The Precession of the Perihelion of Mercury Based
on a Solution to GEM’s Field Equations

In a Yahoo discussion group, a question was raised as to whether the GEM uni-
fied field proposal was consistent with the precession of the perihelion of Mer-
cury results. My stock reply is that the coefficients of the GEM metric are
identical to those of the Schwarzschild metric only to first order PPN accuracy,
the level used in the calculations, ergo the results must be identical. I like a
short, solid reply.

I also like a long-winded one, because it shows all the nuts and bolts. I have
read in many places about the precession of the perihelion of Mercury, yet
didn’t get how they actually did the darn calculation. There were always a few
steps that I did not follow. While reading through the Sean Carroll’s Lecture
notes on GR, I decided to try and figure out the details. Here I write it all out.
This is not easy or short, but for those willing to work at it, might be a unique
information source.

Start with the GEM field equations with the gauge choice of a constant 4-poten-
tial, then for a spherically symmetric, non-rotating, uncharged mass, the metric
which solves the field equations is:

dr?=exp(—252)dt? — exp(255)d R/ — (R/c)?(db? + sin®0 d¢?)

A couple of procedural things. I like to baby step through derivations: if there
is one division to make, I write it out, just like I would do with a pencil, but
this time with TeX. Because I was initially trained to get the units right, I still
keep that tradition going as an internal consistency check, instead of adopting
natural units.

Let’s make the metric simpler by making some reasonable assumptions about
the angle 6, namely that it is always in a plane at angle 7/2 so that dd =0 and
sin?0 = 1. Write out the metric with these substitutions:

o) AR/ — (R[c)*dg?

dr?=exp(—2 ;g)dtQ exp(

What one is suppose to do is work with the equation of motion, looking for a
constant of the equation of motion. Sometime though, it is quicker to cheat a
little, and just divide the above expression by d72 to get here:

1= exp( = 25 (51)? — 1/ exp( ) () ~ (R/0 (52
Let’s get rid of the exponential in front of the dR/dr.

G G be d
exp(—?%):eXp(—ZL M)( ) _1/ ( ) Xp(—2 2%)(R/C)2(d_<77>)2

For our solar system, the exponent is really tiny, so we can use the Taylor series
expansion to one term of the exponent. One slight trick is that the -4 one is
like a -2 exponent squared. Approximate away:

(1-255) = (1= 255)°(5)% ~ /(5 = (1 - 250 (R/0)*()”




Notice that this expression is not a function of either time ¢ or angle ¢. This
means there is a conserved quantity associated with change in the time (energy
FE) and a change in angle (angular momentum L). Come back at a later time,
the expression stays the same. Spin around a few degrees, the metric stays the
same. Something like this happens for Lagrange densities. The same logic
applies to metrics. This time the idea goes by a different name: Killing vectors.
I do not understand enough of the details, sorry, but it turns out that a Killing
vector works like this:

(conserved thingie) = (Killing vector foo)(velocity foo)

Do this for energy and angular momentum, normalizing to a test mass:

dt

E/mé2=KV;=(1—2%2 0,0,0)(%,0,0,0) = (1 - 252) 4t

2R7
L/mc=KzVs=(0,0,0,R/c)(0,0,0,R %)= R?/c %
Calculate the squares of these:

(B/mc*)?=(1-255)4(5)*

(L/me)?=RA(3)*/¢

Plug these back into the metric expression:
dR GM
(1—253) = (B/me?)? — 1/X(GH)? — (1 - 253) (L /mc)?/ R?

Let’s pause and catch our breath, there still is a long way to go. All that has
happened is to introduce two constant quantities, the energy F and angular
momentum L, into the metric expression. The equation still displays

the “bending factor”, the (1 — G]g) which is equal to one for Newtonian
gravity. We could stop here because this expression is identical to the one for

GR, but let’s continue.

The next task is to do classical celestial mechanics. Talk about an area of
weakness for me! The way this is done is to work with the two invariants:
energy because Newtonian gravity is conservative, and angular momentum
because the system is isolated. The cause of the planets whirling around is a 1/
R potential, gravity. For that reason, we need to change the variable.

U=1/R

dR dR d 1 dU au
F:%d_f:(_ﬁ 2)(LU?/m)=—L/m 3

Plug these into the equation-that-used-to-be-the-metric:

(1 - 2507 U) = (B/me?)? - L2/ (m? ) (49)? ~ (1 -

T Y U)(UL/mc)?

Multiply this out for U, and bring all the terms to one side of the equation:

0=(B/mc?)? — L2/(m?*)(55)* = 1+2 S U — UL2/(m?*) + 2 S U L2/ (m?c?)



Take the derivative with respect to ¢ which will drop a few constant terms.

0=—2L2/(m?c) 4040 +2 G180 oyl 12/ (m?e2) +6 S U2 51 L2/ (m?e?)

.. 2 dU 2 9\,
Divide all the terms by —2L %/(m c?):

2U  GM
d¢?  2L?

GM

0=

The first three terms are classical Newtonian gravitational physics. The fourth
term is the correction required by GR and GEM. First we need to understand
the Newtonian gravity solution, ignoring the correction. Here is the Newtonian
expression to solve:

_d*u GM 9 9
0—d¢2—C2L2m cc+U

Guess a solution. Fortunately, this differential equation is a variation on a
common equation with a cosine solution. Thing is, the circle will be a tad
eccentric, so include the eccentricity e:

Guess: U =M1 2L2 m?c*(1+ ecos(¢p — do))

dU GM
%:_chzm ¢ 631n(¢ ¢0)
d’u GM
d¢? - 2 1.2 m2 CQGCOS(QS - ¢U)

Put it all together:

— ngm ctecos(d — ¢o) — Cj% m%%—?ﬁ c + 2L2m202ecos(<zﬁ—q50):0
QED

At the perihelion, cos(¢ — ¢p) =1. Now will can get an expression for R at the
perihelion with no corrections:

U:L C:%m A(1+e)
the perihelion distance is R=a(1 —¢€) for an ellipse with a semi-major axis of a.
Plug this in, and divide by (1+¢):
1 ~ GM 2 92
a(l—e?) zrzm e

This will be useful because in a short while we will see a SY = m?c?, and we can

22
drop the ——- P right in.

How do we now deal with the correction? Well the Newtonian solution is
pretty darn good, so we can use that as a place to start. The correction term
has U?, so calculate that:

U?= (%m2 A)2(1+2ecos(p — ¢g) + €2 cos?® (¢ — ¢y))

c2 L2

Put this back into the differential equation:

0= — aprm? ¢+ U =3 G (Gram? (1L + 2ccos(9 — go) + ¢ cos® (¢ — 6u))



Which of these three terms matters? The first one is a constant term, much
smaller than the constant term we already have since it has a factor of (GM/
c?)3. A small number cubed can be safely ignored. The second term oscillates
just like the Newtonian solution, so it will always be adding into the results.
This “on resonance” terms will continually add up so the term matters. The
squared cosine term will not be in tune with the dominant Newtonian solution,
so it will add a periodic perturbation to the path, a form of noise. Keep only
the middle term of U?:

d2U GM

0= ¢z 2L?

m?+U —6 S22 ST ME A ¢t e cos(é — o)

What is the solution for this differential equation? If we can find an expression
that drops the cosine term, then that expression with the previous solution
would do the trick. We will need a sine or cosine, and something to make terms
drop.

Guess: Ucorrection = ¢ Sin(qs - ¢0)
S5 = 6 cos (¢ — o) +sin(¢ — ¢)

37[2]:— ¢ sin (¢ — ¢g) + cos (¢ — ¢g) + cos(P — ¢g)
%+U:—¢sin(¢—¢o)+2cos(¢—¢0)+¢Sin(¢_¢o):2cos(¢_d)o)

The right coefficients in front of this correction term will cancel the — 6 cos
term. Combine the correction term with the Newtonian solution:
G3 M3 .

U=2< 2L2 m?* (1 +ecos(d — ¢o)) +3 57 m* c* e sin(d — ¢o)
Cosine is an even function, sine is an odd function, and ¢sin ¢ is an even func-

3
tion. Because —5 ;- is so small, only the first term of its Taylor series expan-
sion is going to matter, and it will behave like it subtracts a bit off of a cosine.
Bring the correction into the cosine, noticing a G M /L? is already shared:

U~ G2 m2 (1 +ecos(¢p— do—3 CEME 02 2 ?))

- 2 L2 A L2
How much does ¢ change? In one revolution it would go 27. Calculate the
ratio of no correction to correction:
1

G2 m?
c4r2

A ¢1 revolution = 27T

~ 2 (143 L m? &)

m2c¢

. G? M2 .
The advance is 67 ——m?c¢®. Now we can use the result found earlier for the

cA L2

major axis and the eccentr1c1ty[ﬁ_ m 2]
Advance /revolution =67 ﬁ

G=6.67 x 107""'m3/kg s
My =1.99 x 100kg
a=5.79x 10°%m



€=0.206

c¢=3.00 x 10%m/s

(1revolution/88.0 days)(365.25 days/year)(100 years/century) =415 rev/cent.
(180° /7 radians)(60’/°)(60"/") = 2.06 x 10°" /radian

6 3.14 radians 6.67 x 10~ 1m3/kgs? 1.99 x 103%kg 415 rev/century 2.06 x 10% "/ /radian
5.79 x 1010m (1 — 0.2062) (3.00 x 108m/s)?2

=42.8" /century

This is what appears in all the books. I think this is tough to get all the details
clear and correct. I hope I achieved that goal.



