext, text/html, and image/gif, and so forth. Note:
For POST HTML form data, the content type is usually set to application/x-www-form-urlen-
coded.

on GetContentType: return string

 Returns the content type of this entity.

Attributes

None

222 February 25, 1997

AthenaMuse 2.2 Documentation

Activities

None

Example

None

6.4.15 IOftpEntity

Represents an FTP data entity. Currently, an IOftpEntity can only be part of the response data
from the server. It cannot be part of a request structure, since we do not yet support "put" for FTP.
This class is a subclass of IOwebEntity.

Superclasses

Section 6.4.14, “IOwebEntity - Abstract” page 221

Methods

upon Construct

 Default constructor.

Attributes

None

Activities

None

Example

For a sample program using the IOftpEntity class, see “IOftp” on page 212.

6.4.16 IOhttpEntity

Represents an HTTP data entity. An entity consists of entity headers (metainformation) and entity
body (content). An HTTP entity may be enclosed within an HTTP request or an HTTP response
message. If the entity is to be part of an HTTP request, you can set both the entity headers and
data content. If the entity is part of an HTTP response from a network connection, this class
allows you to get the entity headers, but not the entity body. You must construct an IOhttpStream
from this entity in order to retrieve data from the network connection. This class is a subclass of
IOwebEntity.

Superclasses

Section 6.4.14, “IOwebEntity - Abstract” page 221

AthenaMuse 2.2 Documentation

February 25, 1997 223

Methods

upon Construct

 Default constructor.

on GetContentLen: return integer

 Returns the content length of this Entity.

on SetContentString: string content

 Use this method to specify the data content of this Entity. This method is only meaningful if
 this Entity is to be included as part of an HTTP request. Use IOurl Escape method to encode
 your data. This method is considered experimental, and is subject to changes by the final
 release.

on HasBody: return boolean

 Returns TRUE if this Entity has an Entity Body; otherwise, FALSE. (Use this method to
check whether you should construct an IOhttpStream to access the Entity Body.)

Attributes

None

Activities

None

Example

For a sample program using IOhttpEntity, see “IOhttp” on page 215 .

6.4.17 IOwebStream - Abstract

This abstract class represents an input data stream from a World-Wide Web connection. Its sub-
classes include IOhttpStream and IOftpStream. Normally a Web stream contains media-specific
data, and should be given to an appropriate media element to load the data. However, it is also
possible to use the various receive methods below to get the data directly at the ADL level. (Note:
these receive methods are experimental and are subject to changes.)

Superclasses

None

224 February 25, 1997

AthenaMuse 2.2 Documentation

Methods

on OpenFromURL: string url

Given a URL, establishes a connection, sends a request, and gets a response from the server.
The default request to the server is to "get" or "retrieve" the document referenced by the URL.

on OpenFromRequest: handle hRequest

The action of this method is equivalent to OpenFromURL, except that you can specify a more
complicated request structure via "hRequest". For example, in the case of an HTTP request, it
is possible to set the HTTP method to POST or HEAD in hRequest. "hRequest" must be a
handle to an instance of an IOwebRequest subclass.

on OpenFromConnection: handle hConnection, handle hEntity

This method is used when you had previously established a connection and obtained a valid
response from a server using an instance of IOweb subclass. "hConnection" must be a handle
to an instance of an IOweb subclass. "hEntity" must be a handle to an IOwebEntity subclass.

on GetURL: return string

Returns the URL string associated with this data stream. If URL redirection was performed
(HTTP only), this method returns the final URL used to retrieve the data at hand.

on Close

 Closes this http data stream.

on Good: return boolean

 Returns TRUE if the stream is usable and that the last operation on the stream succeeded.

on Fail: return boolean

 Returns TRUE if the last operation on the stream failed. The stream may still be usable.

on Bad: return boolean

 Returns TRUE if the stream is unusable.

on Eof: return boolean

 Returns TRUE if end-of-file flag is set on the stream.

on ReceiveBoolean: return boolean

on ReceiveInteger: return integer

on ReceiveReal: return real

on ReceiveStringLine: return string

on ReceiveStringWord: return string

on ReceiveList: return list

on ReceiveAny: return any

AthenaMuse 2.2 Documentation

February 25, 1997 225

Attributes

None

Activities

None

Example

None

6.4.18 IOftpStream

This class represents an input data stream from an FTP connection. It is a subclass of
IOwebStream.

Superclasses

Section 6.4.17, “IOwebStream - Abstract” page 223

Methods

upon Construct

 Default constructor. Constructs an IOftpStream without opening the stream. You must call
 OpenFromURL, OpenFromRequest, or OpenFromEntity to open the stream.

upon ConstructFromURL: string url

 Given a URL string, constructs and opens an FTP data stream. This constructor is equivalent
 to calling Construct and then OpenFromURL.

upon ConstructFromRequest: handle hRequest

 Given a handle to an FTP request, constructs and open an FTP data stream. This constructor
 is equivalent to calling Construct and then OpenFromRequest.hRequest must be a handle to
 IOftpRequest or its subclass thereof.

upon ConstructFromConnection: handle hConnection, handle hEntity

 Given a handle to an FTP connection and an FTP Entity, constructs an FTP data stream to
access the body of the Entity from the connection. This constructor is equivalent to calling
Construct and then OpenFromConnection. "hConnection" must be a handle to an instance of
an IOftp or its subclass thereof. "hEntity" must be a handle to an instance of an IOftpEntity or
its subclass thereof.

 on GetContentType: return string

 Returns the media type of the FTP data Entity contained in this stream. If the data at hand
contains directory information, the content type is text/ftp-directory. This method is experi-
mental and is subject to changes.

226 February 25, 1997

AthenaMuse 2.2 Documentation

on ReceiveDirectory: return list

 This method reads and parses the directory information contained in the FTP stream. I returns
 the parsed directory listing as a list. The returned list consists of sublists, each of which repre-
sents an entry/item in directory listing. Each sublist contains the following components:

 (1) a string to indicate the item type, which can be "dir", "link", or "file";

 (2) a string to indicate item or file name; and (3) an integer to indicate item or file size.

Attributes

None

Activities

None

Example

1 string url;
2 handle stream;
3 string data;
4 string content_type;
5 integer content_len;
6
7 upon Construct
8 {
9 //substitute this url to your favorite ftp url for testing
10 url = “ftp://ceci.mit.edu/pub/”;
11 //--
12 //Construct an FTP stream without opening it
13 //--
14 stream = new ‘Construct => IOftpStream;
15
16 //--
17 //Open the stream by giving it a URL. OpenFromURL will connect
18 //to the server, sends a request to, and gets a response back.
19 //--
20 {‘OpenFromURL, url} => stream;
21
22 //--
23 //Check the status.
24 //--
25 if (‘Fail => stream)
26 {
27 echo (“Failed in opening FTP stream.\n”);
28 ‘Exit => theApp;
29 }
30 content_type = ‘GetContentType => stream;
31
32 //--
33 //if we have a plaintext or html, use
34 //ReceiveStringLine to get the data...

AthenaMuse 2.2 Documentation

February 25, 1997 227

35 //--
36 if (content_type == “text/plain” ||
37 content_type == “text/ftp-directory” ||
38 content_type == “text/html”)
39 { data = ““;
40 while (! ‘Eof => stream)
41 { data = data + ‘ReceiveStringLine => stream + “\n”; }
42 echo (“Received FTP Data is:\n”); echo (data); echo (“ \n”);
43 }
44 ‘Close => stream;
45 echo (“Closed FTP stream. Good-Bye.\n”);
46 ‘Exit => theApp;
47 }

6.4.19 IOhttpStream

This class represents an input data stream from an HTTP connection. It is a subclass of
IOwebStream.

Superclasses

Section 6.4.17, “IOwebStream - Abstract” page 223

Methods

upon Construct

 Default constructor. Constructs an IOhttpStream without opening the stream. You must call
 OpenFromURL, OpenFromRequest, or OpenFromEntity to open the stream.

 upon ConstructFromURL: string url

 Given a URL string, constructs and opens an HTTP data stream. This constructor is
 equivalent to calling Construct and then OpenFromURL.

upon ConstructFromRequest: handle hRequest

 Given a handle to an HTTP request, constructs and open an HTTP data stream. This construc-
tor is equivalent to calling Construct and then OpenFromRequest. hRequest must be a handle
to IOhttpRequest or its subclass thereof.

upon ConstructFromConnection: handle hConnection, handle hEntity

Given a handle to an HTTP connection and an HTTP Entity, constructs an HTTP data stream
to access the body of the Entity from the connection. This constructor is equivalent to calling
Construct and then OpenFromConnection. "hConnection" must be a handle to an instance of
an IOhttp or its subclass thereof. "hEntity" must be a handle to an instance of an IOhttpEntity
or its subclass thereof.

on GetContentType: return string

 Returns the media type of the HTTP data Entity contained in this stream.

228 February 25, 1997

AthenaMuse 2.2 Documentation

on GetContentLen: return integer

 Returns the expected size of the Entity (or data) body contained in this stream. The return
 result of this method should be used with caution, as not all HTTP data streams have the
 content length field set. A return result of zero should be interpreted as either that the stream
 is unavailable or that the content length field is not specified.

Attributes

None

Activities

None

Example

1 string url;
2 handle stream;
3 string data;
4 string content_type;
5 integer content_len;
6
7 upon Construct
8 {
9 //substitute this url to your favorite http url for testing
10 url = “http://abelard.mit.edu/”;
11
12 //---
13 //Construct an HTTP stream without opening it
14 //---
15 stream = new ‘Construct => IOhttpStream;
16
17 //---
18 //Open the stream by giving it a URL. OpenFromURL will connect
19 //to the server, sends a request to, and gets a response from it.
20 //---
21 {‘OpenFromURL, url} => stream;
22
23 //---
24 //Check the status. For HTTP streams, it is a failure if there is
25 //no data entity body in the response from the server.
26 //---
27 if (‘Fail => stream)
28 {
29 echo (“Failed in opening HTTP stream.\n”);
30 ‘Exit => theApp;
31 }
32 //--
33 //Check the content type and content length
34 //of the data entity in this stream
35 //--
36 content_len = ‘GetContentLen => stream;

AthenaMuse 2.2 Documentation

February 25, 1997 229

37 content_type = ‘GetContentType => stream;
38
39 echo (“Content-Type : “ + content_type + “\n”);
40 echo (“Content-Len : “); echo (content_len); echo (“ \n”);
41 //--
42 //if we have a plaintext or html, use
43 //ReceiveStringLine to get the data...
44 //--
45 if (content_type == “text/plain” ||
46 content_type == “text/html”)
47 { data = ““;
48 while (! ‘Eof => stream)
49 {
50 data = data + ‘ReceiveStringLine => stream + “\n”;
51 if (‘Eof => stream)
52 { echo (“end of stream!\n”); }
53 }
54 echo(“Received HTTP Data is:\n”); echo(data); echo(“\n”);
55 }
56 ‘Close => stream;
57 echo (“Closed HTTP stream. Good-Bye.\n”);
58 ‘Exit => theApp;

6.4.20 XNstream

This class is a network input/output stream object with XDR data representation.

Superclasses

None

Methods

upon Construct

Default constructor.

upon ListenConstruct: integer port

Waits for connection on specified port.

upon ConnectConstruct: string host, integer port

Attempts to make a connection to the specified port on the specified host.

on Listen: integer port

on Connect: integer port, string host

Same as ListenConstruct and ConnectConstruct, but not constructors.

on SendBoolean: boolean val

on SendInteger: integer val

on SendReal: real val

230 February 25, 1997

AthenaMuse 2.2 Documentation

on SendString: string val

on SendList: list val

on SendAny: any val

Writes the specified value to the network connection.

on ReceiveBoolean: return boolean

on ReceiveInteger: return integer

on ReceiveReal: return real

on ReceiveString: return string

on ReceiveList: return list

on ReceiveAny: return any

Reads a value of the specified type from the network connection.

on Close

Closes connection.

on Good

Returns a status of stream. If TRUE, stream is healthy and connection is alive.

Attributes

None

Activities

None

Example 1

This program demonstrates receiving a list from a network stream. The applications ends when
the list has been received.

1 uses “nro.adl”@”StdLib”;
2 class Message : ActivityManager
3 {
4 integer portNumber;
5 vanillaNro {‘Create, ‘ConnectReady, self, ‘GetMessage, FALSE} =>
6 connectNro;
7 //* used to notify object when message arrives
8 handle hNetNotify;
9 handle hMessageStream; /* used to send and receive messages */
10 list ActivityInfo = {{‘ReceiveMessage, {“message”}}};
11
12 upon Construct: integer port
13 {
14 portNumber = port;

AthenaMuse 2.2 Documentation

February 25, 1997 231

15 hNetNotify = new {‘CreateFromPort, portNumber} => IOnwNotify;
16 {‘Subscribe, &connectNro} => hNetNotify;
17 }
18
19 on GetMessage: boolean cd
20 {
21 any message;
22 hMessageStream = ‘AcceptXN => hNetNotify;
23 {‘Unsubscribe, &connectNro} => hNetNotify;
24 delete hNetNotify;
25 message = ‘ReceiveAny => hMessageStream;
26 ‘Close => hMessageStream;
27 delete hMessageStream;
28 hNetNotify = new {‘CreateFromPort, portNumber} => IOnwNotify;
29 {‘Subscribe, &connectNro} => hNetNotify;
30 {‘TriggerNotification, ‘ReceiveMessage, {message}}=> self;
31 }
32
33 on Destroy
34 {
35 {‘Unsubscribe, &connectNro} => hNetNotify;
36 delete hNetNotify;
37 }
38 };
39
40 upon Construct
41 {
42 integer portnum = 8900;
43 Message {‘Construct, portnum} => myMessage;
44 nro{‘Create, ‘ReceiveMessage, self, ‘GetMessage, TRUE}=> messNro;
45 {‘Subscribe, &messNro} => myMessage;
46 {‘GetMessage, TRUE} => myMessage;
47 }
48 on GetMessage: any cd, list names, list vals
49 {
50 echo (vals);}

Example 2

This program demonstrates sending a list over a network stream.

1 uses “nro.adl”@”StdLib”;
2
3 class Message : ActivityManager
4 {
5 integer portNumber;
6 vanillaNro {‘Create, ‘ConnectReady, self, ‘GetMessage, FALSE} =>
7 connectNro;
8 // used to notify object when message arrives
9 handle hNetNotify;
10 // used to send and receive messages
11 handle hMessageStream;
12 list ActivityInfo = {{‘ReceiveMessage, {“message”}}};
13

232 February 25, 1997

AthenaMuse 2.2 Documentation

14 upon Construct: integer port
15 {
16 portNumber = port;
17 hNetNotify = new {‘CreateFromPort, portNumber} => IOnwNotify;
18 {‘Subscribe, &connectNro} => hNetNotify;
19 }
20
21 on SendMessage: any message, string host, integer port
22 {
23 {‘Unsubscribe, &connectNro} => hNetNotify;
24 delete hNetNotify;
25 hMessageStream = new {‘ConnectConstruct, host, port}
26 => XNstream;
27 {‘SendAny, message} => hMessageStream;
28 delete hMessageStream;
29 hNetNotify = new {‘CreateFromPort, portNumber} => IOnwNotify;
30 {‘Subscribe, &connectNro} => hNetNotify;
31 }
32
33 on Destroy
34 {
35 {‘Unsubscribe, &connectNro} => hNetNotify;
36 delete hNetNotify;
37 }
38
39 };
40
41 upon Construct
42 {
43 /* Define the port number & host where receiving end is running */
44 integer portnum = 8900;
45 string tohost = “anyhost.your.domain”;
46 string msgstring = “Hello from a remote AthenaMuse”;
47
48 Message {‘Construct, portnum} => myMessage;
49 nro{‘Create, ‘ReceiveMessage, self, ‘GetFromPeer, FALSE}
50 =>messNro;
51 {‘Subscribe, &messNro} => myMessage;
52 {‘SendMessage, msgstring, tohost, portnum } => myMessage;}

AthenaMuse 2.2 Documentation

February 25, 1997 233

6.5 External Processes

The External Processes (XT) wrapped classes are designed to allow the user of ADL to have
access to other computational processes outside of AM2. This function can even allow AM2 to
spawn other applications and send them input and output. Documentation for the following
classes appear in this section:

• Section 6.5.1, “XTcommand” page 233

• Section 6.5.2, “XTprocFilter (only on UNIX)” page 235

• Section 6.5.3, “XTprocSink (only on UNIX)” page 235

• Section 6.5.4, “XTprocSource (only on UNIX)” page 236

Note that the class inheritance tree diagram for the External Commands (XT) wrapped classes is
flat, meaning that that these classes do not have superclasses, thus no inheritance diagram is pro-
vided here.

6.5.1 XTcommand

This class implements the execution of an external command in a fashion similar to the UNIX
“system” routine.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

upon Create: list cmd

Executes the command specified in the argument cmd. This constructor blocks on the execu-
tion of the external command. The list cmd must be a list of strings with at least one element.
The first string on the list represents the command name, and the following elements, if
present, represent command line arguments. The interpretation of the command list is plat-
form dependent and is normally left to the standard platform execution environment. Under
UNIX, this would be the user’s shell.

upon CreateNoBlock: list cmd

Executes the command specified in the argument cmd asynchronously. Under UNIX, this cor-
responds to executing the command “in the background”. This constructor does not block on
the execution of the external command. The argument must be formatted as in the Create
method.

234 February 25, 1997

AthenaMuse 2.2 Documentation

on Abort

Kills an external command initiated with the ‘CreateNoBlock constructor. This method exe-
cutes in a platform dependent manner, and it does not guarantee smooth termination or
cleanup of the external command. The spawned external command should normally be termi-
nated through their own interface.

on Done: return boolean

Returns TRUE if the external command has terminated and FALSE otherwise.

on GetStatus: return integer

The returned value is a status variable indicating the success or failure of the external com-
mand. The value 0 indicates successful execution on all platforms; non-zero values are plat-
form dependent error codes. If an UNSET value is returned, then the external command has
not terminated, i.e., in the cases in which the ‘Done message would return FALSE.

Attributes

None

Activities

None

Example

1 /* Demonstrates the use of XTcommand to run external programs */
2 anonymous: XFtop
3 {
4 XFbutton but1
5 { x=20; y=100; width=400; height=40;
6 label="Create Non Blocking External Process";
7 };
8 XFbutton but2
9 { x=20; y=200; width=400; height=40;
10 label="Create Blocking External Process";
11 };
12 upon Construct
13 { width=440; height=350;
14 but1.Pressed = {'but1Pressed, self};
15 but2.Pressed = {'but2Pressed, self};
16 }
17 on but1Pressed
18 { /*This creates a Telnet Session on Windows*/
19 new {'CreateNoBlock, {"telnet"}} => XTcommand;
20 }
21 on but2Pressed
22 { /*This creates a Telnet Session on Windows*/
23 new {'Create, {"telnet"}} => XTcommand;
24 }
25 }top;

AthenaMuse 2.2 Documentation

February 25, 1997 235

6.5.2 XTprocFilter (only on UNIX)

This class implements the execution of an external command that functions as a co-process to the
ADL script creating the XTprocFilter. That is, it both reads a stream generated by the calling ADL
script and generates an output stream read by the script.

Superclasses

None

Methods

upon Create: list cmd

Executes the command specified by cmd in such a way that the input to and output from the
command is tied to a read-write IOpipe whose handle is stored in the member hPipe.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by closing the IOpipe pointed to by
hPipe.

on GetStatus: return integer

The returned value is a status variable indicating the success or failure of the external com-
mand. The value 0 indicates successful execution on all platforms; positive non-zero values
are platform dependent error codes. ‘GetStatus returns UNSET if one of the IOpipes to or
from the external process is still open. This return value except in the UNSET case is identical
to the value returned by ‘Close => hPipe once the pipe has closed.

Attributes

None

Activities

Example

None

6.5.3 XTprocSink (only on UNIX)

This class implements the execution of an external command that reads a stream generated by the
calling ADL script. It thus resembles the UNIX popen routine in “w”rite mode.

Activity Keys Description

hPipe handle handle to the IOpipe object opened when the XTprocFilter was cre-
ated

Figure 6.50: XTprocFilter Activities

236 February 25, 1997

AthenaMuse 2.2 Documentation

Superclasses

None

Methods

upon Create: list cmd

Executes the command specified by cmd in such a way that the input to the command is tied
to a writable IOpipe whose handle is stored in the member hTo.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by closing the IOpipe pointed to by hTo.

on GetStatus: return integer

The returned value is a status variable indicating the success or failure of the external com-
mand. The value 0 indicates successful execution on all platforms; non-zero values are plat-
form dependent error codes. ‘GetStatus returns UNSET if the IOpipe to the external process is
still open. This return value except in the UNSET case is identical to that returned by ‘Close
=> hTo if the pipe has already been closed.

Attributes

None

Activities

Example

1 // Decode a rot-13 message using tr, a standard UNIX utility
2 XTprocSink { ‘Create, { “tr”, “a-zA-Z”, “n-za-mN-ZA-M” } }
3 => myOutFilter;
4 integer status;
5 myOutFilter.hTo << “Zrffntr va n obggyr” << Endl;
6 status = ‘Close => myOutFilter.hTo;

6.5.4 XTprocSource (only on UNIX)

This class implements the execution of an external command that generates an output stream read
by the calling ADL script. It thus resembles the UNIX popen routine in “r”ead mode.

Superclasses

None

Activity Keys Description

hTo handle handle to the IOpipe object opened when the XTprocSink was cre-
ated

Figure 6.51: XTprocSink Attributes

AthenaMuse 2.2 Documentation

February 25, 1997 237

Methods

upon Create: list cmd

Executes the command specified by cmd in such a way that the output from the command is
tied to a readable IOpipe whose handle is stored in the member hFrom.

on Abort

Kills the external command. This should not be the standard method of terminating the exter-
nal process. Normal termination should be triggered by the external process itself and should
be sensed by detecting an EOF on the pipe associated with hFrom.

on GetStatus: return integer

The returned value is a status variable indicating the success or failure of the external com-
mand. The value 0 indicates successful execution on all platforms; non-zero values are plat-
form dependent error codes. ‘GetStatus returns UNSET if the IOpipe from the external
process is still open. This return value except in the UNSET case is identical to the value
returned by ‘Close => hFrom once the pipe has closed.

Attributes

None

Activities

Example

None

Activity Keys Description

hFrom handle handle to the IOpipe object opened when the XTprocSource was cre-
ated

Figure 6.52: XTprocSource Attributes

238 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 239

6.6 Database

The Database (DB) wrapped classes provide multi-database support for object-oriented multime-
dia. The addition of database functionality allows the application author to decouple the applica-
tion code from the application data, allowing the easy update of data and reuse of code. It also
allows the application to provide easy access to many existing data repositories. Therefore, it is
very important that an application provide easy access to many existing data repositories. It is also
important that an application be able to interact, perhaps simultaneously, with a wide variety of
existing database systems. The advantages of providing a generic database interface for use by the
application author are twofold. The same application code can be used to access multiple database
systems and there is no need for the author to spend time learning several different database
access interfaces. AM2 DBclasses support the following database packages:

• UNIX - Oracle, OS2, PostGress, UniSQL and MSQL which is freeware and makes it possible
to incorporate small databases without UniSQL.

• NT - Oracle, Dbase, FoxPro, MS Access and any other relational database with ODBC sup-
port. ODBC drivers are required for running AM2 on NT.

Documentation for the following classes appear in this section:

• Section 6.6.1, “DBdatabase” page 240

• Section 6.6.2, “DBclass” page 243

• Section 6.6.3, “DBobject” page 244

• Section 6.6.4, “DBset” page 245

• Section 6.6.5, “DBcursor” page 246

• Section 6.6.6, “DBquery” page 247

• Section 6.6.7, “DBbinary” page 249

• Section 6.6.8, “DBmedia” page 250

• Section 6.6.9, “DBimage” page 251

• Section 6.6.10, “DBdate” page 251

• Section 6.6.11, “DBtime” page 252

• Section 6.6.12, “DBtimestamp” page 253

• Section 6.6.13, “DBmonetary” page 254

Note that the class inheritance tree diagram for the Database (DB) wrapped classes is relatively
flat, meaning that these classes share very few inheritance relationships, thus no inheritance dia-
gram is provided here.

240 February 25, 1997

AthenaMuse 2.2 Documentation

6.6.1 DBdatabase

This is the principle class and represents a connection to a component database. Methods are
available on the class to perform schema identification and modification, to control query execu-
tion, transaction management and to store application objects in the component database.

Superclasses

Section 6.1.2, “Activity Manager - Abstract” page 116

Section 6.1.3, “Attribute Manager - Abstract” page 118

Methods

on AddAttribute: string className, string attrName, string attr return boolean

Adds an attribute attrName of type attrType to the class className. In a relational database
this is equivalent to adding a field to a table. Returns TRUE if the attribute is added to the
class, otherwise FALSE.

on Commit

Sends a commit transaction message to the database which saves all changes made to the data-
base since the last commit and automatically begins a new transaction. Commit must be called
before a DBdatabase instance is destroyed if changes are to be saved. Only applies to those
database systems that support transactions.

on CreateAppObj: string className, list arguments return handle

This method returns a handle to an application object of type className constructed on the
heap. The method is used to create instances of classes retrieved from the database. For exam-
ple, it can retrieve a row from a database table or the results from a query. The number and
type of the values in arguments determines which constructors are used. If there are no argu-
ments, the default constructor is used.

on CreateClass: string className, list attributes return boolean

Causes the creation of a new class called className in the schema database. The list attributes
contains a list of lists. Each of these sublists is made up of two strings. The first item specifies
the attribute name and the second item specifies the attribute type. Returns TRUE if the class
is created, FALSE if creation fails.

on CreateObj: string className, list attributes, list data return handle

Creates an instance of the class className in the database and returns a handle to the newly
created database object. The returned handle will be a handle to an object of class DBobject.
The list attributes contains a list of attribute names for which initial data values will be speci-
fied and the data contains the corresponding data values in the order specified in the list of
attribute names.

AthenaMuse 2.2 Documentation

February 25, 1997 241

on CreateSubClass: string className, list superClasses, list attributes return boolean

Similar to CreateClass, but allows the specification of a list of superclasses, which contains
the list of class names from which the newly created class should inherit. The list may contain
no class names. The list of attributes contains additional attribute names for which data values
will be entered. Returns true upon successful creation of the subclass classname, and false
otherwise.

on DeleteClass: string className return boolean

Removes the definition of the class named className from the database schema. Returns
TRUE if successful, otherwise FALSE. Also necessarily removes all objects of this class.

on Execute: handle hQuery return handle

Executes the query specified by hQuery, a handle to an object of type DBquery. The query
specification is pre-processed appropriately for the component database type before the query
is executed. A handle to a DBcursor object is retuned from which the results may be retrieved.

on ExecuteStr: string query return handle

The string query is send directly to the database for execution. No pre-processing of the query
is carried out. A handle to a DBcursor object is returned.

on GetAllClasses: return list

returns a list of the names of all the classes/tables in the component database

on GetBaseClasses: return list

Returns a list of the names of all the base classes (classes that have no superclasses) that are
defined in the database schema.

on GetPersistentRoot: string rootName return handle

Returns a handle to the database object pointed to by the persistent root named rootName, or
NULL if the root does not exist in the database. The handle is to an object of class DBobject.

on GetPersistenRoots: return list

Returns a list of the names of all the persistent roots defined in the database. The list will be
empty if no roots are defined or if the database does not support the notion of persistent roots.

on Login: string userName, string password return boolean

Enables the user to specify a username and password when connecting to the database. This
method is usually called before a connection to the database is opened. However, it may be
called before and/or after Open. It can also be called later to change the username under which
database operations are carried out. Returns TRUE if the username and password are accepted
successfully and false otherwise.

on Open: string databaseName, string server, string location, string type return boolean

Opens a connection to the component database named databaseName that is located on the
machine specified in the string server and can be located by means of the string location.

242 February 25, 1997

AthenaMuse 2.2 Documentation

If the string containing server is an empty string then the database is presumed to reside on
the local machine. Similarly, location is an empty string when it is not required to specify
the component database. The string type specifies which type of database is being used.
Currently, the supported types for UNIX are ODBC, O2, PG95, UniSQL, and MSQL. The
supported types for Windows NT include Oracle, dBase, Foxpro and MS Access. A descrip-
tion of each type available is located after the class interface descriptions. The method returns
TRUE if a connection is established and FALSE if the connection fails.

on Store: handle hObject return boolean

Stores an ADL object instance, referenced by the handle hObject, in the database so that it can
be retrieved later. The class information for the object to be stored is stored first only if this is
the first instance of that class to be stored in the open database. Returns TRUE if the object is
stored successfully.

on StoreAs: handle hObject, string objName return boolean

Similar to Store, but stores the object specified by the handle hObject along with a persistent
name objName. This persistent name, objName can be used as an identifier during retrieval.

on StoreClassOnly: handle hObject return boolean

Stores only the ADL class definition for the object retrieved by the handle hObject. It
doesn’t store individual instance information. Returns TRUE if the class definition is stored
successfully.

on RefreshStructure

Reread the database schema definition from the database. This is only necessary if updates are
made outside of the multidatabase environment. Changes made within the environment are
automatically reflected in the schema.

on Retrieve: handle hObject, list theList return handle

Retrieves an ADL object instance from the database which is referenced by the database
handle hObject. The list is used to hold special constructor arguments, such as handle to a par-
ent widget when a widget object is being retrieved. Returns a handle to the retrieved object.

on RetrieveByName: string className, string objName, list theList return handle

Retrieves an ADL object instance from the database which is of class className and identi-
fied by the persistent name objName. If the object cannot be found in the database a NULL
handle is returned.

on RetrieveClassOnly: string className, handle parentClass return handle

Retrieves the definition of the application class className from the database and loads it into
the environment so that instances of that class can be created. The class is created as a nested
class of parentClass. A handle to the class is returned. This handle will be NULL if the class is
not successfully created.

AthenaMuse 2.2 Documentation

February 25, 1997 243

Attributes

None

Activities

None

Example

1 DBdatabase dbase; // variable declarations
2 list classes, attrs;
3 string class;
4 boolean done;
5
6 // login to the database with a username and password
7 done = {‘Login, ‘user, ‘password} => dbase;
8 // open the unisql database called myDatabase
9 // the unisql server must be running
10 done = {‘Open, ‘myDatabase, ‘UNISQL} => dbase;
11 if(done){
12 classes = ‘GetAllClasses => dbase
13 for class in classes{
14 // list of class attributes
15 attrs = {‘GetAttributes, class} => dbase;
16 }
17 // create an instance of class person and give the
18 // attribute name an initial value of “joe”
19 // the class and attribute must be valid for the
20 // database “my Database”
21 {‘CreateObj, ‘person, {‘name}, {‘joe}} => dbase;
22 // save the changes to the database
23 ‘Commit => dbase;
24 }

6.6.2 DBclass

This class represents a class definition within a component database. This class has superclass,
attribute, method, key and extent properties associated with it. Methods are provided to access
these properties.

Superclasses

None

Methods

on GetAttributes: return list

A list of attributes defined for the class is returned. The list is composed of two sublists. The
first sublist is a list of attribute names. The second is a list of the data types of these attributes.

244 February 25, 1997

AthenaMuse 2.2 Documentation

on GetMethods: return list

Returns a list of all the methods defined for the class. The returned list contains a sublist for
each method. This sublist itself contains three elements. The first element is the name of the
method. The second is a string specifying the return type of the method. The third element is a
list of strings specifying, in order, the parameter types for the method.

on GetSubClasses: return list

Returns a list of the names of all the subclasses of the class.

on GetSuperClasses: return list

Returns a list of the names of all the superclasses of the class.

Attributes

None

Activities

None

Example

None

6.6.3 DBobject

This class represents a database object. The object will be an instance of a particular database
class, which can be found from querying the object. The object has methods which allow manipu-
lation of its attributes and methods.

Superclasses

None

Methods

on Name: return string

Returns the class name of the object class to which the object belongs.

on GetAttribute: string attribute_name return any

Returns the value of the specified attribute for that object.

on SetAttribute: string attribute, any value return boolean

Set the value of the named attribute to value and returns TRUE if successful assignment.

on Call: string method_name, list arguments return any

Calls the specified method on the object using the list of arguments specified and returns the
result of the method invocation.

AthenaMuse 2.2 Documentation

February 25, 1997 245

on Drop: return boolean

Deletes the object from the database and returns TRUE if the action was successful.

Attributes

None

Activities

None

Example

1 DBdatabase dbase; // variable declarations
2 handle hObj, hCursor;
3 list result;
4
5 // don’t forget to open the database etc.
6 // execute a query that returns an object handle
7 hCursor = {‘ExecuteStr, “select person from person”} => dbase;
8 result = ‘Next => hCursor;
9 hObj = at(1, result);
10 // fine the value of the name attribute
11 echo({‘GetAttribute, ‘name} => hObj);
12 // delete the object from the database
13 ‘Drop => hObj;
14 // save the changes
15 ‘Commit => hObj;

6.6.4 DBset

This class represents the set data type. A set is used to hold a collection of data types. Duplicate
data types are allowed within the set. To the ADL programmer, a set can be viewed as a list of
database objects or values.

Superclasses

None

Methods

upon Create: list values

Creates a DBset and initializes its contents to the values found in the list. The contents of the
list must be a database-recognized type, such as integer, real, etc. (toDTobject, DTdate etc.).

on GetList: return list

Returns the set in the form of a list.

on SetList: list values

Sets the contents of the set to the values in the list.

246 February 25, 1997

AthenaMuse 2.2 Documentation

on AddElement: any value

Adds an element to the set of the specified type and value.

Attributes

None

Activities

None

Example

1 DBset {‘Create, {‘dum,’dee}} => set;
2 // add the integer 3 to the set
3 {‘AddElement, 3} => set;
4 values = ‘GetList => set;
5 // values should now be {‘dum, ‘dee, 3}

6.6.5 DBcursor

This class is used to access the results of a query execution. The class also provides information as
to the format of the query result set. Each entry in the result set is represented as a list. The cursor
class can be thought of as a pointer that moves forward and backwards in this list.

Superclasses

None

Methods

on Success: return boolean

Returns TRUE if the query executed successfully, otherwise FALSE. This value should be
checked before attempting to retrieve the results.

on RowCount: return integer

Returns the number of entries in the result set.

on ColumnCount: return integer

This method returns the number of elements in an entry of the result set.

on TypeList: return list

Returns the data types of the elements of a result entry.

on Next: return list

Moves the cursor forward one entry in the result set and returns the value of that entry. Ini-
tially Next returns the data values for the first row of the cursor. If Next is used beyond the
number of result rows in the cursor, an empty list is returned.

AthenaMuse 2.2 Documentation

February 25, 1997 247

on Prev: return list

Moves the cursor to the previous entry in the result set and returns that entry. If Prev is used
back beyond the first result row of the cursor, an empty list is returned.

on OpenAt: integer position return list

Moves the cursor to the result entry at position and returns that entry. If it is outside the range
of the cursor, an empty list is returned.

on IsLast: return boolean

Returns TRUE if the cursor is currently positioned at the last result in the set. A subsequent
execution of the method Next would result in an error.

on Position: return integer

Returns the position to which the cursor currently points. First row is at position 1.

Attributes

None

Activities

None

Example

1 handle hCursor; // variable declarations
2 hCursor={‘ExecuteStr, “select name, age from
3 person where name=’John’”}=>dbase;
4 //assuming there are three instances of person that match
5 //the set would be
6 //{{‘John, 14}, {‘John, 9}, {;John, 12}}

6.6.6 DBquery

This class represents the database query. The multidatabase uses a standard query format that is
based on SQL-92 with extended functionality to accommodate object database systems. A typical
SQL query has four parts, each part represented by one line in the sample query below. The query
finds the name, age and salary of all people called John who are working on project 3345 and
orders the result set by salary amount. The keyword in each line is given in bold face.

select name, age salary

from person, project

where name=’John’ and projectID=3345

order by 3

The query class enables the query to be specified as a string or built up from its component parts.
The query is subject to pre-processing by the multidatabase system.

248 February 25, 1997

AthenaMuse 2.2 Documentation

Superclasses

None

Methods

on SetQryFrom: list fromList

Sets the list of class names from which the query result will be generated.

on SetQryOrderBy: list orderList

Sets the order in which the results will appear.

on SetQrySelect: list selectList

Sets the list of attributes from which the query result will be generated.

on SetQryText: string queryText

Sets the text of the entire query. The query will automatically be broken down into its compo-
nent parts.

on SetQryWhere: list whereList

Sets the list of conditions which govern result generation.

on GetQryOrderBy: return list

Returns the order in which the results will be listed.

on GetQrySelect: return list

Returns the list of attributes from which the query result will be generated.

on GetQryText: return string

Returns the complete text of the query. This will be automatically generated from the compo-
nent parts if necessary.

on GetQryWhere: return list

Returns the list of conditions which governs result generation.

on Bind: integer n, any value

A parameter in a query can be specified by a question mark (?) when the query is constructed.
This mark must be replaced by an appropriate value before the query is executed. This method
replaces the parameter marked by the nth question mark with value.

on BindAll: list values

This function replaces all the question marks in the query with the values from the supplied
list in order.

Attributes

None

AthenaMuse 2.2 Documentation

February 25, 1997 249

Activities

None

Example

1 DBquery q;
2 // don’t forget to open the database etc.
3 // example of constructing queries from lists
4 {‘SetSelect, {‘name, ‘age}} => q;
5 {‘SetFrom, {‘person}} => q;
6 hCursor = {‘Execute, &q} => dbase;
7 // example of query binding
8 {‘SetQuery, “select person from person where name = ?”} => q;
9 {‘BindAll, {‘joe}} => dbase;
10 hCursor = {‘Execute, &q} => dbase;

6.6.7 DBbinary

This class represents the binary data type. It is assumed that the data is either stored directly as
bytes or as a reference to an external file that holds the bytes. If the data is stored in an external
file, then the file location can be retrieved. The location has three components, a name to identify
the machine on which the file resides, a path to locate the file on that machine, and the name of
the file itself. Currently, since there is no means of returning a pointer to a binary stream of data to
the ADL program directly, the only option with binary data is to store it in a temporary file.

Superclasses

None

Methods

upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBbinary object where the binary information is stored in the file loca-
tions specified by the method parameters.

upon CreateAsBinary: string pathName, string fileName, string hostName return handle

Creates a DBbinary object where the binary information is read from the file location speci-
fied by the method parameters and stored internally to the object.

on GetFile: return string

If the binary data is stored as a reference to an external file. GetFile returns the external file-
name.

on GetHost: return string

If the binary data is stored as a reference to an external file. GetFile returns machine name
where the file is stored.

250 February 25, 1997

AthenaMuse 2.2 Documentation

on GetPath: return string

If the binary data is stored as a reference to an external file. GetPath returns a path to the exter-
nal file.

on IsBinary: return boolean

Returns TRUE if the binary data is stored internally to the object. Returns FALSE if the
binary data is stored as a reference to an external file.

Attributes

None

Activities

None

Example

None

6.6.8 DBmedia

This class represents media data that is stored either internally in binary form or as a reference to
an external file.

Superclasses

Section 6.6.7, “DBbinary” page 249

Methods

upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBmedia object.

Attributes

None

Activities

None

Example

None

AthenaMuse 2.2 Documentation

February 25, 1997 251

6.6.9 DBimage

This class represents image data specifically.

Superclasses

Section 6.6.7, “DBbinary” page 249

Methods

upon Create: string pathName, string fileName, string hostName return handle

Returns a handle to a DBimage object that is located on the hostname machine at the location
pathname in filename.

on GetImage: return handle

Returns a handle to an MMimage object that has been constructed from the information con-
tained in the DBimage object.

Attributes

None

Activities

None

Example

None

6.6.10 DBdate

This class is used to represent the date data type. The data type is composed of three components,
an integer from 1 to 12 representing the month, an integer from 1 to 31 representing the day, and a
four digit number representing the year.

Superclasses

None

Methods

upon Create: integer month, integer day, integer year return handle

Creates a DBdate and initializes the value of the date.

on SetDate: integer day, integer month, integer year

Sets the value of the date.

252 February 25, 1997

AthenaMuse 2.2 Documentation

on GetDateStr: return string

Returns the date in the form of a string such as ‘13/10/1994’.

on GetDateList: return list

Returns the date in the form of a list of integers, {month, day, year}.

Attributes

None

Activities

None

Example

1 DBdate {‘Create, 5, 23, 1994} => date;
2 echo(‘GetDateStr => date);

6.6.11 DBtime

This class represents the time data type. The data types has three components, an integer between
0 and 23 representing the hour, an integer between 0 and 59 representing the minute and an inte-
ger between 0 and 59 representing the seconds.

Superclasses

None

Methods

upon Create: integer hour, integer minute, integer second return handle

Creates a DBtime and initializes the value of the time.

on SetTime: integer hour, integer minute, integer second

Sets the value of the time.

on GetTimeStr: return string

Returns the time (24 hour clock) in the form of a string such as ‘14:03:22’.

on GetTimeList: return list

Returns the date in the form of a list of integers, {hour, minute, second}.

Attributes

None

AthenaMuse 2.2 Documentation

February 25, 1997 253

Activities

None

Example

1 DBtime {‘Create, 5, 15, 32} => dtime;
2 echo(‘GetTimeStr => dtime);

6.6.12 DBtimestamp

This class represents the timestamp data type which consist of a time and a date together repre-
sented by a data value of type DBtime and a data value to type DBdate.

Superclasses

None

Methods

upon Create: handle date, handle time return handle

Creates a DBtimestamp and initializes the value of the timestamp.

on GetTstampList: return list

Returns a list composed of two elements, a handle to a DBdate object and a handle to a
DBtime object.

on SetTstamp: handle date, handle time

Sets the value of the timestamp.

on GetTstampStr: return string

Returns the timestamp in the form of a string such as ‘05:04:03 13/10/1994’.

Attributes

None

Activities

None

Example

1 DBtimestamp {‘Create, &date, &dtime} => tstamp;
2 echo(‘GetTstampStr => tstamp);

254 February 25, 1997

AthenaMuse 2.2 Documentation

6.6.13 DBmonetary

This class is used to represent the monetary data type. Currently the only information available is
the amount of money represented by an object of this class. Currency information is not yet incor-
porated into the class.

Superclasses

None

Methods

upon Create: real amount

Creates a DBmonetary and initializes the amount of the monetary value.

on SetAmount: real amount

Sets the amount of the monetary value.

on GetAmount: return real

Returns the amount of the monetary value.

Attributes

None

Activities

None

Example

1 DBmonetary {‘Create, 14.01} => money;
2 echo(‘GetAmount => money);
3 {‘SetAmount, 18.99} => money;
4 echo(‘GetAmount => money);

AthenaMuse 2.2 Documentation

February 25, 1997 255

6.7 Data Structures

The wrapped Data Structures (DS) wrapped classes of AM2 provide generic optimized data struc-
tures. The user could reimplement these using lists but the implementation would be less efficient.
Data structure classes are easy to wrap, and a good place for the novice to begin to augment the
set of AM2 wrapped classes. Documentation for the following classes appear in this section:

• Section 6.7.1, “DSqueue” page 255

• Section 6.7.2, “DSstack” page 257

Note that the Data Structures wrapped classes do not inherit from each other, thus no inheritance
diagram is provided here.

6.7.1 DSqueue

This class implements a traditional first-in-first-out (FIFO) queue.

Superclasses

None

Methods

on Enqueue: any value

Adds the value to the end of the queue.

on Dequeue: return any

Returns the first value and removes it from the queue.

on First: return any

Returns the first value but does not remove it from the queue.

on IsEmpty: return boolean

Returns TRUE if the queue is empty.

on Unparse: return string

Returns a human-readable description of all entries.

on Clear

Clears the queue of elements.

Attributes

None

256 February 25, 1997

AthenaMuse 2.2 Documentation

Activities

None

Example

1 on Assert: boolean condition
2 {
3 if (! condition)
4 {
5 die(“assertion failed!”);
6 }
7 }
8
9 upon Construct
10 {
11 DSqueue q;
12 integer i = 6;
13 string s = “heather”;
14 list l = {“this”, “is”, “a”, “list”};
15 {“Assert”, “IsEmpty” => q} => theApp;
16 {“Enqueue”, 6} => q;
17 {“Assert”, !(“IsEmpty” => q)} => theApp;
18 {“Enqueue”, “heather”} => q;
19 {“Enqueue”, {“this”, “is”, “a”, “list”}} => q;
20 {“Assert”, i == “First” => q} => theApp;
21 {“Assert”, i == “Dequeue” => q} => theApp;
22 {“Assert”, s == “Dequeue” => q} => theApp;
23 {“Assert”, l == “Dequeue” => q} => theApp;
24 {“Assert”, “IsEmpty” => q} => theApp;
25 }
26 on Init
27 {
28 DSqueue q;
29 integer i = 6; string s = “heather”;
30 list l = {“this”, “is”, “a”, “list”};
31 “IsEmpty” => q; // TRUE
32 echo(“Unparse” => q);
33 {“Enqueue”, 6} => q;
34 echo(“Unparse” => q);
35 “IsEmpty” => q; // FALSE
36 {“Enqueue”, “heather”} => q;
37 echo(“Unparse” => q);
38 {“Enqueue”, {“this”, “is”, “a”, “list”}} => q;
39 echo(“Unparse” => q);
40 i == “First” => q; // TRUE
41 i == “Dequeue” => q; // TRUE
42 s == “Dequeue” => q; // TRUE
43 l == “Dequeue” => q; // TRUE
44 “IsEmpty” => q; // TRUE
45 }

AthenaMuse 2.2 Documentation

February 25, 1997 257

6.7.2 DSstack

This class implements a traditional last-in-first-out (LIFO) stack.

Superclasses

None

Methods

on Push: any value

Adds the value to the top of the stack.

on Pop: return any

Returns the top value and removes it from the stack.

on Top: return any

Returns the top value but does not remove it from the stack.

on IsEmpty: return boolean

Returns TRUE if the stack is empty.

on Unparse: return string

Returns a human-readable description of all entries.

on Clear

Clears the stack of elements.

Attributes

None

Activities

None

Example

1 on Assert: boolean condition
2 {
3 if (! condition)
4 {
5 die(“assertion failed!”);
6 }
7 }
8
9 upon Construct
10 {
11 DSstack stack;
12 integer i = 6;

258 February 25, 1997

AthenaMuse 2.2 Documentation

13 string s = “heather”;
14 list l = {“this”, “is”, “a”, “list”};
15
16 {“Assert”, “IsEmpty” => stack} => theApp;
17
18 {“Push”, 6} => stack;
19
20 {“Assert”, !(“IsEmpty” => stack)} => theApp;
21
22 {“Push”, “heather”} => stack;
23 {“Push”, {“this”, “is”, “a”, “list”}} => stack;
24
25 {“Assert”, l == “Top” => stack} => theApp;
26 {“Assert”, l == “Pop” => stack} => theApp;
27 {“Assert”, s == “Pop” => stack} => theApp;
28 {“Assert”, i == “Pop” => stack} => theApp;
29
30 {“Assert”, “IsEmpty” => stack} => theApp;
31 }
32
33 on Init
34 {
35 DSstack stack;
36 integer i = 6;
37 string s = “heather”;
38 list l = {“this”, “is”, “a”, “list”};
39
40 “IsEmpty” => stack; // TRUE
41 echo(“Unparse” => stack);
42
43 {“Push”, 6} => stack;
44 echo(“Unparse” => stack);
45
46 “IsEmpty” => stack; // FALSE
47
48 {“Push”, “heather”} => stack;
49 echo(“Unparse” => stack);
50 {“Push”, {“this”, “is”, “a”, “list”}} => stack;
51 echo(“Unparse” => stack);

AthenaMuse 2.2 Documentation

February 25, 1997 259

260 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 261

Appendix A Built-In Functions for ADL

This appendix lists the functions that are built-in to ADL for operations on the base and compound
types. We discuss their use in the ADL chapter (Section 3.12, “Built-in Function Calls” page
29). The available functions and their operations will change as we experiment to find what’s
most useful for application writers.

A.1 Notation

We list each function name, followed by its argument list in parenthesis, separated by commas
with the type for each given. In the following descriptions, we use sequence to describe some-
thing that can be either a string or a list, and number to describe something that can be either an
integer or a real. We use any to describe something that can be one of the following types: bool-
ean, integer, real, string, handle, interval, list, time, or vtype.

A.2 Function Descriptions

A.2.1 Input/Output

echo (any argument)

Effects: prints a human-readable representation of argument to standard output.

Returns: argument.

read ()

Effects: reads a string up to white-space from standard input.

Returns: the string that was read.

die (string message)

Effects: prints the contents of message to standard error, then exits with exit code

Returns: die does not return

262 February 25, 1997

AthenaMuse 2.2 Documentation

A.2.2 Time and Date

localTime()

Returns: A time value whose hours, minutes, seconds, and milliseconds are set to
the current local time.Platforms that cannot provide a given level of granu-
larity should return 0 for that part of the time. For instance, if a machine
cannot provide milliseconds, localTime may return the current time
with milliseconds set to 0.

 Note: AthenaMuse2 relies on the system’s idea of the current local time for this
function. If you are not happy with the value returned, please check that the
time is set properly on your machine.

localDate()

Returns: A list containing four integer elements:

1.day of week, 1 - 7, 1 == Sunday, etc.

2.day of month, 1 - 31

3.month of year, 1 - 12

4.year, 1900 -

 Note: AthenaMuse2 relies on the system’s idea of the current date for this func-
tion. If you are not happy with the value returned, please check that the
date is set properly on your machine.

A.2.3 Conversion

toBoolean(any source)

Requires: a boolean, a string containing a “TRUE” or “FALSE” (any capitalization),
an integer, a real, or a time.

Effects:. ERtype error if the type cannot reasonably be converted to a boolean.

Returns: a boolean representation of the value in source.

toInteger(any source)

Requires: an integer, a string containing an integer, a real that is smaller than the
maximum size of an integer, a boolean, or a time (converts to number of
milliseconds).

Effects: ERsemantic error if the value in source is too large for an integer.ERtype
error if the value in source cannot reasonably be converted to an integer.

Returns: an integer representation of the value in source.

AthenaMuse 2.2 Documentation

February 25, 1997 263

toInterval(any source)

Requires: An interval, a string containing an interval constant, or a list of the format:
{{boolean,integer/real},{boolean,integer/real}}.

Effects: ERtype error if the value in source cannot reasonably be converted to an
interval.

Returns: the interval representation of the value in source.

toTime(any source)

Requires: A time, an integer (milliseconds), a real (rounded to integer milliseconds),
a string, or a list with one to four integer elements (representing the least
significant parts of the time, i.e. 2 elements implies seconds and millisec-
onds).

Effects: ERtype error if the value in source cannot reasonably be converted to a
time.

Returns: the time representation of the value in source.

toList(any source)

Requires: A list, a string containing a list with constant elements, or an interval.

Effects: ERtype if the value in source cannot reasonably be converted to a list.

Returns: the list representation of the value in source.

toReal(any source)

Requires: A real, an integer, a boolean, or a string representing a constant real in the
same format as that recognized by the parser

Effects: ERtype if the value in source cannot reasonably be converted to a real.

Returns: A real number representing the value in source.

toString(any source)

Returns: A string representation of source. If source is a handle this call pro-
duces a fatal error.

A.2.4 Type Query

• isInteger(any value)

• isBoolean(any value)

• isHandle(any value)

• isInterval(any value)

264 February 25, 1997

AthenaMuse 2.2 Documentation

• isList(any value)

• isReal(any value)

• isString(any value)

• isTime(any value)

• isVtype(any value)

Returns: TRUE if value is of the given type, FALSE if not.

getType(any value)

Returns: The vtype of the argument value.

canConvert(string source, vtype conversionType)

Returns: TRUE if the source can be converted to conversionType, FALSE if
not. Put another way, canConvert returns TRUE if the appropriate con-
version built-in (toBoolean, toInteger, etc.) for conversion-
Type succeeds when given source as an argument.

A.2.5 Sequences (lists and strings)

Lists

at(integer index, sequence source)

Returns: If source is a list, the item at index is returned. If source is a string, a
one character string containing the character at index is returned. The
index is counted from 1, not 0.

Notes: If index exceeds the length of source, an ERsemantic error is generated.
This behavior may change.

first(sequence source)

Returns: The first element of the list if source is a list or the first character of it is
a string. If source is empty, an empty sequence of the same type as
source (list or string) is returned.

rest(sequence source)

Returns: A sequence of the same type (list or string) containing all but the first ele-
ment in source. If the sequence is empty or only contains a single element
or character, the returned sequence will be empty.

isEmpty(sequence test)

AthenaMuse 2.2 Documentation

February 25, 1997 265

Returns: TRUE if test contains no items (list) or characters (string), FALSE other-
wise.

length(sequence source)

Returns: The number of elements (list) or characters (string) in source.

extract(sequence source,integer start,integer length)

Returns: A sequence containing the elements of source with indices from start to
start+length-1. Sequence indices start at 1, not 0.

Notes: If an attempt is made to extract beyond the end of a sequence, a shorter
sequence will be returned containing only those items from start to the end
of the sequence.

find(any key, sequence source)

Returns: If source and key are strings, returns index of first character of first
occurrence of key in source, or 0 if key is not found in source (since
indices in sequences start with 1). If source is a string, but key is not, an
ERsemantic error is generated. If source is a list, returns index of first
member of source found to be equal to key, or 0 if no match is found.

Notes: lists are not searched recursively, only top level members are compared,
and no type conversion is performed, i.e. 1.0 != 1.

Strings

split(string source, string delim)

Returns: the list of substrings from source that remains after every occurrence of
delim is deleted from it. If two instances of delim occur immediately
adjacent to each other or if source starts or ends with an occurrence of
delim, then an empty string is inserted into the list at the appropriate posi-
tion.

isAlpha(string source)

Returns: TRUE if all the characters in the source string are one of [A-Z, a-z]

toUpper(string source)

Returns: a string identical to source except that all lowercase alphabetic charac-
ters will have been changed to uppercase.

Example: toUpper("teSt sTriNG!") returns "TEST STRING!"

266 February 25, 1997

AthenaMuse 2.2 Documentation

toLower(string source)

Returns: a string identical to source except that all uppercase alphabetic charac-
ters will have been changed to lowercase.

A.2.6 Mathematical

The mathematical built-ins that follow can produce six categories of errors:

• DOMAIN: implies an inappropriate argument, e.g., ;

• SING: implies an argument or arguments which produce a singularity in the result, e.g.,
;

• OVERFLOW: implies the result exceeds the maximal value that the return type can express;

• UNDERFLOW: implies that the result is smaller in magnitude than the return type can express;

• TLOSS: total loss of significance — most implementations do not produce this error

• PLOSS: partial loss of significance

By default, DOMAIN and SING errors are treated as fatal, and all others are ignored. The
developer may change this behavior by sending a 'SetFatalErrors message to theApp.
Please see _ for further information.

random(interval range)

Returns: A random number in range. If both limits of range are integers, an integer
will be returned; otherwise a real will be returned.

sqrt(number val)

Returns: The nonnegative square root of val expressed as a real. A DOMAIN error
occurs if val is negative.

pow(number base, number exp)

Returns: base raised to the power exp expressed as a real. exp may be a real if
base is nonnegative. A DOMAIN error occurs if base is negative and
exp is not an integral value, and it may occur when base is 0 and exp
is less than or equal to 0. This built-in may also generate OVERFLOW or
UNDERFLOW errors.

exp(number val)

Returns: The exponential function of val, , expressed as a real. An OVER-
FLOW or UNDERFLOW error may occur.

sqrt 1–()

0()log

eval

AthenaMuse 2.2 Documentation

February 25, 1997 267

log(number val)

Returns: The natural logarithm of val expressed as a real. A DOMAIN error
will occur if val<0.0 and a SING error if val==0.

log10(number val)

Returns: The base 10 logarithm of val expressed as a real. A DOMAIN error
will occur if val<0.0 and a SING error if val==0.

cos(number val)

Returns: The cosine of val (interpreted in radians) expressed as a real.

sin(number val)

Returns: The sine of val (interpreted in radians) expressed as a real.

tan(number val)

Returns: The tangent of val (interpreted in radians) expressed as a real

acos(number val)

Returns: The principal value of the arc cosine of val (interpreted in radians)
expressed as a real in the range . A DOMAIN error will occur if
val does not fall with in the range [-1,1].

asin(number val)

Returns: The principal value of the arc sine of val (interpreted in radians)
expressed as a real in the range . A DOMAIN error will
occur if val does not fall with in the range [-1, 1].

atan(number val)

Returns: The principal value of the arc tangent of val (interpreted in radians)
expressed as a real in the range .

atan2(number y, number x)

Returns: The principal value of the arc tangent of expressed as a real in the

range . A DOMAIN occur error will occur if both y and x
are 0.

0 π[,]

π 2⁄– π 2⁄[,]

π 2⁄– π 2⁄[,]

y x⁄
π 2⁄– π 2⁄[,]

268 February 25, 1997

AthenaMuse 2.2 Documentation

cosh(number val)

Returns: The hyperbolic cosine of val expressed as a real. An OVERFLOW error
may occur.

sinh(number val)

Returns: The hyperbolic sine of val expressed as a real. An OVERFLOW error
may occur.

tanh(number val)

Returns: The hyperbolic tangent of val expressed as a real.

integerPart(number val)

Returns: The integer part of val expressed as a real. The returned value always
has the same sign as val.

fractionPart(number val)

Returns: The fraction part of val expressed as a real. The returned value
always has the same sign as val.

ceil(number val)

Returns: The smallest integral value not less than val expressed as a real.

fabs(number val)

Returns: The absolute value of val expressed as a real.

floor(number val)

Returns: The largest integral value not larger than val expressed as a real.

fmod(number x, number y)

Returns: The floating-point (real) remainder of . That is, if

, then , such that , r has the same
sign as x, the magnitude or r is less than that of y. A DOMAIN error may
occur if y==0.

e()

Returns: The constant e at the significance of a real.

pi()

Returns: The constant pi at the significance of a real.

x y⁄
r fmod x y,()= i∃ x i y×() r+=

AthenaMuse 2.2 Documentation

February 25, 1997 269

A.2.7 Handles

isValid(handle h)

Returns: TRUE if the handle is non-NULL and points to a valid object or variable,
otherwise FALSE.

A.2.8 Classes and Inheritance

isKindOf(handle hObject, handle hClass)

Returns: TRUE if hObject points to an object (as opposed to a variable of base,
compound or complex type), hClass points to a wrapped or ADL class,
and hObject points to an instance of the class pointed to by hClass or
to a class derived from it.

Notes: Pointers to classes are generally derived from expressions using the opera-
tors theClass or classOf (see Section 3.22, “Metaclass Opera-
tions” page 43).

className(handle hClass)

Returns: The string name of the class pointed to by the handle hClass or the null
string if the class is anonymous.

Notes: Pointers to classes are generally derived from expressions using the opera-
tors theClass or classOf (see Section 3.22, “Metaclass Operations”
page 43).

isDirectBaseOf(handle hSuspectedBaseClass, handle hKidClass)

Returns: boolean

Effects: If hSuspectBaseClass is a pointer to a direct base class of the class pointed
to by hKidClass, returns TRUE, else FALSE.

Warning: It is a fatal error for either argument to be NULL or to not point to a class.

A.2.9 Networking

userName()

Returns: A string containing the name of the user executing AthenaMuse2.

hostName()

Returns: If Domain Name Service is enabled on the system, the fully qualified host-

AthenaMuse 2.2 Documentation

February 25, 1997 270

name is returned. Otherwise, the host table entry for the machine is
returned. This may or may not be a fully qualified hostname depending on
the format of the host table for the system.

AthenaMuse 2.2 Documentation

February 25, 1997 271

Appendix B Creating Wrapped Classes

This chapter explains how to create your own wrapped classes using the wrap script, a facility
intended for C++ programmers who want to extend the capabilities of AM2 by installing their
own code in the system. Most AM2 users do not need this facility.

The chapter describes the model the wrap script uses and the details of how to wrap a C++ class to
make it visible in the ADL. It also describes the model of inheritance the wrap script provides and
describes the features that support it.

The purpose of the wrap script is to help the programmers publish C++ classes to the ADL as
wrapped classes. Once published, a wrapped class is almost indistinguishable from a user-defined
class in the ADL. For this reason, it is important that you understand the differences between
wrapped classes and user-defined classes. To learn more about the two, see Section 3.23,
“Wrapped Classes” page 44 before continuing. If you are not familiar with the wrapped classes
that come with the ADL, see Chapter 6, “Wrapped Class Reference”.

B.1 Wrap Script Model

There are essentially three parts to publishing a class: publishing its name, publishing its mem-
bers, and publishing its methods.1 This information is necessary for AM2 to create a subclass,
instantiate a class, and operate on a C++ class. You provide the information by writing a wrap file
that describes the class to be wrapped. Once it is written, you run the wrap script, sometimes
referred to as the wrapper, and generate the wrapped class.

For instance, to wrap a C++ class called IntStack as a wrapped class called DSIntStack, you write
a file called DSIntStackRO.wrp and run the wrap script. The wrapper generates the class named
DSIntStackRO, writing the files DSintStackRO.h to declare it and DSintStackRO.cc to
implement it. The command line interface to the wrap script determines where to place the gener-
ated files. It is described in Section B.3.1, “Command Line Interface” page 287.

1 The wrap script also has an inheritance mechanism that provides an inheritance relationship between
wrapped classes and simplifies the specification and maintenance of the wrap code itself. We postpone the
description of this mechanism until after we cover the basics.

272 February 25, 1997

AthenaMuse 2.2 Documentation

We call the C++ class that we want to wrap the foundation class. In our example, the class
IntStack is the foundation class. We encourage programmers to think of the wrapper class as a
translation layer only, turning ADL messages and member assignments into calls to an instance of
the foundation class. In the example, when you create an instance of DSintStackRO, the
DSintStackRO constructor creates a corresponding IntStack instance. ADL messages such as
Push and Pop translate into calls on that instance of IntStack. By making it easy for a wrapped
object to use an instance of the foundation class, the wrapper encourages programmers to put very
little into the wrapped class.

B.2 How to Wrap a C++ Class

B.2.1 Lexical Conventions

The wrap script ignores white space in a wrap file. However, some parts of the description must
be on lines by themselves, such as delimiters above and below sections containing C++ code not
meant for interpretation by the wrap script. The delimiter is a line containing at least 3 consecu-
tive equal signs (=). We recommend using long sequences to provide a good visual break. Both
multi-line (/*... */) and single line (//) comments are allowed in these blocks, since the
compiler does not interpret the code. For example:

==========================
// Uninterpreted C++ code belongs in here.
/* The bar above and below it must be on lines by themselves. */
==========================

Outside of these uninterpreted blocks use single line (//) comments to annotate the wrap file,
anywhere but the delimiter (====) lines.

B.2.2 The Wrap File: an Example

In the following example, we use the wrapped class DSIntStackRO to look at each part of a wrap
file. We explain the components of this file in Section B.2.3, “An Explanation of the Parts of a
Wrap File” page 274.

notice
==
/*
 *
 * $Header: /mit/ceci/1/aybee/devl/doc/firstRel/RCS/DSintStackRO.wrp,
v 1.1 1995/06/02 21:23:23 aybee Exp aybee $

AthenaMuse 2.2 Documentation

February 25, 1997 273

 *
 * Copyright 1993, 1994, 1995 Massachusetts Institute of Technology.
 * All rights reserved.
 * AthenaMuse is a registered trademark of the Massachusetts
 * Institute of Technology.
 */
==

foundation: IntStack
wrapped: DSintStack
module: ExampleModule
abstract: false

header
==
#include <IntStack.h>
/*
 * IntStack.h hypothetically includes something like...
 *
 * class IntStack
 * {
 * public:
 * int getHeight();
 * void push(int);
 * int pop ();
 * int isEmpty();
 * };
 *
 */
==

source
==
#include <control/EXmodule.h>
#include <control/DSintStackRO.h>
#include <adl/ERsemantic.h>
==

superclasses
{
}

codeFragments
{
constructor
==
mpWrapped = new IntStack;
==
}

members
{
private:

274 February 25, 1997

AthenaMuse 2.2 Documentation

published:
 name
 {
 get: default
 set: default
 }
 height
 {
 get: custom
 set: none
 }
}

methods
{
private:
 void localDestroy()
 ==
 if (mpWrapped)
 delete mpWrapped;
 ==

 UTvalue _Get_height() const
 ==
 return mpWrapped->getHeight();
 ==

published:
 void Push(integer_t newTop)
 ==
 /* effects: puts newTop on the top of the stack */
 mpWrapped->push(newTop);
 ==

 integer_t Pop()
 ==
 /* returns: removes top value from the stack and returns it */
 assert(! mpWrapped->isEmpty());
 return mpWrapped->pop();
 ==
}

B.2.3 An Explanation of the Parts of a Wrap File

Notice

This section lets you protect your intellectual property by housing things such as the copyright
notice and the RCS $Header$ string.2 The wrap script places a copy of this section at the top of

2 RCS is a source code control system widely used by programmers.

AthenaMuse 2.2 Documentation

February 25, 1997 275

both the generated header file and the generated source code file. We usually place the contents of
the file named “standard_header” in this section.

Foundation or FoundationRO Declaration

The wrap script encourages programmers to implement a wrapped class by using an instance of a
foundation class. As encouragement, the wrapper provides a member named mpWrapped in the
generated class. You can use this member to point to an instance of the wrapped class. The mem-
ber mpWrapped can be either a C++ pointer or a reference counted pointer.

This is a required field and you must use one of these declarations to tell the wrap script the type
of the foundation class:

foundation: className

This line must contain the designation foundation: followed by the name of foundation class.
The mpWrapped member is of type className. In the few cases where there is no underlying
foundation class to support the wrapped class, you can specify void as the class name.

foundationRO: classNameRO

This line must contain the designation foundationRO: followed by the name of foundation
class that includes the RO suffix. The mpWrapped member is of type classNameRO.

For your convenience the wrap script provides two macros WRAP_FOUNDATION and
WRAP_FOUNDATION_PTR, defined as the name of the foundation class and the type of a pointer to
that class respectively. These become especially useful when you want to take advantage of wrap-
per inheritance, as discussed in Section B.2, “Inheritance Model of the Wrap Script” page
280.

The Wrapped Class Name

wrapped: nameOfWrappedClassInADL

This is a required field and must contain the designation wrapped: followed by the name of the
wrapped class in the ADL. The latter must be a legal ADL identifier. (See Section 3.2, “Identifi-
ers” page 14.)

Module Declaration

module: moduleName

This is a required field and must contain the module name followed by a legal ADL identifier. See
Section B.2, “Inheritance Model of the Wrap Script” page 280 for an explanation about the
module mechanism that AM2 uses. You must add a line such as UT_FORCE_LOAD(nameOf-
WrappedClassInADL) to the appropriate module source file to force the linker to pull in the
newly wrapped class.

Abstract Declaration

abstract: boolean

276 February 25, 1997

AthenaMuse 2.2 Documentation

This is a required field. The boolean must be either TRUE or FALSE. If true, this class may not
be instantiated in the ADL. This becomes useful when you use wrapped class inheritance and have
base classes that should not be instantiated.

Can You Create a Subclass in the ADL?

adlSubclassable: boolean

This is an optional field. The boolean must be either true or false. If true, ADL programmers
may use this class as a direct base of any ADL class. Usually, only abstract classes may not have a
subclass in the ADL. As a result, the default value for this characteristic is the logical not of the
previous declaration abstract. If a class is abstract, then the default is that you cannot create a
subclass in the ADL; if a class is not abstract, then the default is that you can create a subclass in
the ADL.

The Header Section

At compile-time, wrap script inserts the header section into the generated header file before
declaring the class. Use this section to include declarations for required types, most notably the
declaration of the foundation class.

The Source Section

At compile-time, the wrap script inserts the source section into the generated source file before
defining the methods of the generated class. Use this file to include header files for classes used in
the implementation. The wrap script checks that there is an include statement that appears to
include the generated header file, and exits with an error message if it does not find this include
statement. For instance, in our stack example it checks that there is an include statement that
looks something like #include <...DSintStackRO.h>, where the ellipsis represents any (or
no) directory specification.

Code Fragments

You may need to insert code sections in various places, as described in this section. To do so, cre-
ate a section called codeFragments as shown in the example in Section B.2.2, “The Wrap
File: an Example” page 272. Legal names for these sections include:

constructor and preConstructor

The wrap script inserts code in the constructor fragment into the C++ constructor for the wrapped
object. The code looks like the following:

wrappedClassNameRO(const MCprogramObjectRP& pParent,
const MCinstanceRP& pDerived= gkpNullInstPtr)
mpWrapped(0)

 {
// ...contents of “preConstructor” fragment here...
// ...contents of “constructor” fragment here...

 }

AthenaMuse 2.2 Documentation

February 25, 1997 277

constructorFromFoundation

The wrap script provides a constructor for the wrapped class when a constructorFromFoun-
dation fragment is present. The code looks like the following:

wrappedClassNameRO(WRAP_FOUNDATION_PTR pWrapped,
const MCprogramObjectRP& pParent,
const MCinstanceRP& pDerived=gkpNullInstPtr)

 {
mpWrapped = pWrapped;
// ...contents of preConstructor fragment here...
// ...contents of constructorFromFoundation fragment here...

 }

wrappedIsReady

The contents of wrappedIsReady goes in a fragment similar to:

 void wrappedIsReady() { /* fragment code here */ }

A wrapped object should call the wrappedIsReady() function when the foundation object it
wraps is ready. This is very useful in the case of wrapper inheritance, further discussed in Section
B.2, “Inheritance Model of the Wrap Script” page 280.

preDestroy and postDestroy

If code fragments for preDestroy and postDestroy exist, their contents go in methods similar
to:

void preDestroy() { /* fragment code here */ }
void postDestroy() { /* fragment code here */ }

The wrapped object’s Destroy method then has the following body:3

{
preDestroy(); //only inserted if preDestroy exists
localDestroy(); //only inserted if localDestroy exists
mpWrapped = NULL;
postDestroy(); //only inserted if postDestroy exists
MCcxxObjectRO::Destroy();//normal upchained Destroy call
}

Members

Use the members section to introduce members in the generated class. See Section B.2.2, “The
Wrap File: an Example” page 272 for the syntax for introducing members.

3 The Destroy method is part of the Reference Counting mechanism and is beyond the scope of this chapter.

278 February 25, 1997

AthenaMuse 2.2 Documentation

The members of a wrapped class have four protection levels: private, protected, and public in
C++, and published in the wrapper. The wrap script prepares members in the published category,
making them available to the ADL run-time engine. You can separate member descriptions into
protection levels by placing the protection level name followed by a colon, such as

private:

on a separate line. All subsequent lines until the next protection level designation or the final
delimiter (}) are given that protection level. The wrap script does not interpret lines with a C++
protection level of private, protected, or public. They go directly into a similarly protected section
of the generated header.

Published members appear to the ADL as instance members of the published class. There are two
generic operations performed on simple members: get and set. Use the get operation when an
ADL program needs the value of a member, and the set operation when the program assigns a
value to the member. The wrap script allows you to specify how to handle get and set opera-
tions on each published member: by using the default accessor, by using a custom accessor, or by
preventing access.

Published members have a special format, as shown in the following example:

memberName
{

get: accessStyle
set: accessStyle

}

Put each statement on a line by itself and designate the access style to be one of the following:
default, custom, or none.

If a member’s access style is default, the wrap script automatically provides the generated class
with a member of type MClvalue for storing that value. The member’s name is its published
name preceded by an m. In our example, the wrap script would provide the wrapped class with a
member named mname.

Sometimes a member doesn’t really exist as a member of the wrapped class. For instance, in our
example, the foundation IntStack class already maintains the height, so it would be wasteful for us
to maintain that information in the wrapped class too. For cases such as this, the wrap script
allows you to specify a custom access method for a member. If you specify a custom get state-
ment for a member, you must provide a method with the following signature, where member-
Name represents the appropriate member’s name:

 UTvalue _Get_memberName() const

In our example, we provide a method called _Get_height that asks its foundation object for the
current height. If you specify a custom set method, you must provide a method with the follow-
ing signature:

 void _Set_memberName(const UTvalue& newVal)

If it made sense to set the height of a stack, you could specify that the set accessor of height be
custom and provide a method named _Set_height.

AthenaMuse 2.2 Documentation

February 25, 1997 279

You can tell the wrap script to specify an access style of none to handle the case where you do
not want to allow get and set operations on members. In our example, height has a set access
method of none, causing a fatal error for in any ADL program that attempts to set it.

What methods should the wrapped class have?

Use the methods section to describe the methods, or operations, for the wrapped class. See Sec-
tion B.2.2, “The Wrap File: an Example” page 272 for the syntax for specifying methods. The
methods of a wrapped class have the same four protection levels as members: private, protected,
and public in C++, and published in the wrapper. The wrap script prepares methods in the pub-
lished category, making them available to the ADL run-time engine.

Each of the protection levels is optional and contains method descriptions. A method description
consists of the method’s C++ signature, followed by a block of uninterpreted C++ code (set off by
=== delimiters). The wrap script extracts the signatures and places them in the proper protection
level section of the generated header, and places the definition in the generated source file. If you
specify the keyword inline, the wrap script places the body of the method in the header too.
Specify the keyword ctor to mark an ADL constructor. Marking a method with ctor is equiva-
lent to using the keyword upon in the ADL. The keyword local marks a method as it does in the
ADL. ADL subclasses of the wrapped class do not inherit the method, but wrapped subclasses do.

The wrap script exports methods listed in the published section to the ADL as methods with a cor-
responding name and ADL signature. The following types are the only legal arguments and return
types for published methods:

As a special case, you can also have the return type void. It is equivalent to not declaring a return
type in the ADL.

C++ type ADL type

Eboolean boolean

integer_t integer

UThandle handle

UTinterval interval

UTlist list

real_t real

UTstring string

UTtime time

UTvalue any

UvalueType vtype

Figure B.1 Arguments and Return Types for Published
Methods

280 February 25, 1997

AthenaMuse 2.2 Documentation

B.2 Inheritance Model of the Wrap Script

The wrap script implements inheritance in a manner analogous to the way it is done by hand — it
essentially copies-and-pastes inherited descriptions into derived wrap descriptions. In this section
we explain the copying and pasting, the restrictions on creating a subclass, and the hooks that we
provide to allow wrap descriptions to work when pasted into subclasses.

Frequently, the foundation classes that we want to wrap have an inheritance relationship. Let’s
suppose that we want to wrap a class called PrintableIntStack. This new class is a subclass of the
IntStack class that we discuss in the example in Section 1.2.2, and it adds the method
getPrintString to its interface, which returns a string that describes the stack.

Using only the features described in the previous section, we would have to create a new wrap file
that includes all of the wrap description of the existing DSintStack wrapped class referred to in
Section 1.1, but which has PrintableIntStack as its foundation class and getPrintString as a
published method. As you might expect, this leads to maintenance nightmares, especially since
wrapped classes often have more methods and members than DSintStack does.

Let’s look at this example two ways: first without inheritance and then with inheritance.

B.2.1 Example without Inheritance

notice
===
/*
 * $Header: /mit/ceci/1/aybee/devl/doc/firstRel/RCS/
DSprintableIntStackROsansInheritance.wrp,v 1.1 1995/06/02 21:23:23 aybee Exp
aybee $
 *
 * Copyright 1993, 1994, 1995 Massachusetts Institute of Technology.
 * All rights reserved.
 * AthenaMuse is a registered trademark of the Massachusetts
 * Institute of Technology.
 */
===
foundation: IntStack
wrapped: DSprintableIntStack
module: ExampleModule
abstract: false

header
==
#include <PrintableIntStack.h>
/*
 * PrintableIntStack.h hypothetically includes something like...
 *
 * #include <PrintableIntStack.h>
 *
 * class PrintableIntStack: public IntStack

AthenaMuse 2.2 Documentation

February 25, 1997 281

 * {
 * public:
 * char* getPrintString();
 * };
 *
 */
==

source
==
#include <control/EXmodule.h>
#include <control/DSprintableIntStackRO.h>
#include <adl/ERsemantic.h>
==

codeFragments
{
constructor
==
mpWrapped = new PrintableIntStack;
==
}

members
{
private:

published:
 name
 {
 get: default
 set: default
 }
 height
 {
 get: custom
 set: none
 }
}

methods
{
private:
 void localDestroy()
 ==
 if (mpWrapped)
 delete mpWrapped;
 ==

 UTvalue _Get_height() const
 ==

282 February 25, 1997

AthenaMuse 2.2 Documentation

 return mpWrapped->getHeight();
 ==

published:
 void Push(integer_t newTop)
 ==
 /* effects: puts newTop on the top of the stack */
 mpWrapped->push(newTop);
 ==

 integer_t Pop()
 ==
 /* returns: removes top value from the stack and returns it */
 assert(! mpWrapped->isEmpty());
 return mpWrapped->pop();
 ==

 UTstring GetPrintString()
 ==
 /* effects: puts newTop on the top of the stack */
 return mpWrapped->GetPrintString();
 ==
}

B.2.2 Example with Inheritance

notice
==
/*
 *
 * $Header: /mit/ceci/1/aybee/devl/doc/firstRel/RCS/DSprintableInt-
StackRO.wrp,v 1.1 1995/06/02 21:23:23 aybee Exp aybee $
 *
 * Copyright 1993, 1994, 1995 Massachusetts Institute of Technology.
 * All rights reserved.
 * AthenaMuse is a registered trademark of the Massachusetts
 * Institute of Technology.
 */
==

foundation: PrintableIntStack
wrapped: DSprintableIntStack
module: ExampleModule
abstract: false

header
==
#include <PrintableIntStack.h>
/*
 * PrintableIntStack.h hypothetically includes something like...
 *

AthenaMuse 2.2 Documentation

February 25, 1997 283

 * #include <PrintableIntStack.h>
 *
 * class PrintableIntStack: public IntStack
 * {
 * public:
 * char* getPrintString();
 * };
 *
 */
==

source
==
#include <control/EXmodule.h>
#include <control/DSprintableIntStackRO.h>
#include <adl/ERsemantic.h>
==

superclasses
{
 DSintStack
}

codeFragments
{
constructor
==
mpWrapped = new PrintableIntStack;
==
}

methods
{
published:
 UTstring GetPrintString()
 ==
 /* effects: puts newTop on the top of the stack */
 return mpWrapped->GetPrintString();
 ==
}

B.2.3 An Explanation of the Wrap Inheritance Description

For a discussion of the notice, wrapped, module, and abstract fields, see Section B.2.3, “An
Explanation of the Parts of a Wrap File” page 274.

284 February 25, 1997

AthenaMuse 2.2 Documentation

Superclasses

This section of the description lists the wrap descriptions that are superclasses for this class. See
Section B.2.2, “Example with Inheritance” page 282 for the format for specifying superclasses.
Each line between the brackets should contain the name of a superclass description.

The wrap script uses each superclass name listed to find the corresponding description. It looks
for a file named “superclassNameRO.wrp” somewhere in the wrap path. In our example, the
wrapper looks for DSintStackRO.wrp. The wrapper ensures that the ADL run-time engine
thinks of each listed class as a superclass of the given class.

Foundation: and FoundationRO:

To allow descriptions to inherit the code from their superclass descriptions, it is necessary that all
code that manipulates the mpWrapped member work with the mpWrapped member of the sub-
class as well. For this reason, a wrap description can inherit only from a wrap description whose
foundation class is a void or a C++ superclass of its foundation class. This provides the required
C++ type safety since the wrap script is not intelligent enough to check this relationship at wrap-
time. It generates code that attempts to cast from a NULL pointer to the subclass’s
WRAP_FOUNDATION to a pointer to the superclasses’s WRAP_FOUNDATION. If the foun-
dation classes do not have the proper relationship, this code intentionally causes a compile-time
error; if all goes well, the compiler lists the error as occurring on the line containing the founda-
tion declaration.

For example, DSprintableIntStack is a subclass of DSintStack. Their foundation classes are
PrintableIntStack and IntStack, respectively, so PrintableStack must be a subclass of IntStack.
The code that the wrap script generates to check the pointer types is as follows:

 (IntStack*) tempPtr = (PrintableIntStack*) NULL;

Header and Source Sections

Subclasses inherit the contents of the header and source sections of their superclasses by concate-
nation. These sections appear in an order that ensures that a class’ header section does not appear
until after the header sections of its superclasses.4 We refer to this as the proper order.

Members

A subclass inherits members. The wrap script places the contents of the member section of a
superclass of a wrapped class in the subclass in the proper order. Subclasses cannot have members
with the same name as their superclasses’ members. The wrap script detects duplicate published
member names, but since the wrapper does not interpret the contents of the C++ member sections,
duplicates in those sections are not be caught until compile-time. Note that members are placed at
the same protection level as in the superclass and are not moved to another level as in C++ sub-
classes. That is, inherited private members are listed as private members of the subclass and are
accessible to that class.

4 The ActivityManager class is an exception. To work around a bug in the HP compiler having to do with tem-
plates and the order in which they and their declarations are seen, the source section of the ActivityManager
class is always placed last in its subclasses.

AthenaMuse 2.2 Documentation

February 25, 1997 285

Methods

A subclasses inherits methods, and it is possible to override inherited methods. Providing a
method with the same name as a method provided by a superclass overrides that method. Just as
in the ADL, methods are inherited in a depth-first fashion. Unlike the ADL, local methods (such as
ADL constructors) are inherited. This is to encourage wrap class writers to provide a consistent
ADL constructor interface.5

The contents of constructor and constructorFromFoundation are not inherited. This is in
keeping with the C++ treatment of constructors, and it is partly attributable to the special meaning
of the mpWrapped member. No matter how many wrapper descriptions a class inherits from, it
has only one mpWrapped member. The wrap script provides the preConstructor and wrap-
pedIsReady fragments (which are inherited by concatenation in the proper order) to allow a
superclass to initialize its members before and after mpWrapped is constructed and ready for
operation.

Useful Details

In addition to defining WRAP_FOUNDATION and WRAP_FOUNDATION_PTR, as described
above, the wrapper provides WRAP_IS_ABSTRACT and WRAP_IS_ADLSUBCLASSABLE,
which are either 0 (false) or 1 (true) depending on whether or not the wrapped class is abstract and
adlSubclassable respectively.

In an effort to cut down on the size of wrapped classes, the wrapper does not completely fill out
the class description for abstract, non-adlSubclassable classes since no instances of them will ever
be created. We call those ANAS classes. In addition, it does not include all of the inherited header
and source declarations. Unfortunately, hidden in the source sections are the includes of the gen-
erated header file and the include of the module in which the class is generated. Instead of includ-
ing the whole source section to provide the correct include statements, the wrapper uses some
heuristics to find and include only the needed include directives.

It is possible that the wrap script’s attempted short cuts will be too effective and break something.
The optional wrap directive ANAScuts: boolean keeps the wrapper from taking short cuts in
any class for which it is set to true, as well as in all of its subclasses. This feature is provided
only as an escape hatch in the unlikely event that the heuristics fail. If you have to use this escape
hatch, please let us know.

5 It also a big win in large wrapped hierarchies, such as the XFwidgets, where we do not have to respecify the
ADL constructor over and over again.

286 February 25, 1997

AthenaMuse 2.2 Documentation

B.3 The Wrap Script and the Macintosh

The wrapper generates code for the Macintosh. This involves three things:

1) #pragma once goes in the generated .h file as follows:

 #ifdef macintosh
 #pragma once
 #endif // macintosh

2) The three random code blocks (notice, source, and header) go in the code in the follow-
ing template:

 #ifdef macintosh
 macSection
 #else // macintosh
 normalSection
 #endif // macintosh

The wrap script writes normalSection in the .wrp file, and treats macSection the same, with
the include statements corrected for the Macintosh. This correction involves dropping all direc-
tory specifications in the lines of the include statement, except for those of the Rogue Wave™
class library. For example:

 #include <utils/UTtypes.h> becomes #include <UTtypes.h>
 #include <UTtypes.h> remains #include <UTtypes.h>
 #include <rw/cstring.h> remains #include <rw/cstring.h>

3) The wrap script adds #pragma segment commands to the generated .cc file. The default
segment for all methods in the file is the same as the name of the wrapped class. The wrapper adds
the following to the top of each generated .cc file (with the correct name substituted for XFbut-
tonRO).

 #ifdef macintosh
 #pragma segment XFbuttonRO
 #endif // macintosh

To handle future optimization on the Macintosh, you can specify a segment for each method by
preceding the signature with the desired name enclosed in square brackets. For example:

[yourSegmentNameHere] UThandle requestContainer(UThandle hParent)

Note that the segment names set this way have effect only for that particular method.

AthenaMuse 2.2 Documentation

February 25, 1997 287

B.3.1 Command Line Interface

The following is an example of using the wrapper. The command line:

$(TOOLS_DIR)/wrap $(WRAPFLAGS) XFbuttonRO.wrp $(WRAP_H_DIR) $(WRAP_CC_DIR)

causes the wrapper to generate:

$(WRAP_H_DIR)/XFbuttonRO.h
$(WRAP_CC_DIR)/XFbuttonRO.cc

The wrapper exits with zero status if it completes successfully, and with a non-zero status if there
is a problem. The remaining sections cover the legal flags for the wrap script: +depend, -l, -
mac, and +Wdirectory.

+depend

The wrapper does not generate its usual C++ header and source files when given the +depend
flag. Instead, it outputs make-style dependencies for the source file it would have generated. For
instance, the wrapper generates the following dependencies for the generated XFbuttonRO.cc file.

./XFbuttonRO.cc: ../../generic/src/ActivityManagerRO.wrp

./XFbuttonRO.cc: ../../generic/src/AttributeManagerRO.wrp

./XFbuttonRO.cc: ./XFwidgetRO.wrp

./XFbuttonRO.cc: ./XFcontainableRO.wrp

./XFbuttonRO.cc: ./XFsimpleRO.wrp

./XFbuttonRO.cc: ./XFfontableRO.wrp

./XFbuttonRO.cc: ./XFlabelRO.wrp

./XFbuttonRO.cc: XFbuttonRO.wrp

-l

The wrap script attempts to trick the compiler into reporting errors related to the .wrp file,
although this mechanism is not always perfect. If you really cannot see the problem at a line, you
may use the -l flag to turn off line numbering. With the -l flag, the compiler reports errors
where it thinks they occur in the generated .h and .cc files. Note that you have to rewrap the file
for the this flag to be useful.

-mac

By default, the wrapper creates code for the Macintosh platform. Using the -mac flag suppresses
this behavior in case you ever have to read the generated files.

+Wdirectory

The +Wdirectory argument appends directory to the search path that the wrap scripts uses
when it tries to find files describing superclass descriptions. It is the analog of the -I flag used by
C/C++ compilers.

288 February 25, 1997

AthenaMuse 2.2 Documentation

AthenaMuse 2.2 Documentation

February 25, 1997 289

Index

Symbols
! operator 21
!: operator 20
!= operator 20
% operator 20
& operator 21, 22

and handles 39
&& operator 21

order of evaluation 19
() delimiters 19
() operator 21
(] delimiters 19
* operator 20, 21, 25

and handles 39
+ operator 20, 22
. operator 21, 52
/ operator 20
/* comments 14
// comments 14
: operator 18, 20
:: operator 21
< operator 20
<< operator 22, 23, 31
<= operator 20
== operator 20

in indexed array 25
=> operator 23
-> operator 21, 52

and handles 39
> operator 20
>= operator 20
>> operator 23, 31
? operator 23

and unset values 28
in arrays 27

?=> operator 23
?|> operator 23
@ operator 24
[] delimiters 19
[› delimiters 19
{} delimiters 16, 19
|> operator 23
|| operator 21

order of evaluation 19

A
abstract field

in wrap file 275
abstract wrapped class

See wrapped class: abstract
access control 41

in wrapped classes 45
access to members

in creating a wrapped class 278
acos() built-in function 267
activities 60

and buttons 60
creating new 72
for subscription notification 80
in wrapped classes 112
inheritance and 70
keys 63
management of 59, 70
mouse events 63
system-defined wrapped classes 113

activities and application services
class inheritance tree 114

ActivityManager class 70, 116
inheritance example 76
inheriting from 75
Moveable class example 77

addition operator 20
address of operator 21
ADL

design decisions 5
ADL class

See class: user-defined
ADL sample programs

image viewer class 88
picture button class 92
toggle button class 81
video viewer class 99

adlSubclassable field
in wrap file 276

ANAS class 285
and operator 21
animated visuals

objects 191
anonymous keyword

in class definition 41
any keyword 18

AthenaMuse 2.2 Documentation

February 25, 1997 290

append operator 22
application scope 52
application services

system-defined wrapped classes 113
applications

ADL description of 49
at runtime 3
customization of 54
parts of 3
portability of 54

arithmetic operators 20
array elements 27
array operators 23
arrays

associative 26
indexed 25

asin() built-in function 267
asset blocks

class 54
global 54
member 54

asset manager
in initialization 50

assets 54
and application structure 3
and inheritance 56
and libraries 55
and precedence 56
examples 56
file structure 54
on platforms 54
short definition 3

assignment
examples 25
in type conversion 28
indexed array as target 25
short definition 3

associative arrays 26
example 27

asynchronous message 30
asynchronous message operator 23
atan 267
atan() built-in function 267
atan2() built-in function 268
AttributeManager class 118
audio 187

audio gain 180
AVwaveForm wrapped class 189

B
base type constants 15

short definition 3
base types 14

and new operator 37
short definition 3

boolean base type 14
boolean constants 15
boolean operators 21

order of evaluation 19
built-in function call operator 21
built-in function calls 29

examples 29
listing of 261
short definition 3
type conversion in 28

button
Pressed attribute 60, 62
push 141
radio 144
sample program 60, 61
toggle 142, 143, 144

C
C++ class

how to wrap 272
visible to ADL 271

C++ compared to ADL 5
access control 41
arrays and pointers in C++ 26
assignment 25
class definition 40
commenting 14
control structures in ADL 33
double in C++ 15
formatting 14
long in C++ 14
multiple inheritance 48
operator set 19
pointers in C++ 15, 40
static in C++ 18, 41
virtual functions in C++ 48

C++ protection levels

AthenaMuse 2.2 Documentation

February 25, 1997 291

in creating a wrapped class 278, 279
canConvert() built-in function 264
ceil() built-in function 268
channel selection 180
class

built-in function calls 269
hiding a 41, 47
mix-in 49, 75
subclass 41
system-defined 40, 44
user-defined 40, 44

class asset blocks 54
class definition 40

examples 40
short definition 3

class inheritance tree
activities and application services 114
input/output module 199
media module 172
user interface module 123

class keyword 40
class name

and scope 45, 52
in object definition 34

className() built-in function 269
classOf operator 22

in metaclass operations 43
Clone method 37
clone object operator 22, 37
code fragments

in wrap file 276
commands, external

execution of 233
comments

in wrap script 272
multi-line 14
single-line 14

common data member 18, 41
common method 42
complex types 25

short definition 3
compound types 16

and new operator 37
short definition 3

compute order
changing 19

concatenate list operator 22
concatenate string operator 22
concatenate with space operator 22
cond control structure 33
Construct system message 47, 50
constructor fragment

and inheritance 285
in wrap file 276

constructor method
Construct 61
Create 62
in wrapped classes 111
syntax of 51

constructorFromFoundation fragment
and inheritance 285
in wrap file 277

container
for widgets 128, 131

control flow 33
control structures 33

short definition 3
conversion

built-in function calls 262
cos() built-in function 267
cosh() built-in function 268
ctor keyword 279
customization of applications 54

D
data structures

system-defined wrapped classes 255
database

objects in 244
system-defined wrapped classes 239

database connection
external 243

database query 247
date

built-in function call 262
DBcursor wrapped class 243, 244
DBdatabase wrapped class 240, 243, 244
DBdate wrapped class 247
DBmonetary wrapped class 254
DBquery wrapped class 247
DBset wrapped class 245, 249, 250, 251
DBtime wrapped class 252

AthenaMuse 2.2 Documentation

February 25, 1997 292

DBtimestamp wrapped class 253
delete operator 22

and objects 36, 38
delimiters

compute order 19
interval pairs 19
lists 19

dereference operator 21
derived keyword 48, 75
destroy method

and delete operator 38, 74
in wrapped classes 112
use of 74

Destroy system message 47
destruction of objects 38

and inheritance 47
destruction of variables 18

in assignment 25
dialog box

for messages 136
digital audio 187
directory names

in asset files 55
display surface

for HTML objects 134
for media objects 133

division operator 20
DSdictionary

See arrays
DSqueue wrapped class 255
DSstack wrapped class 257
dynamic object creation 54

and global asset blocks 55
examples 37
short definition 4

E
e() built-in function 269
echo() built-in function 261
equal operator 20
error handling methods

for mathematical built-in functions 115
event loop

interaction with 115
exp() built-in function 267
expressions

example 24
short definition 4

external commands
and input streams 235
and output stream 236
and process filter 235
execution of 233

external process
input and output streams 207
system-defined wrapped classes 233

extract() built-in function 265

F
fabs() built-in function 268
file streams

event notification 201
files

name specification 206
find() built-in function 265
first() built-in function 264
floor() built-in function 268
fmod 268
fmod() built-in function 268
font object 164
fonts 138
for i in array control structure 33
for i in list control structure 33
foreign assignment 38
foreign characters

See XFfont wrapped class
formatting 14
forward statement 43
foundation class 272
foundation field

in inheritance description 284
in wrap file 275

foundationRO field
in inheritance description 284
in wrap file 275

fractionPart() built-in function 268
FTP

data entity 222
input data stream 225
protocol support 212
request structure 219

function operators 21

AthenaMuse 2.2 Documentation

February 25, 1997 293

G
get operation

in creating a wrapped class 278
get operator 23, 31
GetLibrary method 55
getType() built-in function 264
global asset blocks 54
global keyword 52
greater than operator 20
greater than or equal to operator 20

H
handle base type 15
handle constants 16
handle operators 21
handles 49

and wrapped classes 46
built-in function calls 269
to objects 16, 39
to variables 39

header section
in inheritance description 284
in wrap file 276

hostName() built-in function 270
HTTP

data entity 222
input data stream 227
protocol support 215
request structure 220

I
identifiers 14

short definition 4
Idle activity 116
idle time work procedures

subscription for 115
image

classes supported in AM2 184
image viewer class 88

sample program 91
indexed arrays 25

example 26
inheritance 47

built-in function calls 269
example of 71
lookup 48

member concealment 47
method concealment 48
multiple 48
order in 284
short definition 4

inherited keyword 47, 48
init method

in wrapped classes 112
Init system message 47, 50
initialization 49

and inheritance 47
example 50
short definition 4

initializor block 50
and new operator 37
and scope 52
in object definition 35

input and output selection for media 180
input/output

built-in function calls 261
system-defined wrapped classes 199

input/output module
class inheritance tree 199

integer base type 14
integer constants 15
integerPart() built-in function 268
interval compound type 17

example 18
interval constant 17
interval pairs

formation of 19
IOactNotify wrapped class 201
IOfile wrapped class 205
IOfileSpec wrapped class 206
IOftp wrapped class 212
IOftpEntity wrapped class 222
IOftpRequest wrapped class 219
IOftpStream wrapped class 225
IOhttp wrapped class 215
IOhttpEntity wrapped class 222
IOhttpRequest wrapped class 220
IOhttpStream wrapped class 227
IOnwNotify wrapped class 201
IOpipe wrapped class 207
IOstream wrapped class 202
IOurl wrapped class 208

AthenaMuse 2.2 Documentation

February 25, 1997 294

IOweb wrapped class 211
IOwebEntity wrapped class 221
IOwebRequest wrapped class 218
IOwebStream wrapped class 223
is a member of interval operator 20
is element operator 23
is not a member of interval operator 20
is value set operator 23
isAlpha() built-in function 265
isBoolean() built-in function 264
isDirectBaseOf() built-in function 269
isEmpty() built-in function 265
isHandle() built-in function 264
isInteger() built-in function 264
isInterval () built-in function 264
isInterval() built-in function 264
isKindOf() built-in function 44, 269
isList() built-in function 264
isReal() built-in function 264
isString() built-in function 264
isTime() built-in function 264
isValid() built-in function 269
isVtype() built-in function 264

L
labels

See XFfont wrapped class
length() built-in function 265
less than operator 20
less than or equal to operator 20
lexical conventions

in the ADL 14
in wrap script 272
short definition 4

libraries
in assets 55
short definition 4

library names
in asset files 55

list compound type 16
list operators 22
list selection 148
lists

and unset values 28
examples 17
formation of 19

local keyword 279
local method 42, 47
local scope 52
localDate()built-in function 262
localTime()built-in function 262
log() built-in function 267
log10() built-in function 267
lvalue

and handles 15
and stream operators 31
in arrays 27
in assignment 25
in object member reference 38

M
managing activities

See activities: management of
mathematical built-in function calls 266
MCapplication wrapped class 115, 118
media

HTML objects 195
non-sequential 184
objects 182, 191
sequential 176
system-defined wrapped classes 171
time-based 176
visual 174

media module
class inheritance tree 172

MEgif images 184
MEjpeg images 184
member access

in creating a wrapped class 278
member asset blocks 54
member operators 21
members

in inheritance description 284
in wrapped classes 112
protection of 51
reference to 45, 51

members section
in wrap file 277

menu 160
commands 161
items 159
labeled items 159

AthenaMuse 2.2 Documentation

February 25, 1997 295

separators 162
MEpbm images 184
MEphotoCD images 184
message dialog box 136
message list

in method definition 41
message operators 23, 30
message prototype

in method definition 41
messages

asynchronous 30
examples 30
parts of 30
short definition 4
synchronous 30
type conversion in 28

metaclass operations 43
short definition 4

metaclass operators 22
method definition 41

examples 42
short definition 4

method description
in creating a wrapped class 279

method invocation
and wrapped classes 46

methods
and inheritance 285
in inheritance description 285
in system-defined wrapped classes 112

methods published in wrapped class
arguments and return types 279

methods section
in wrap file 279

MEtiff images 184
MExbm images 184
mix-in class 75
MLtop wrapped class

See XFtop wrapped class
MMaudioControl wrapped class 180
MMbase wrapped class 173
MMbroker wrapped class 182
MMcontrol wrapped class 183
MMdigitalAudio wrapped class 187
MMhtml wrapped class 195
MMimage wrapped class 184

MMmovie wrapped class 191
use of 99

MMtemporal wrapped class 176
MMvidDiscPlayer wrapped class 193
MMvisual wrapped class 174
module field

in wrap file 275
MouseNro wrapped class 65, 115, 116, 118,

120
multiple inheritance 48

and scope, example 49
multiplication operator 20

N
naming

and wrapped classes 46
native assignment 38
network streams

event notification 201
XDR data representation 229

networking
built-in function calls 270

new operator 22, 36, 44
not equal operator 20
not operator 21
notice section

in wrap file 274
notification request objects 62

and timers 67
customization example 79
customized 78
definition of 62
example of 64
receiving method arguments 63
special classes 65
Suscribe method 62
Unsuscribe method 62
wrapped class 118, 120, 121

NRO
See notification request objects

Nro wrapped class 62, 78, 118
null values 27

O
object creation operator 22
object declaration

AthenaMuse 2.2 Documentation

February 25, 1997 296

See object definition
object declarator 34
object definition 34

form of 34
short definition 4

object destruction operator 22
object member reference

See also members: reference to
short definition 4

object operators 22
objects

and assignment 25, 36
and handles 16
and new operator 36
and scope 36
as argument in message 31
destruction of 4, 38
dynamic creation of 36
handles 39
in database 244
initialization 49
not allowed in lists 16

on keyword
in method definition 41

opaque scope 52
operators

arithmetic 20
array 23
boolean 21
function 21
handle 21
list 22
member 21
message 23
metaclass 22
object 22
relational 20
stream 23, 31
string 22

or operator 21
order

in inheritance 284
overloading

of selectors 42

P
parent keyword 40
pi() built-in function 269
picture button class 92

sample program 98
polymorphism 49
postDestroy

in wrap file 277
pow 266
pow() built-in function 266
preConstructor fragment

in wrap file 276
preDestroy

in wrap file 277
presentations 171

presentationID 171
Pressed attribute

of button 60, 62
sample program 60, 61

process filter 235
program structure 58

short definition 4
promotion

type conversion in 28
protection levels

in creating a wrapped class 278, 279
push button 141
put operator 23, 31

Q
queue 255

R
random ()built-in function 267, 268, 269
random() built-in function 266
read() built-in function 261
real base type 15
real constants 15
relational operators 20
remainder operator 20
remove operator 23

in arrays 27
resource resolution operator 24
rest() built-in function 265
return keyword 42
runtime type checking example 43

AthenaMuse 2.2 Documentation

February 25, 1997 297

rvalue
in indexed array 25

S
scope 52

and class name 45, 52
and member reference 52
application 52
example 53
local 52
opaque 52
problems in 52
short definition 4
transparent 52

scope pair 47
scope resolution operator 21

use of 47
scrolling area 156
selection

from list 148
selector

in message 30
in method definition 41
overloading of 42

self keyword 47, 48
and wrapped classes 46
in method definition 42

send asynchronous message operator 23
send message operators

overloading of 19
send optional asynchronous message operator

23
send optional synchronous message operator

23
send synchronous message operator 23
sender keyword 42
sequences

built-in function calls 264
services, application

system-defined wrapped classes 113
set operation

in creating a wrapped class 278
Set_ methods 38, 41
SetAttributes

call 39
method 39, 52

SetLibrary method 55
simpleNro class 69
sin() built-in function 267
sinh() built-in function 268
sink

for HTML objects 134
for media objects 133

SND audio format 187
source section

in inheritance description 284
in wrap file 276

special constructor
and inheritance 78
and new operator 37
and SetAttributes method 39
in object initialization 50

split() built-in function 265
sqrt() built-in function 266
stream operators 23, 31
streams

and external process 207
event notification 201
network 229

string base type 15
string constants 16
string operators 22
strings

built-in function calls 265
examples 16

subclass
creation of 45

subtraction operator 20
Sun au audio format 187
superclasses

in inheritance description 284
synchronous message 30
synchronous message operator 23

T
tan() built-in function 267
tanh() built-in function 268
text 151, 153
text label 139
theApp 115

and timers 67
theAppClass 58, 115

AthenaMuse 2.2 Documentation

February 25, 1997 298

theClass operator 22
theHeap keyword 40
Tick activity 116
time

built-in function call 262
time compound type 17
time-based media 176
TimerNro wrapped class 67, 121

sample program 68
timers 67, 116

subscription for 115
toBoolean() built-in function 262
toggle button 143
toggle button class 81

sample program 86
toInteger() built-in function 28, 262
toInterval() built-in function 263
toList() built-in function 263
toLower() built-in function 266
top level

for widgets 129
toReal() built-in function 28, 263
toString() built-in function 263
toTime()built-in function 263
toUpper() built-in function 266
transparent scope 52
type checking

ADL handles 44
type constants 16
type conversion 28

short definition 4
type query

built-in function calls 264

U
unary minus operator 20
unary plus operator 20
Uniform Resource Locator

See URL
UNSET constant 27

example 28
unset values 27, 30

and wrapped classes 46
upon keyword 51, 279
URL object
user interface

system-defined wrapped classes 123
user interface module

class inheritance tree 123
userName() built-in function 270
uses statement 58

forms of 58

V
vanillaNro class 69
variables

definition of 4, 18
definition of, example 18
destruction of 18

video
device controller 193
objects 191

video viewer class
sample program 99

viewing area 156
void as foundation class

in wrap script 275
vtype base type 15

W
WAV audio format 187
widget containment

in ADL 51
See also containers

widgets
base 125
button 141
container for 131
display surface 133
HTML documents 134
message dialog 136
multiple-line text 151
scroll bar 156
selection list 148
simple 138
single-line text 153
text label 139
toggle button 142, 143, 144
top level 129

work procedures
idle time 116

World-Wide Web

AthenaMuse 2.2 Documentation

February 25, 1997 299

data entity 221
input data stream 223
protocol support 211
request 218
URL object 208

wrap file
explanation of parts 274

wrap script
and the Macintosh 286
command line interface 287
inheritance model 280
model for 271

WRAP_FOUNDATION macro
in wrap script 275

WRAP_FOUNDATION_PTR macro
in wrap script 275

wrapped asset manager
and library mappings 55

wrapped class 44
abstract 45, 276
and handles 46
and method invocation 46
and naming 46
and self keyword 46
as object in current scope 36
in metaclass operations 43
inheritance description 283
member access 45

wrapped class, creation of 271
and inheritance 276
example with inheritance 282
example without inheritance 280
members and protection levels 278
methods and protection levels 279
publishing members 278
publishing methods 279

wrapped class, system-defined
activities and application services 113
data structures 255
database 239
external processes 233
input/output 199
listing of 111
media 171

user interface 123
wrapped field

in wrap file 275
wrapped objects 46
wrappedIsReady fragment

in wrap file 277
wrappedIsReady() function

and inheritance 277
wrapper

See wrap script

X
XFbutton wrapped class 60, 136

Pressed activity 60
sample program 60, 61

XFcheckBox wrapped class 143
XFcontainable wrapped class 128
XFcontainableContainer wrapped class 129
XFcontainer wrapped class 128
XFfont wrapped class 164
XFfontable wrapped class 138
XFhtml wrapped class 134
XFlabel wrapped class 139
XFlayout wrapped class 131
XFmenu wrapped class 160
XFmenuCommand wrapped class 161
XFmenuItem wrapped class 156
XFmenuLabeledItem wrapped class 159
XFmenuSeparator wrapped class 162
XFmessageDlg wrapped class 136
XFradioButon wrapped class 144
XFscrollBar wrapped class 156
XFselectList wrapped class 148
XFsimple wrapped class 138
XFtext wrapped class 60, 151, 153
XFtoggleButton wrapped class 142
XFtop wrapped class 129
XFwidget wrapped class 125
XGpainter wrapped class 167
XNstream wrapped class 229
XTcommand wrapped class 233
XTprocFilter wrapped class 235
XTprocSink wrapped class 235
XTprocSource wrapped class 236

