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Gravity  by Analogy  to EM

à Abstract

A Lagrange density for gravity is proposed based on a strict analogy to the classical Lagrangian for 
electromagnetism.  For local covariant coordinates where the connection is zero, the field equations are 
a four−dimensional wave equation.  The classic field equations contain both the Maxwell equations and 
Newton’s field equations under certain conditions.  The four−dimensional wave equation has been 
quantized before. The scalar and longitudinal modes of emission are interpreted as gravitons, so they 
can do the work of gravity. If gravitational waves are detected, this proposal predicts scalar or longitudi-
nal polarization. How the proposal integrates with the standard model Lagrangian is worked out.

A force equation is written based on the same strict analogy to the relativistic Lorentz force of electro-
magnetism. For geodesic motion, the cause of the curvature is due entirely to the gravitational and 
electric potentials. This is a new type of statement about curvature. A specific, normalized, weak−field 
potential is investigated. Analysis of small perturbations yields changes in the potential that depend on 
an inverse distance squared. By breaking spacetime symmetry, Newton’s law of gravity results. By 
using the chain rule, a stable, constant−velocity solution is apparent, which may yield insight to the 
rotation profile of galaxies and early big bang cosmology, since both require stable, constant−velocity 
solutions. If spacetime symmetry is preserved, the second−order differential equations can be solved 
exactly. Eliminating the constants and rearrange terms generates an equation that has the form of a 
metric equation. The Taylor series expansion of the metric equation is identical to the Schwarzschild 
metric to parameterized−post−Newtonian accuracy. The Taylor series for the two metrics differ for 
higher order terms and may be tested experimentally.

à Introduction

The goal of this paper is to create one mathematical structure for gravity and electromagnetism that can 
be quantized. The difference between gravity and electromagnetism is the oldest core problem facing 
physics, going back to the first studies of electromagnetism in the seventeenth century. Gravity was the 
first inverse square law, discovered by Isaac Newton. After twenty years of effort, he was able to show 
that inside a hollow massive shell, the gravitational field would be zero. Ben Franklin, in his studies of 
electricity, demonstrated a similar property for an electrically charged hollow sphere. Joseph Priestly 
realized this meant that the electrostatic force was governed by an inverse square law just like gravity. 
Coulomb got the credit for the electrostatic force law modeled on Newton’s law of gravity.

Over a hundred years later, Einstein started from the tensor formalism of electromagnetism on the road 
to general relativity. Instead of an antisymmetric field strength tensor, Einstein used a symmetric 
tensor because the metric tensor is symmetric. There is a precedence for transforming mathematical 
structures between gravity and electromagnetism.

The process of transforming mathematical structures from electromagnetism to gravity will  be contin-
ued. Specifically, the gravitational analog to the classic electromagnetic Lagrange density will  be 
written. There are several consequence of this simple procedure. The Lagrangian contains both terms 
with a connection and the Fermi Lagrangian of electromagnetism. This makes it reasonable to suppose 
the Lagrangian can describe both a dynamic geometry required for gravity and the Maxwell equations 
for electrodynamics. The gravitational field equations are analogues to Gauss’ and Ampere’s laws, and 
contain the Newton’s gravitational field equation. These field equations are not second rank like those 
used in general relativity. It must be stressed that the field strength tensor is a second order symmetric 
tensor, so this does not conflict with proofs that at least a symmetric second rank tensor is required to 
completely describe spacetime curvature. The Maxwell equations result if the gravitational field is 
zero. The field equations have been quantized before, but new interpretations will  flow from the unifica-
tion effort. A link to the the Lagrangian of the standard model will  be detailed.
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The process of transforming mathematical structures from electromagnetism to gravity will  be contin-
ued. Specifically, the gravitational analog to the classic electromagnetic Lagrange density will  be 
written. There are several consequence of this simple procedure. The Lagrangian contains both terms 
with a connection and the Fermi Lagrangian of electromagnetism. This makes it reasonable to suppose 
the Lagrangian can describe both a dynamic geometry required for gravity and the Maxwell equations 
for electrodynamics. The gravitational field equations are analogues to Gauss’ and Ampere’s laws, and 
contain the Newton’s gravitational field equation. These field equations are not second rank like those 
used in general relativity. It must be stressed that the field strength tensor is a second order symmetric 
tensor, so this does not conflict with proofs that at least a symmetric second rank tensor is required to 
completely describe spacetime curvature. The Maxwell equations result if the gravitational field is 
zero. The field equations have been quantized before, but new interpretations will  flow from the unifica-
tion effort. A link to the the Lagrangian of the standard model will  be detailed.

A weak static gravitational field in a vacuum will  be studied using standard modern methods: normaliz-
ing the potential and looking at perturbations. The potential will  be plugged into a gravitational force 
equation analogous to the Lorentz force equation of electromagnetism. The force equation leads to a 
geodesic equation where the potential causes the curvature, something which is missing from general 
relativity. Newton’s law of gravity is apparent if spacetime symmetry is broken. A new class of solu-
tions emerges for the gravitational source where velocity is constant, but the distribution of mass varies 
with distance. This may provide new ways to look at problems with the rotation profiles of disk galax-
ies and big bang cosmology. If spacetime symmetry is preserved, solving the force equation and elimi-
nating the constants creates a metric equation similar to the Schwarzschild metric. The metrics are 
equivalent to first−order parameterized post−Newtonian accuracy. Therefore the metric will  past all 
weak field tests. The coefficients are different to second−order, so the proposal can be verify or rejected 
experimentally.

à Lagrangians

The classic electromagnetic Lagrangian density has three terms: one for kinetic energy, one for a 
moving change, and a third for the antisymmetric second rank field strength tensor:

LEM = -
m

�������
ΓV

-
q

����������
c2 V

 
UΜ
�������
Γ

 AΜ -
1

����������
4 c2

 HAΜ,Ν - AΝ,ΜL HAΜ,Ν - AΝ,ΜL
An analogous Lagrangian for gravity would also contain these three components, but three changes are 
required. First, gravity depends on mass, not charge, so where there is an electrical charge $−q$, an 
inertial mass $m$ will  be substituted. The change in sign is required so that like charges attract for 
gravity. Mass does not have the same units as electric charge, so mass will  have to be multiplied by the 
square root of Newton’s gravitational constant $G$ to keep the units identical. Second, because gravity 
effects metrics which are symmetric, the source of gravity must also be symmetric. Therefore the 
minus sign that makes the electromagnetic field strength tensor antisymmetric will  be made positive. 
Third, in order that symmetric object transforms like a tensor requires a replacement of the standard 
derivative (symbolized by a comma) with a covariant derivative (symbolized by a semicolon):

Lg = -
m

��������
Γ V

+
�!!!G  m
�������������
c2 V

 
UΜ
�������
Γ

 AΜ -
1

����������
4 c2

 HAΜ;Ν + AΝ;ΜL HAΜ;Ν + AΝ;ΜL
The total Lagrangian will  be a merger of these two which only apply if the other force is not in effect. 
The kinetic energy term is the same as either Lagrangian separately. The moving charge term is a sum. 
Without loss of generality, the regular derivatives in the electromagnetic Lagrangian (Eq. L_EM) can 
be written as covariant derivatives. This leads to the unified Lagrangian for gravity and 
electromagnetism:

LgEM = -
m

��������
Γ V

-
q -

�!!!G  m
��������������������

c2 V
 
UΜ
�������
Γ

 AΜ -
1

����������
2 c2

 AΜ;Ν AΝ;Μ
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= -
m

��������
Γ V

-
q -

�!!!G  m
��������������������

c2 V
 HΦ - AÓ ×vÓL -

1
����������
2 c2

 AΜ,Ν AΝ,Μ -
1

����������
2 c2

 G ΜΝ
Ω  HGΡ

ΜΝ AΡ AΩ - 2 AΜ,Ν AΩL
The kinetic energy term is for one particle experiencing both gravity and electromagnetism. The Fermi 
Lagrangian of electromagnetism is a subset. This establishes a link to electromagnetism. The Christof-
fel symbols (or connection coefficients) represent derivatives of metrics. Because a dynamic metric is 
part of the Lagrangian, this Lagrangian could describe the dynamics of the metric, which is a central 
accomplishment of general relativity. The potential to do both gravity and electromagnetism is here. 

In local covariant coordinates, the connect is zero, which leads to a simpler expression of the 
Lagrangian:

LgEM = -
m
����
V

 $%%%%%%%%%%%%%%%%%%%%%%%1 - ikjj ¶RÓ
��������
¶t

y{zz2

-
q - G.5 m
��������������������
c2 V

 HΦ - AÓ ×vÓL -

1
����������
2 c2

 
ikjjjjJ ¶Φ

��������
¶t

N2 - HÑÓΦL2
- ikjj ¶AÓ

��������
¶t

y{zz2

+ HÑAÓL2y{zzzz
This is almost identical to working with the classical electromagnetic field equation by choosing the 
Lorenz gauge, the difference being the inclusion of a mass term. Because the gauge was not fixed, 
there is more freedom for this Lagrangian.

à Classical  Field  Equations

The field equations can be found by applying the Euler−Lagrange equations to the Lagrange density 
(assuming the connection is zero for simplicity):

�2 AΜ =
q -

�!!!G  m
��������������������

V
 
UΜ

��������
Γ c

The fields are expressed in terms of the potential. The symmetric and antisymmetric field strength 
tensors are very simpliar, differeing only in the sign of A^v;u.  The classical fields required to repre-
sent the field strength tensors should also be similar.  There is a symmetric analog to the electric E and 
B fields: To make a connection to the classical fields of gravity and electromagnetism, use the follow-
ing substitutions:

EÓ = -
¶AÓ
��������
¶t

- c ÑÓΦ

eÓ =
¶AÓ
��������
¶t

- c ÑÓΦ

BÓ = c J ¶
��������
¶y

-
¶

��������
¶z

,
¶

��������
¶x

-
¶

��������
¶z

,
¶

��������
¶x

-
¶

��������
¶y

N AÓ = c ÑÓ ´AÓ
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b
Ó

= c J-
¶

��������
¶y

-
¶

��������
¶z

, -
¶

��������
¶x

-
¶

��������
¶z

, -
¶

��������
¶x

-
¶

��������
¶y

N AÓ º ÑÓ  ´ AÓ
The symmetric curl as defined above has all the same differential operators, but all the signs are nega-
tive, so it is easier to remember.  The symmetric field strength tensor has four more components that 
lie along the diagonal.  Define a field g to represent the diagonal elements:

g = J ¶Φ
��������
¶t

, -c 
¶Ax����������
¶x

, -c 
¶Ay����������
¶y

, -c 
¶Az����������
¶z

N = ¶Μ AΜ

The diagonal of the field strength tensor A^mu ;nu is g. The first row and column of the asymmetric 
field strength tensor is the sum of the electric field E and its symmetric analog e. The rest of the off−
diagonal terms are the sum of the magnetic field B and its symmetric analog b. If the trace of field 
strength tensor is zero, then the equations are in the Lorentz gauge.

Substitute the classical fields into the field equations, starting with the scalar field equation:

Ρq - Ρm =
¶2 Φ
����������
¶t2

- c2 ÑÓ2 Φ

=
c
����
2

 HÑÓ ×EÓ + ÑÓ ×eÓL +
¶g0
����������
¶t

This eqation combines Gauss’ law and analogous equation for gravity.  The two equations are unified, 
but under certain physical conditions, can be isolated. A relativistic form of the Newtonian gravita-
tional field equation can be seen with the following constraints:

Ρm = c2 �Ó2 Φ

iff
¶AÓ
��������
¶t

= -c ÑÓΦ

This equation should be consistent with special relativity without modification.  The classical Newto-
nian field equation arises from these physical constraints:

Ρm = c2 ÑÓ2
Φ

iff
¶AÓ
��������
¶t

= -c ÑÓΦ and
¶g0
����������
¶t

= 0

Every aspect of classical Newtonian gravity can be represented by this proposal under these constraints.

Gauss’ law appears under the following conditions:

Ρq =
¶2 Φ
����������
¶t2

- c2 ÑÓ2 Φ

iff
¶AÓ
��������
¶t

= c ÑÓΦ

Repeat the exercise for the vector equation.
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-JÓm + JÓq =
¶2 A
����������
¶t2

- c2 Ñ2 AÓ
=

1
����
2

 ikjj-
¶EÓ
��������
¶t

+ c ÑÓ ´ BÓ +
¶eÓ
��������
¶t

+ c ÑÓ  ´ b
Óy{zz + c ÑÓgu

This has Ampere’s law and a symmetric analog for Ampere’s law for gravity.

This proposal for classical gravitational and electromagnetic field equations is expressed with tensors 
of rank one (vectors). Einstein’s field equations are second rank. Therefore the two approaches are 
fundamentally different. One must remember that although the field equations are rank one, the field 
strength tensor is second rank.

With no gravitational field, the Maxwell source equations result. The homogeneous Maxwell equations 
are vector identities with these choices of maps to the potentials, and are unaffected by the proposal.

à Canonical  Quantization

The classical electromagnetic Lagrangian cannot be quantized. One way to realize this is to consider 
the generalized 4−momentum:

ΠΜ = h 
�!!!G  

¶LEM��������������������
¶H ¶AΜ

��������c ¶t L = -FΜ0

Unfortunately, the energy component of the moment operator is zero. The commutator [x^0, pi^0] will  
equal zero, and cannot be quantized. The momentum for the unified Lagrangian of gravity and electro-
magnetism does not suffer from this problem: 

ΠΜ = h 
�!!!G  

¶AΜ
�����������
c ¶t

When expressed with operators, the commutator [x^0, pi^0]  will  not be zero, so the field can be quan-
tized. If the connection is zero, L_gEM generates the same field equations as the classical electromag-
netic Lagrangian with the choice of the Lorenz gauge. That field has been quantized before, first by 
Gupta and Bleuler (S. N. Gupta, Proc. Phys. Soc. London, 63:681−691, 1950). They determined that 
there were four modes of transmission: two transverse, one scalar, and one transverse mode. The 
interpretation of these modes appears internally inconsistent to this author. They discuss "scalar pho-
tons", but photons as the quanta of electric and magnetic fields must transform as a vector, not a scalar. 
They introduce a supplemental condition solely to make the scalar and longitudinal modes virtual. Yet 
there is no need to make a nonsense particle virtual.

The field in this proposal must represent both gravity and electromagnetism. The two transverse modes 
are photons that do all the work of electromagnetism. The symmetric second−rank field strength tensor 
cannot be represented by a photon because photons transform differently than a symmetric tensor. 
Whatever particle does the work must travel at the speed of light like the transverse modes of transmis-
sions of the field. These constraints dictate that the scalar and transverse modes of transmission for this 
proposal are gravitons.

There are efforts underway to detect the transverse gravitational waves predicted by general relativity. 
This proposal predicts the polarity of a gravitational wave will  be either scalar or longitudinal, not 
transverse, because those are the modes of transmission. The detection of the first gravitational wave 
polarization will  mark either success or failure of this unified field theory. 
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à Integration  with  the Standard  Model

The standard model does not in an obvious way deal with curved spacetime. A more explicit connec-
tion will  be attempted by condensing the unitary aspects of the symmetries U(1), SU(2), and SU(3) 
with the 4−vectors and a curved metric. Start with the standard model Lagrangian:

LSM = Y� ΓΜ DΜ Y

where

DΜ = ¶Μ -igEM YAΜ - igweak 
Τa
�������
2

 WΜ
a - igstrong 

Λb
�������
2

 GΜ
b

The electromagnetic potential A_mu is a complex−valued 4−vector. The only way to form a scalar with 
a 4−vector is to use a metric. Since it is complex−valued, use the conjugate like so:

AΜ AΝ* gΜΝ = È A0 È2 - È A1 È2 - È A2 È2 - È A3 È2

Use the parity operator to flip the sign of the spatial part of a 4−vector:

AΜ AΝ*p gΜΝ = È A0 È2 + È A1 È2 + È A2 È2 + È A3 È2

Normalize the potential:

AΜ
�������������È A È  

AΝ*p
�������������È A È  gΜΝ = 1

From this,it can be concluded that the normalized 4−vector is an element of the symmetry group U(1) if 
the multiplication operator is the metric combined with the parity and conjugate operators. One does 
not need the Y in standard model Lagrangian, so this simplifies things. The same logic applies to the 4−
vector potentials for the weak and the strong forces which happen to have internal symmetries.

In curved spacetime, the previous equation will  not equal one. Mass breaks U(1), SU(2), and SU(3) 
symmetry, but does so in a precise way (meaning one can calculate what the previous equation should 
equal). There is no need for the Higgs mechanism to give particles mass while preserving U(1)xSU(2)x-
SU(3) symmetry, so this proposal predicts no Higgs particle will  be found.

à Forces

The Lorentz Force of electromagnetism involves charge, velocity and the anti−symmetric field strength 
tensor:

FEM
Μ = q

UΝ�������
c

 HAΜ,Ν - AΝ,ΜL
Form an analogous force for gravity using the same substitutions as before:

Fg
Μ = -

�!!!G  m
UΝ�������
c

 HAΜ;Ν + AΝ;ΜL
The gravitational force and the electromagnetic force behave differently under charge inversion. If the 
mass changes signs, then both side flip signs, so nothing has really changed. If electric change changes 
signs, the change in momentum will  not change signs. The different behavior under charge inversion 
may explain why gravitational force is unidirectional, but electrical forces can attract or repulse.
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The gravitational force and the electromagnetic force behave differently under charge inversion. If the 
mass changes signs, then both side flip signs, so nothing has really changed. If electric change changes 
signs, the change in momentum will  not change signs. The different behavior under charge inversion 
may explain why gravitational force is unidirectional, but electrical forces can attract or repulse.

The total force is a combination of the two:

FgEM
Μ = Iq -

�!!!G  mM UΝ�������
c

 AΜ;Ν - Iq +
�!!!G  mM 

UΝ�������
c

 AΝ;Μ

If  q >> G^.5 m, the equation approaches the form of the Lorentz force law of electromagnetism. If the 
force is zero, the equation has the form of a Killing’s  equation, which is used to determine the isome-
tries of a metric. Geodesics are defined by examining the left−hand side of F_gEM:

¶m UΜ
��������������

¶Τ
= m 

¶UΜ
����������
¶Τ

+ UΜ 
¶m
��������
¶Τ

= 0

Assume dm/dtau = 0. Apply the chain rule, and then the definition of a covariant derivative to form a 
geodesic equation:

0 = m 
¶2 xΜ
������������
¶Τ2 +

m
����
c

 G ΝΩ
Μ  UΝ UΩ

This equation says that if there is no force, all the acceleration seen in spacetime is due to spacetime 
curvature, the Christoffel symbol. The covariant derivatives on the right side of F_gEM can also be 
expanded:

0 = Iq -
�!!!G  mM 

¶xΝ�����������
c ¶Τ

 AΜ,Ν - Iq +
�!!!G  mM 

¶xΝ�����������
c ¶Τ

 AΝ,Μ -
2
����
c

 mGΩ
ΜΝ UΝ UΩ

This equation says that spacetime curvature is caused by the change in the potential if there is no 
external force. This is a novel statement. In general relativity, one compares two geodesics, and based 
on an analysis of the tidal forces between the geodesics, determines the curvature. The unified geode-
sic equation asserts that the curvature can be calculated directly from the potential. Notice that this 
equation contains terms linked to a mass m and a charge q, so the geodesic equation applies to electro-
magnetism as well as gravity.

à Gravitational  Force  for  a Weak Field

The total unified force law is relevant to physics because it contains the Lorentz force law of electro-
magnetism. It must be established that the terms coupled to the mass m are connected to what is known 
about gravity.

Since the goal in this section is to study gravity, not electromagnetism, work with a potential that can 
only contribute to gravity, not electromagnetism. Since the first component of the potential does not 
appear in the antisymmetric field strength tensor, work with a potential with the form: A_mu = (A_0, 
0).

The next task is to find a solution to the unified field equations. The Poisson field equation of classical 
Newtonian gravity can be solved by a 1/R potential. The potential has a point singularity where R = 0. 
The unified field equations are relativistic, so time must also be incorporated. A 1/distance potential 
does not solve the field equations in four dimensions. In local covariant coordinates where the connec-
tion is zero, the potential A_mu = (1/sigm^2, 0) solves the field equations, where sigma squared is the 
Lorentz invariant distance, or the negative of the square of the Lorentz invariant interval tau. Distance 
is used instead of the interval because classical gravity depends on distance, not time.  The idea is to 
consider the time contribution to be very small relative to the distance.  Such a potential has as a singu-
larity that is the entire lightcone, where sigma ^2 = 0. This singularity may not be problematic because 
massless particles are described by the Maxwell equations, but that hope will  required a detailed study.
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The next task is to find a solution to the unified field equations. The Poisson field equation of classical 
Newtonian gravity can be solved by a 1/R potential. The potential has a point singularity where R = 0. 
The unified field equations are relativistic, so time must also be incorporated. A 1/distance potential 
does not solve the field equations in four dimensions. In local covariant coordinates where the connec-
tion is zero, the potential A_mu = (1/sigm^2, 0) solves the field equations, where sigma squared is the 
Lorentz invariant distance, or the negative of the square of the Lorentz invariant interval tau. Distance 
is used instead of the interval because classical gravity depends on distance, not time.  The idea is to 
consider the time contribution to be very small relative to the distance.  Such a potential has as a singu-
larity that is the entire lightcone, where sigma ^2 = 0. This singularity may not be problematic because 
massless particles are described by the Maxwell equations, but that hope will  required a detailed study.

Gravity is a weak effect. It is common in quantum mechanics to normalize to one and study perturba-
tions of weak fields, an approach that will  be followed here. Normalizing means there are small steps 
will  be away from one. Only first order terms will  be kept. Here is the normalized potential with a 
linear perturbation:

AΜ =
ikjjj �!!!G  h

�������������
c2 Σ2 , 0

Óy{zzz�
ikjjjjc � ikjjjj�!!!G  

ikjjjjikjj 1
����������!!!2 +

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!2 +

k
�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!2 +
k

�������
Σ2  t

y{zz2y{zzzzy{zzzz, 0
Óy{zzzz

This potential solves the 4D wave equation because the shift by the one over root two factor and the 
rescaling by the spring constant k over sigma square do not effect the differential equation.  One inter-
esting aspect is the shift of units from one that depends on h − suggesting quantum mechanics − to the 
normalized perturbation which appears to be classical because there is no h.

Take the derivative with respect to t, x, y, and z:

¶Φ
��������
¶t

=
c2 k

����������������!!!G  Σ2
+ O Hk2L

c 
¶Ax����������
¶x

= -
c2 k

����������������!!!G  Σ2
+ O Hk2L

c 
¶Ay����������
¶y

= -
c2 k

����������������!!!G  Σ2
+ O Hk2L

c 
¶Az����������
¶z

= -
c2 k

����������������!!!G  Σ2
+ O Hk2L

The change in the potential is a function of a spring constant k over sigma squared.  The classical 
Newtonian dependence on distance is an inverse square, so this is promising.  One problem is that a 
potential that appliex exclusively to gravity is saught.  The sign of the spring constant k does not effect 
the solution to the 4D wave field equations.  The sign of the spring constant k does change the deriva-
tive of the potential.  Therefore a potential that only has derivatives along the diagonal of the field 
strength tensor can be constructed from two potentials that differ by string constants that either construc-
tively interfere to create a non−zero derivative, or destructively interfere to eliminate a derivative.
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diagonal SHO AΜ =

c
����������!!!G  

ikjjjj1 � ikjjjjikjj 1
����������!!!2 +

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  y

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  z

y{zz2

-

ikjj 1
����������!!!2 +

k
�������
Σ2  t

y{zz2y{zzzz + 1 � ikjjjjikjj 1
����������!!!2 -

k
�������
Σ2  x

y{zz2

+

ikjj 1
����������!!!2 -

k
�������
Σ2  y

y{zz2

+
ikjj 1

����������!!!2 -
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!2 +
k

�������
Σ2  t

y{zz2y{zzzz � ,

1 � ikjjjjikjj 1
����������!!!2 +

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  y

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  z

y{zz2

-

ikjj 1
����������!!!2 +

k
�������
Σ2  t

y{zz2y{zzzz + 1 � ikjjjjikjj 1
����������!!!2 +

k
�������
Σ2  x

y{zz2

+

ikjj 1
����������!!!2 -

k
�������
Σ2  y

y{zz2

+
ikjj 1

����������!!!2 -
k

�������
Σ2  z

y{zz2

-
ikjj 1

����������!!!2 -
k

�������
Σ2  t

y{zz2y{zzzz � ,

1 � ikjjjjikjj 1
����������!!!2 +

k
�������
Σ2  x

y{zz2

+
ikjj 1

����������!!!2 +
k

�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!2 +

k
�������
Σ2  z

y{zz2

-
ikjj 1
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k

�������
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����������!!!2 -

k
�������
Σ2  x
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����������!!!2 +
k

�������
Σ2  y

y{zz2

+

ikjj 1
����������!!!2 -
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�������
Σ2  z

y{zz2
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����������!!!2 -
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�������
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����������!!!2 +
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�������
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����������!!!2 -
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�������
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����������!!!2 +
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����������!!!2 -
k
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Take the contravariant derivative of this potential, keeping only the terms to first order in the spring 
constant k.  The contravariant derivative flips the sign for the three−vector.

AΜ,Ν =
c2

����������!!!G  

i
k
jjjjjjjjjjjjjjj

k�����Σ2 0 0 0

0 k�����Σ2 0 0

0 0 k�����Σ2 0

0 0 0 k�����Σ2

y
{
zzzzzzzzzzzzzzz

All  this work to get a multiple of the identity matrix! Plug this into the gravitational force equation:

Fg
Μ = m c ikjj-

k
�������
Σ2  

¶t
��������
¶Τ

,
k

�������
Σ2  

¶RÓ
��������
¶Τ

y{zz
This is a relativistic force law for a weak gravitational field for the inverse interval squared diagonal 
potential. When spacetime symmetry is broken, this equation will  lead to Newton’s law of gravity in 
the next section. If spacetime symmetry is maintained, then solving the force equation and eliminating 
the constants yields a metric equation for gravity.

à Newton’s  Law of  Gravity  and More

Several assumptions need to be made to apply the weak gravitational force equation to a classical 
gravitational system. First, assume that the spring constant is due to the source mass, k = GM. Second, 
assume that the field is static, so that sigma^2 = R^2 − t^2 =R’^2. In this way it does not depend on 
time.

Newtonian spacetime is different from Minkowski spacetime because the speed of light is infinite. 
Spacetime symmetry must be broken. A question arises about how to do this in a formal mathematical 
sense. The Minkowski interval tau is a consequence of the relationship between time t and space R. 
The functional relationship between time and space must be severed. By the static field approximation, 
there is a distance R which is the same magnitude as the interval tau. If the interval tau is replaced by 
the scalar distance R, then that will  sever the functional relationship between time and space:ikjj ¶t

��������
¶Τ

,
¶RÓ

�����������
c ¶Τ

y{zz�ikjj ¶t
����������������
¶ È R È ,

¶RÓ
��������������������
c ¶ È R È y{zz = H0, R

`L
Plug these three assumptions into force equation:

Fg
Μ = I0, -

GMm
����������
R2

 R
`M

This is not quite Newton’s gravitational force law. The reason is that one must consider the left−hand 
side of the force equation carefully. According to the chain rule:

¶m UΜ
��������������

¶Τ
= m 

¶UΜ
����������
¶Τ

+ UΜ 
¶m
��������
¶Τ

An open question is how should spacetime symmetry be broken for the derivatives with respect to the 
interval tau? An interval is composed of both changes in time and space. For the acceleration term, if 
the interval is only about time, then one gets back Newtonian acceleration. For logical consistency, one 
might be tempted to also substitute time in the dm/dtau term. However, the system is presumed to be 
static, so this would necessarily be zero. If this derivative is to have any chance at being non−zero, it 
would have to be with respect to the absolute value of R as has been done earlier in the derivation. So 
the classical force law should look like so:
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m 
¶2 RÓ
����������
¶t2

+
¶RÓ
��������
¶t

 
c ¶m

����������������
¶ È R È = -

GMm
����������
R2

 R
`

For a point source, the dm/dtau term will  not make a contribution, and one gets Newton’s law of grav-
ity. It is only if the inertial mass is distributed over space like for the big bang or galaxies will  the term 
come into play. If the velocity is constant, then the acceleration is zero. The equation describes the 
distribution of the inertial mass m that makes up the total gravitational source mass M. The solution to 
the force equation when there is no acceleration is a stable exponential. Big bang cosmology has two 
problems: all matter is traveling at exactly the same speed even though it is not possible for them to 
communicate (the horizon problem), and the model require high levels of precision on initial condi-
tions to avoid collapse (the flatness problem). [A. H. Guth, Phys. Rev. D., 23:347−356, 1981]  The 
force equation has a stable, constant velocity solution which may resolve both problems of the big 
bang without the inflation hypothesis. Their is also a problem with the rotation profile of thin disk 
galaxies.[S. M. Kent, Astron. J., 91:1301−1327, 1986; S. M. Kent, Astron. J., 93:816−832, 1987]  Once 
the maximum velocity is reached, the velocity stays constant. It has been shown that galaxies should 
not be stable at all.[A. Toomre, Astrophys. J., 139:1217, 1964] Both problems may again be resolved 
with stable constant velocity solutions. Numerical approaches on the above equation should be 
conducted.

à A Metric  Equation

The weak gravitational force equation is two second−order differential equations. The equation can be 
simplified to a set of first−order differential equations by substituting (U^0, U) = (c dt/dtau, dR/dtau)

¶U0
����������
¶Τ

-
k

�������
Τ2

 U0 = 0

¶UÓ
��������
¶Τ

+
k

�������
Τ2

 UÓ = 0

The solution involves exponentials:

UΜ = Ive- k���Τ , VÓ e
k���Τ M

For flat spacetime, U^mu = (v, V). The constraint on relativistic velocities in flat spacetime is:

UΜ UΜ =
c2 dt2 - dR2
����������������������������

dΤ2
= c2 = v2 - VÓ ×VÓ

Solve for the constants, and plug back into the constraint, multiplying through by dtau ^2.

dΤ2 = e-2 k���Τ  dt2 - e2 k���Τ  
dR2
���������
c2

Make the same two assumptions as before: the spring constant is due to the gravitational source, k = 
GM/c^2, and the field is static, so tau ^2= R^2− t^2 = R’^2. There is one more degree of freedom, 
because the radius R could either be positive or negative. To make the metric consistent with experi-
ment, choose the negative root:

12gr.nb

     



dΤ2 = e-2 GM��������c2  R  dt2 - e2 GM��������c2  R  dR2

This equation has the form of a metric equation. Perform a Taylor series expansion to second order in 
GM/c^2R:

dΤ2 =J1 - 2 
GM

����������
c2 R

+ 2 I GM
����������
c2 R

M2N dt2 - J1 + 2 
GM

����������
c2 R

+ 2 I GM
����������
c2 R

M2N dR2

If  one compares this metric to the Schwarzschild metric in isotropic coordinates to parameterized post−
Newtonian accuracy, the coefficients are identical. For that reason, this metric is consistent with all 
experimental tests weak field tests of general relativity. [C. M. Will,  "Theory and experiment in gravita-
tional physics: Revised edition", Cambridge University Press, 1993.]

For higher order terms of the Taylor series expansion, the two metric will  predict different coefficients. 
The validity of this proposal can thus be tested experimentally. It will  require a great deal of effort and 
skill to conduct such experiments, since many physical phenomena will  have to be accounted for (an 
example: the quadrupole moment of the Sun for solar tests).

à Conclusion

Using a nineteenth century approach, an effort to unify physics from the twentieth century has been 
attempted. The description of geodesics by general relativity is not complete because it does not explic-
itly  show how the potential source causes curvature. A dynamic metric equation is found but it uses a 
simpler set of field equations (a rank one tensor instead of two). In the standard model as elsewhere, 
combining two 4−vectors requires a metric. By normalizing the 4−vectors, the unitary aspect of the 
standard model can be self−evident.

This theory makes three testable predictions, two subtle, one not. First, the polarity of gravitational 
waves will  be scalar or longitudinal, not transverse as predicted by general relativity. Second, if gravita-
tion effects are measured to secondary post Newtonian accuracy, the coefficients for the metric derived 
here are different from the Schwarzschild metric in isotropic coordinates. Such an experiment will  be 
quite difficult to do. The third test is to see if the complete relativistic force equation matches all the 
data for a thin spiral galaxy. It is this test which should be investigated first.
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Einstein’s  Vision  I: Classical  Unified  Field  Equations

à Abstract

The equations governing gravity and electromagnetism show both profound similarities and unambigu-
ous differences.  Albert Einstein worked to unify gravity and electromagnetism, mainly by trying to 
generalize Riemannian geometry.  Hamilton’s quaternions are a 4−dimensional topological algebraic 
field related to the real and complex numbers equipped with a static Euclidean 4−basis.  Riemannian 
quaternions as defined herein explicitly allow for dynamic changes in the basis vectors.  The equiva-
lence principle of general relativity which applies only to mass is generalized because for any Rieman-
nian quaternion differential equation, the chain rule means a change could be caused by the potential 
and/or the basis vectors.  The Maxwell equations are generated using quaternion potentials and opera-
tors.  Unfortunately, the algebra is complicated.  The unified force field proposed is modeled on a 
simplification of the electromagnetic field strength tensor, being formed by a quaternion differential 
operator acting on a potential, Box* A*.   This generates an even, antisymmetric−matrix field strength 
quaternion for electricity and an odd, antisymmetric−matrix field strength quaternion for magnetism, 
where the even field conserves its sign if the order of the differential and the potential are reversed 
unlike the odd field.  Gauge symmetry is broken for massive particles by the even, symmetric−matrix 
term, which is interpreted as being due to gravity.  In tensor analysis, a differential operator acting on 
the field strength tensor creates the Maxwell equations.  The unified field equations for an isolated 
source are generated by acting on the unified force field with an additional differential operator, Box* 
Box* A*  = 4 pi J*.  This contains a quaternion representation of the Maxwell equations, a classical 
link to the quantum Aharonov−Bohm effect, and dynamic field equations for gravity.  Vacuum and 
zero net current solutions to the unified field equations are discussed.  The field equations conserve 
both electric charge density and mass density.  Under a Lorentz transformation, the gravitational and 
electromagnetic fields are Lorentz invariant and Lorentz covariant respectively, but there are residual 
terms whose meaning is not clear presently.  An additional constraint is required for gauge transforma-
tions of a massive field.  (PACS:12.10.−g)

à Einstein’s  vision  using  quaternions

Three of the four known forces in physics have been unified via the standard model: the electromag-
netic, the weak, and the strong forces.  The holdout remains gravity, the first force characterized mathe-
matically by Isaac Newton.  The parallels between gravity and electromagnetism are evident.  New-
ton’s law of gravity and Coulomb’s law are inverse square laws.  Both forces can be attractive, but 
Coulomb’s law can also be a repulsive force.  A longstanding goal of modern physics is to explain the 
similarities and differences between gravity and electromagnetism.  

Albert Einstein had a specific idea for how to formulate an acceptable unified field theory (see Fig. 1, 
taken from A. Pais, "Subtle is the Lord..." the science and life of Albert Einstein", Claredon Pres, 
1982). 
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One unusual aspect of Einstein’s view was that he believed the unified field would lead to a new 
foundation for quantum mechanics, an idea which is not shared by some of today’s thinkers (S. Wein-
berg, "Dreams of a final theory," Pantheon Books, New York, 1992).  Most of Einstein’s efforts over 
40 years were directed in a search to generalize Riemannian differential geometry in four dimensions.  

To a degree which has pleasantly surprised the author, Einstein’s vision to unify gravity and electromag-
netism has been followed.  The construction of a new 4−dimensional geometry is dictated by insights 
garnered from physics.  Events in spacetime are composed of a scalar for time and a 3−vector for space.  
The four−dimensional topological algebraic field of quaternions has the same structure, so quaternions 
will  be the starting point of this effort.  

Laws of physics are expressed in a coordinate−independent way.  The sum or difference of two quater-
nions can only be defined if the two quaternions in question share the same 4−basis.  Riemannian 
quaternions make coordinate−independence explicit.  In special relativity, regions in spacetime are 
delimited by the light cone, where the net change in 3−space is equal to the net change in time.  The 
parity between changes in 3−space and time is constructed into the definition of a Riemannian quater-
nion.  In general relativity, the field equations make the metric a dynamic variable.  The basis vectors 
of Riemannian quaternions can be dynamic, so the metric can be dynamic.  The dynamic nature of the 
basis vectors leads to the general equivalence principle, whereby any law, even those in electromagne-
tism, can be the result of a change in reference frame.  

Physical laws are the result of simple Riemannian quaternion differential equations.  First−order Rieman-
nian quaternion differential equations create force fields for gravity, electricity, and magnetism.  Sec-
ond−order differential equations create dynamic field equations for gravity, the Maxwell equations for 
electromagnetism, and a classical counterpart to the Aharanov−Bohm effect of quantum mechanics.  
Third−order differential equations create conservation laws.  Homogeneous solutions to the second 
order differential equations are related to gauge symmetry.  

The second paper in this series of three investigates a unified force law, with a focus on a particular 
solution which may eliminate the need for dark matter to explain the mass distribution and velocity 
profile for spiral galaxies.  The third paper develops a new approach to quaternion analysis.  The 
equations of the first two papers are recast with the new definition of a quaternion derivative, resulting 
in a quantum unified field and force theory.  

à Events  in spacetime  and quaternions

An event in spacetime is considered by the author as the fundamental form of information in physics.  
Events have structure.  There are four degrees of freedom divided into two dissimilar parts: time is a 
scalar, and space is a 3−vector.  This structure should be reflected in all the mathematics used to 
describe patterns of events.  For this reason, this paper focuses exclusively on quaternions, the 4−
dimensional number where the terms scalar and vector where first used.  

Hamilton’s quaternions, along with the far better know real and complex numbers, can be added, 
subtracted, multiplied and divided.  Technically, these three numbers are the only finite−dimensional, 
             
groups", translated from the Russian by Emma Lehmer, Princeton University Press, 1939).  Properties 
of these numbers are summarized in the table below by dimension, if totally ordered, and if multiplica-
tion commutes:
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Hamilton’s quaternions, along with the far better know real and complex numbers, can be added, 
subtracted, multiplied and divided.  Technically, these three numbers are the only finite−dimensional, 
associative, topological, algebraic fields, up to an isomorphism (L. S. Pontryagin, "Topological 
groups", translated from the Russian by Emma Lehmer, Princeton University Press, 1939).  Properties 
of these numbers are summarized in the table below by dimension, if totally ordered, and if multiplica-
tion commutes:

Number Dimensions Totally Ordered Commutative
Real 1 Yes Yes

Complex 2 No Yes
Quaternions 4 No No

Hamilton’s quaternions have a Euclidean 4−basis composed of 1, i, j, and k.  The rules of multiplica-
tion were inspired by those for complex numbers: 1^2=1, i^2=j^2=k^2=ijk=−1.  Quaternions also have 
a real 4x4 matrix representation:

q Ht, x, y, zL =

i
k
jjjjjjjjjj
t -x -y -z
x t -z y
y z t -x
z -y x t

y
{
zzzzzzzzzz

Although written in Cartesian coordinates, quaternions can be written in any linearly−independent 4−
basis because matrix algebra provides the necessary techniques for changing the basis.  Therefore, like 
tensors, a quaternion equation is independent of the chosen basis.  One could view quaternions as 
tensors restricted to a 4−dimensional algebraic field.  For the sake of consistency, all transformations 
are also constrained to the same division algebra.  This constraint might first appear too restrictive 
since for example it eliminates simple matrices for row permutations.  Since quaternions are an alge-
braic field, there necessarily exists a combination of quaternions that achieves the action of a permuta-
tion.  The need for consistency will  overrule convenience.  

Laws in physics are independent of coordinate systems.  To make the coordinate independence 
explicit, amplitudes and basis vectors will  be separated using a new notation.  Consider a quaternion 4−
function, A_n=(a_0, a_1, a_2, a_3), and an arbitrary 4−basis, Ihat_n=(ihat_0, ihat_1, ihat_2, ihat_3).  In 
spacetime, the line that divides causality is define by the light cone.  On the light cone, the total change 
in 3−space over the change in time is equal to one.  Physics therefore indicates parity between the total 
3−vector and the scalar, instead of weighing all four equally.  A coordinate−independent Riemannian 
quaternion is defined to be A_0 Ihat_n=(a_0 ihat_0, a_1 ihat_1/3, a_2 ihat_2/3, a_3 ihat_3/3).  The 
scaling factor of a third for the 3−vector plays a vital role in the definition of a regular function in the 
third paper of this series.  

The equivalence principle of general relativity asserts, with experiments to back it up, that the inertial 
mass equals the gravitational mass.  An accelerated reference frame can be indistinguishable from the 
effect of a mass density.  No corresponding principle applies to electromagnetism, which depends only 
on the electromagnetic field tensor built from the potential.  With Riemannian quaternions, the 4−unit 
vector does not have to be static, as illustrated by taking the time derivative of the first term and using 
the chain rule:

¶a0 i
`
0����������������

¶i0
= i

`
0 

¶a0����������
¶i0

+ a0 
¶i

`
0����������

¶i0

The unit vector for time, ihat_0, can change over an infinitely small amount of time, i_0.  Any change 
in a quaternion potential function could be due to contributions from a change in potential, the ihat_0 
da_0/di_0 term, and/or a change in the basis, the a_0 dihat_0/di_0 term.  Is this mathematical property 
related to physics? Consider Gauss’ law written with Riemannian quaternions:
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-
i
`
n
2

���������
9

 
¶En����������
¶in

-
i
`
n En�������������
9

 
¶i

`
n����������

¶in
= 4 ΠΡ, n = 1, 2, 3

The divergence of the electric field might equal the source, or equivalently, the divergence of the basis 
vectors.  The "general equivalence principle" as defined here means that any measurement can be due 
to a change in the potential and/or a change in the basis vectors.  The general equivalence principle is 
applicable to both gravity and electromagnetism.  

à Metrics  and quaternion  products

The theories of special and general relativity dictate the distance between events in spacetime.  
Although fundamentally different in their mathematical structure, inertia is a link between the two.  
Special relativity dictates the transformation rules for observers who change their inertia, assuming the 
system observed does not change.  The field equations of general relativity detail the changes in dis-
tance due to a system changing its inertia from the vacuum to a non−zero energy density.  A quaternion 
product necessarily contains information about the metric, but also has information in the 3−vector.  
This additional information about quaternion products will  suggest a provocative link between metrics 
and inertia consistent with both special and general relativity.  

Most structures in Nature do not transform like a scalar and a 3−vector.  Quaternion products multiply 
two 4−basis vectors, and those products will  transform differently.  The rules of quaternion multiplica-
tion mirror those of complex numbers.  Instead of the imaginary number i, there is a unit 3−vector for 
each quaternion playing an analogous role.  The difference is that unit 3−vectors do not all have to 
point in the same direction.  Based on the angle between them, two different unit 3−vectors have both a 
dot and cross product.  The dot and cross products completely characterize the relationship between 
the two unit vectors.  Compare the product of multiplying two complex numbers (a, bi) and (c, di):Ha, biL Hc, diL = Hac - bd, ad + bcL,
with two quaternions, (a, B I

Ó
) and (c, D I

Ó
),Ha, B I

`L Hc, D I
`
’L = Hac - BD I

`
×I

`
’, aD I

`
’ + Bc I

`
+ BD I

`
´I

`
’L

Complex numbers commute because they do not have a cross product in the result.  If the order of 
quaternion multiplication is reversed, then only the cross product would change its sign.  Quaternion 
multiplication does not commute due to the behavior of the cross product.  If the cross product is zero, 
then quaternion multiplication has all of the properties of complex numbers.  If, on the other hand, the 
only value of a quaternion product is equal to the cross product, then multiplication is anti−commuta-
tive.  Individually, the mathematical properties of commuting and anti−commuting algebras are well 
known.  A quaternion product is the superposition of these two types of algebras that forms a division 
algebra.  

Several steps are required to square of the difference of two Riemannian quaternions to form a measure 
of distance.  First, the basis of the two quaternions must be shared.  It makes no sense to subtract 
something in spherical coordinates from something in Cartesian coordinates.  The basis does not have 
to be constant, only shared.  Every quaternion commutes with itself, so the cross product is zero.  
There are seven unique pairs of basis vectors in a square:ikjjda0 i

`
0, dAn

I
`
n�������
3

y{zz2

=
ikjjjjda02 i

`
0
2

- dAn
2 I

`
n
2

���������
9

, 2 da0 dAn 
i
`
0 I

`
n�������������

3
y{zzzz

The signs were chosen to be consistent with Hamilton’s quaternion algebra.  The four square basis 
vectors i_mu^2 define the metric.  If the basis vectors are not constant, then the metric is dynamic.  
Define a "3−rope" to be the three other terms, which have the form i_0 I_n.  Notice that the 3−rope 
starts in one time−space location and will  have a non−zero length if it ends up at a different location and 
time.  With quaternion products, the 3−rope is a natural companion to a metric for information about 
distance.  
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vectors i_mu^2 define the metric.  If the basis vectors are not constant, then the metric is dynamic.  
Define a "3−rope" to be the three other terms, which have the form i_0 I_n.  Notice that the 3−rope 
starts in one time−space location and will  have a non−zero length if it ends up at a different location and 
time.  With quaternion products, the 3−rope is a natural companion to a metric for information about 
distance.  

In special relativity, if the inertia of the observer but not the system is changed, the metric is invariant.  
The 3−rope is covariant, because it is known how it changes.  Given the utility of duality, a complemen-
tary hypothesis to the invariant metric of special relativity would propose the if the inertia of the sys-
tem but not the observer is changed, there exists a choice of basis vectors such that the 3−rope is invari-
ant but the metric changes in a known way.  This could be written in algebraically using the following 
rule:

i
`
0
2

=
-1

���������
I
`
n
2 , É i

`
0 I

`
n É = 1

If  the magnitude of the time and 3−space basis vectors are inversely related, the magnitude of the 
product of the time basis vector with each 3−space basis vector will  be constant even if the basis vec-
tors themselves are dynamic.  This hypothesis asserts the existence of such a basis, but that particular 
basis does not have to be used.  

Hamilton had the freedom to use the rule found in the above equation, but made the more obvious 
choice of i_0^2 = −I_n^2.  The existence of a basis where the 3−rope is constant despite a change in the 
inertia of the system will  have to be treated as provisional in this paper.  In the second paper of this 
series, a metric with this property will  be found and discussed.  

à Physically  relevant  differential  equations

Is there a rational way to construct physically relevant quaternion equations? The method used here 
will  be to mimic the tensor equations of electromagnetism.  The electromagnetic field strength tensor is 
formed by a differential operator acting on a potential.  The Maxwell equations are formed by acting 
on the field with another differential operator.  The Lorentz 4−force is created by the product of a 
electric charge, the electromagnetic field strength tensor, and a 4−velocity.  This pattern will  be 
repeated starting from an asymmetric field to create the same field and force equations using quater-
nion differentials and potentials.  The challenge in this exercise is in the interpretation, to see how 
every term connects to established laws of physics.  

As a first step to constructing differential equations, examine how the differential operator (d/dt, Del) 
acts on a potential function (phi, A):J ¶

��������
¶t

, õ
ÓN HΦ, AÓL = ikjj ¶Φ

��������
¶t

- õ
Ó.AÓ, ¶AÓ

��������
¶t

+ õ
Ó Φ + õ

Ó x AÓy{zz
For the sake of clarity, the notation introduced for Riemann quaternions has been suppress, so the 
reader is encouraged to recognize that there are also a parallel set of terms for changes in the basis 
vectors.  The previous equation is a complete assessment of the change in the 4−dimensional 
potential/basis, involving two time derivatives, the divergence, the gradient and the curl all in one.  A 
unified field theory should account for all conceivable forms of change in a 4−dimensional 
potential/basis, as is the case here.

Quaternion operators and potentials have not been used to express the Maxwell equations.  The reason 
can be found in the previous equation, where the sign of the divergence of A is opposite of the curl of 
A.  In the Maxwell equations, the divergence and the curl involving the electric and magnetic field are 
all positive.  Many others, even in Maxwell’s time, have used complex−valued quaternions for the task 
because the extra imaginary number can be used to get the signs correct.  However, complex−valued 
quaternions are not an algebraic field.  The norm, t^2+x^2+y^2+z^2, for a non−zero quaternion could 
                      
exclusively with 4−dimensional algebraic fields.  Therefore, no matter how salutary the work with 
complex−valued quaternions, it is not relevant to this paper.
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Quaternion operators and potentials have not been used to express the Maxwell equations.  The reason 
can be found in the previous equation, where the sign of the divergence of A is opposite of the curl of 
A.  In the Maxwell equations, the divergence and the curl involving the electric and magnetic field are 
all positive.  Many others, even in Maxwell’s time, have used complex−valued quaternions for the task 
because the extra imaginary number can be used to get the signs correct.  However, complex−valued 
quaternions are not an algebraic field.  The norm, t^2+x^2+y^2+z^2, for a non−zero quaternion could 
equal zero if the values of t, x, y, and z were complex.  This paper involves the constraint of working 
exclusively with 4−dimensional algebraic fields.  Therefore, no matter how salutary the work with 
complex−valued quaternions, it is not relevant to this paper.

The reason to hope for unification using quaternions can be found in an analysis of symmetry provided 
by Albert Einstein: 

"The physical world is represented as a four−dimensional continuum.  If in this I adopt a Riemannian 
metric, and look for the simplest laws which such a metric can satisfy, I arrive at the relativistic gravita-
tion theory of empty space.  If I adopt in this space a vector field, or the antisymmetric tensor field 
derived from it, and if I look for the simplest laws which such a field can satisfy, I arrive at the Max-
well equations for free space." [einstein1934]

The "four−dimensional continuum" could be viewed as a technical constraint involving topology.  
Fortunately, quaternions do have a topological structure since they have a norm.  Nature is asymmet-
ric, containing both a symmetric metric for gravity and an antisymmetric tensor for electromagnetism.  
With this in mind, rewrite out the real 4x4 matrix representation of a quaternion:

q Ht, x, y, zL =

i
k
jjjjjjjjjj
t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t

y
{
zzzzzzzzzz +

i
k
jjjjjjjjjj
0 -x -y -z
x 0 -z y
y z 0 -x
z -y x 0

y
{
zzzzzzzzzz

The scalar component (t in representation above) can be represented by a symmetric 4x4 matrix, invari-
ant under transposition and conjugation (these are the same operations for quaternions).  The 3−vector 
component (x, y and z in the representation above) is off−diagonal and can be represented by an anti-
symmetric 4x4 matrix, because taking the transpose will  flip the signs of the 3−vector.  Quaternions are 
asymmetric in their matrix representation, a property which is critical to using them for unifying grav-
ity and electromagnetism.

à Recreating  the Maxwell  equations

Maxwell speculated that his set of equations might be expressed with quaternions someday (J. C. 
Maxwell, "Treatise on Electricity and Magnetism," Dover reprint, third edition, 1954).  The diver-
gence, gradient, and curl were initially developed by Hamilton during his investigation of quaternions.  
For the sake of logical consistency, any system of differential equations, such as the Maxwell equa-
tions, that depends on these tools must have a quaternion representation.

The Maxwell equations are gauge invariant.  How can this property be built into a quaternion expres-
sion? Consider a common gauge such as the Lorenz gauge, dphi/dt + div A = 0.  In quaternion par-
lance, this is a quaternion−scalar formed from a differential quaternion acting on a potential.  To be 
invariant under an arbitrary gauge transformation, the quaternion−scalar must be set to zero.  This can 
be done with the vector operator, (q−q*)/2.  Search for a combination of quaternion operators and 
potentials that generate the Maxwell equations:H�* Vector H�* A*L - �Vector H�ALL*

��������������������������������������������������������������������������������������
2

=

= ikjjÑÓ × HÑÓ ´AÓL, ¶
��������
¶t

 ikjj ¶AÓ
��������
¶t

+ ÑÓΦy{zz + ÑÓ ´ HÑÓ ´AÓLy{zz =
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= ikjjÑÓ ×BÓ, -
¶EÓ
��������
¶t

+ ÑÓ ´BÓy{zz =

= H0, 4 Π JÓL.
This is Ampere’s law and the no monopoles vector identity (assuming a simply−connected topology).  
Any choice of gauge will  not make a contribution due to the vector operator.  If the vector operator 
was not used, then the gradient of the symmetric−matrix force field would be linked to the electromag-
netic source equation, Ampere’s law.

Generate the other two Maxwell equations:

-H�Vector H�* A*L + �* Vector H�ALL*
�����������������������������������������������������������������������������������������

2
=

= ikjjÑÓ × ikjj-
¶AÓ
��������
¶t

- ÑÓΦy{zz, ¶ÑÓ ´AÓ
���������������

¶t
+ ÑÓ ´ ikjj-

¶AÓ
��������
¶t

- ÑÓΦy{zzy{zz =

= ikjjÑÓ ×EÓ, ¶BÓ
��������
¶t

+ ÑÓ ´EÓy{zz =

= H4 ΠΡ, 0
ÓL.

This is Gauss’ and Faraday’s law.  Again, if the vector operator had not been used, the time derivative 
of the symmetric−matrix force field would be associated with the electromagnetic source equation, 
Gauss’ law.  To specify the Maxwell equations completely, two quaternion equations are required, just 
like the 4−vector approach.

Although successful, the quaternion expression is unappealing for reasons of simplicity, consistency 
and completeness.  A complicated collection of sums or differences of differential operators acting on 
potentials − along with their conjugates − is required.  There is no obvious reason this combination of 
terms should be central to the nature of light.  One motivation for the search for a unified potential 
field involves simplifying the above expressions.

When a quaternion differential acts on a function, the divergence always has a sign opposite the curl.  
The opposite situation applies to the Maxwell equations.  Of course the signs of the Maxwell equations 
cannot be changed.  However, it may be worth the effort to explore equations with sign conventions 
consistent with the quaternion algebra, where the operators for divergence and curl were conceived.

Information about the change in the potential is explicitly discarded by the vector operator.  Justifica-
tion comes from the plea for gauge symmetry, essential for the Maxwell equations.  The Maxwell 
equations apply to massless particles.  Gauge symmetry is broken for massive fields.  More informa-
tion about the potential might be used in unification of electromagnetism with gravity.  A gauge is also 
matrix symmetric, so it could provide a complete picture concerning symmetry.
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à One unified  force  field  from  one potential  field

For massless particles, the Maxwell equations are sufficient to explain classical and quantum electrody-
namic phenomena in a gauge−invariant way.  To unify electromagnetism with gravity, the gauge sym-
metry must be broken, opening the door to massive particles.  Because of the constraints imposed by 
quaternion algebra, there is little freedom to choose the gauge with a simple quaternion expression.  In 
the standard approach to the electromagnetic field, a differential 4−vector acts on a 4−vector potential in 
such a way as to create an antisymmetric second−rank tensor.  The unified field hypothesis proposed 
involves a quaternion differential operator acting on a quaternion potential:

�* A* = ikjj ¶Φ
��������
¶t

- õ
Ó.AÓ, -

¶AÓ
��������
¶t

- õ
Ó Φ + õ

Ó x AÓy{zz
This is a natural suggestion with this algebra.  The antisymmetric−matrix component of the unified 
field has the same elements as the standard electromagnetic field tensor.  Define the electric field E as 
the even terms, the ones that will  not change signs if the order of the differential operator and the 
potential are reversed.  The magnetic field B is the curl of A, the odd term.  The justification for propos-
ing the unified force field hypothesis rests on the presence of the electric and magnetic fields.

In some ways, the above equation looks just like the old idea of combining a scalar gauge field with 
the electromagnetic field strength tensor, as Gupta did in 1950 in order to quantize the Maxwell equa-
tions.  He concluded that although useful because it is written in manifestly relativistic form, no new 
results beyond the Maxwell equation are obtained.  Examine just the gauge contribution to the 
Lagrangian for this unified field:

L = -
1
����
2

 J ¶Æ
��������
¶t

, -
1
����
3

 
¶Ax����������
¶x

, -
1
����
3

 
¶Ay����������
¶y

, -
1
����
3

 
¶Az����������
¶z

N2

Take the derivative of the Lagrangian with respect to the gauge variables:

¶L
�������������
¶ ¶AΜ�������¶xΜ

= 0

By Noether’s theorem, this conserved current indicates a symmetry of the Lagrangian.  This is why the 
proposal involves new physics.  The gauge is a dynamic variable constrained by the Lagrangian.  

A quaternion potential function has four degrees of freedom represented by the scalar function phi and 
the 3−vector function A.  Acting on this with one[or more] differential operators does not change the 
degrees of freedom.  Instead, the tangent spaces of the potential will  offer more subtle views on the 
rules for how potentials change.  

The three classical force fields, g, E, and B, depend on the same quaternion potential, so there are only 
four degrees of freedom.  With seven components to the three classical force fields, there must be three 
constraints between the fields.  Two constraints are already familiar.  The electric and magnetic field 
form a vector identity via Faraday’s law.  Assuming spacetime is simply connected, the no monopoles 
equation is another identity.  A new constraint arises because both the force fields for gravity and 
electricity are even.  It will  be shown subsequently how the even force fields can partially construc-
tively or destructively interfere with each other.  
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à Unified  Field  equations

In the standard approach to generating the Maxwell equations, a differential operator acts on the electro-
magnetic field strength tensor.  A unified field hypothesis for an isolated source is proposed which 
involves a differential quaternion operator acting on the unified field:

4 Π HΡ, JÓL*
= J ¶

��������
¶t

, õ
ÓN*

 J ¶
��������
¶t

, õ
ÓN*

 HΦ, AÓL*
=

= ikjj ¶2 Φ
����������
¶t2

- 2 ÑÓ ×
¶AÓ
��������
¶t

- ÑÓ × ÑÓΦ + ÑÓ × HÑÓ ´AÓL,
-2 ÑÓ ¶Φ

��������
¶t

+ ÑÓHÑÓ ×AÓL -
¶2 AÓ
����������
¶t2

- ÑÓ ´ HÑÓ ´AÓL +

+2 ÑÓ ´
¶AÓ
��������
¶t

+ ÑÓ ´ ÑÓΦy{zz.
This second order set of four partial differential equations has four unknowns so this is a complete set 
of field equations.  Rewrite the equations above in terms of the classical force fields:

4 Π HΡ, JÓL*
= J ¶g

��������
¶t

+ õ
Ó.EÓ + õ

Ó.BÓ,
-ÑÓg +

¶EÓ
��������
¶t

- õ
Ó x BÓ +

¶BÓ
��������
¶t

- õ
Ó x EÓy{zz.

The unified field equations contain three of the four Maxwell equations explicitly: Gauss’ law, the no 
magnetic monopoles law, and Ampere’s law.  Faraday’s law is a vector identity, so it is still true implic-
itly.  Therefore, a subset of the unified field equations contains a quaternion representation of the 
Maxwell equations.  The presence of the Maxwell equations justifies the investigation of the unified 
field equations.  

There is a simple relationship between Faraday’s law and the equation above.  All  that needs to be 
done is to subtract twice the time derivative of the magnetic field from both sides.  What does this do 
to the 4−vector current density J? Now there is a current that transforms like a pseudo−current density. 
The inclusion of a pseudo−current along with a current making the proposal more complete.  The 
volume integral of this pseudo−current density is the total magnetic flux:

k à à à ¶B
��������
¶t

 dV =
e

�������
Ñc

 FB

The unified field equation postulates a pseudo 3−vector current composed of the difference between the 
time derivative of the magnetic field and the curl of the electric field.  The Aharonov−Bohm effect (Y 
Aharonov and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. 
Rev, 115:485−491, 1959) depends on the total magnetic flux to create changes seen in the energy 
spectrum.  The volume integral of the time derivative of the magnetic field is a measure of the total 
magnetic flux.  The pseudo−current density is quite unusual, transforming differently under space 
inversion than the electric current density.  One might imagine that a Lorentz transformation would 
shift this pseudo−current density into a pseudo−charge density.  This does not happen however, because 
the vector identity involving the divergence of a curl still applies.  The Aharonov−Bohm phenomenon, 
first viewed as a purely quantum effect, may have a classical analogue in the unified field equations.
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The unified field equation postulates a pseudo 3−vector current composed of the difference between the 
time derivative of the magnetic field and the curl of the electric field.  The Aharonov−Bohm effect (Y 
Aharonov and D. Bohm, "Significance of electromagnetic potentials in the quantum theory," Phys. 
Rev, 115:485−491, 1959) depends on the total magnetic flux to create changes seen in the energy 
spectrum.  The volume integral of the time derivative of the magnetic field is a measure of the total 
magnetic flux.  The pseudo−current density is quite unusual, transforming differently under space 
inversion than the electric current density.  One might imagine that a Lorentz transformation would 
shift this pseudo−current density into a pseudo−charge density.  This does not happen however, because 
the vector identity involving the divergence of a curl still applies.  The Aharonov−Bohm phenomenon, 
first viewed as a purely quantum effect, may have a classical analogue in the unified field equations.

The field equations involving the gravitational force field are dynamic and depend on four dimensions.  
This makes them likely to be consistent with special relativity.  Since they are generated alongside the 
Maxwell equations, one can reasonably expect the differential equations will  share many properties, 
with the ones involving the symmetric−matrix gravitational force field being more symmetric than 
those of the electromagnetic counterpart.  

The unified source can be defined in terms of more familiar charge and current densities by separately 
setting the gravity or electromagnetic field equal to zero.  In these cases, the source is due only to 
electricity or mass respectively.  This leads to connections between the unified source, mass, and 
charge:

J = Jm iff EÓ = BÓ = 0
Ó

J = Je + JÓAB iff g = 0.

It would be incorrect − but almost true − to say that the unified charge and current are simply the sum of 
the three: mass, electric charge, and the Aharanov−Bohm pseudo−current (or total magnetic flux over 
the volume).  These terms constructively interfere with each other, so they may not be viewed as being 
linearly independent.

Up to four linearly independent unified field equations can be formulated.  A different set could be 
created by using the differential operator without taking its conjugate:

4 ΠJ* = ��* A* =

= ikjj ¶2 Φ
����������
¶t2

+ ÑÓ × ÑÓΦ - ÑÓ × HÑÓ ´AÓL, -
¶2 AÓ
����������
¶t2

- ÑÓ2
AÓ - ÑÓ ´ ÑÓΦy{zz

= J ¶g
��������
¶t

- õ
Ó.EÓ - õ

Ó.BÓ,
ÑÓg +

¶EÓ
��������
¶t

+ õ
Ó x BÓ +

¶BÓ
��������
¶t

+ õ
Ó x EÓy{zz.

This is an elliptic equation.  Since the goal of this work is a complete system of field equations, this 
may turn out to be an advantage.  An elliptic equation combined with a hyperbolic one might more 
fully  describe gravitational and electromagnetic waves from sources.  Unlike the first set of field equa-
tions, the cross terms destructively interfere with each other.

The elliptic field equation again contains three of four Maxwell equations explicitly:Gauss’ law, the no 
magnetic monopoles vector identity and Faraday’s law.  This time, Ampere’s law looks different.  To 
be consistent with Ampere’s law, again a pseudo−current must be included.  This may be the differen-
tial form of a classical Aharonov−Bohm effect.  

The only term that does not change between the two field equations is the one involving the dynamic 
gravitational force.  This might be a clue for why this force is only attractive.
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à Solutions  to the unified  field  equations

All  the solutions that have been worked out for the Maxwell equations will  work with the unified field 
equations.  For example, if the potential is static, the scalar equation for hyperbolic field equation is the 
Poisson equation.  The unified equations are more informative, since any potential which is a solution 
to the scalar Poisson equation will  also characterize the corresponding current.  

The field equations of general relativity and the Maxwell equations both have vacuum solutions,such 
as plane wave solutions. The unified field equations do not have such a solution, other than a constant.  
Given historical tradition, this may seem like a deadly flaw.  However, it may be something that is 
required for a final and complete theory.  In a unified field theory, the gravitational part may be zero 
while the electrical part is not, and visa versa.  Non−zero solutions are worth exploring

An inverse square potential plays an important role in both gravity and electromagnetism. Examine the 
scalar field involving the inverse interval squared:

��* J 1
������������������������������������
t2 - x2 - y2 - z2

, 0
ÓN =

ikjj 4 H3 t2 + x2 + y2 + z2L
��������������������������������������������������Ht2 - x2 - y2 - z2L3 , 0

Óy{zz
This potential solves the Maxwell equations in the Lorentz gauge: 

�2 J 1
������������������������������������
t2 - x2 - y2 - z2

, 0
ÓN = 0

The non−zero part may have everything to do with gravity.

A plane wave solution does exist,but not for a pure vacuum.Instead,a plane wave solution exists with 
the constrain that the net current is zero for the elliptical field equations

The field equations of general relativity and the Maxwell equations both have vacuum solutions.  A 
vacuum solution for the unified field equation is apparent for the elliptical field equations:

A = IΦ0 eK
Ó

×R
Ó

-Ωt, AÓ0 eK
Ó

×R
Ó

-ΩtM
The unified field equation will  evaluate to zero if

Scalar JI Ω
����
c
, KÓM2N = 0

The dispersion relation is an inverted distance, so it will  depend on the metric.  The same potential can 
also solve the hyperbolic field equations under different constraints and resulting dispersion equation 
(not shown).  There were two reasons for not including the customary imaginary number "i"  in the 
exponential of the potential.  First, it was not necessary.  Second, it would have created a complex−
valued quaternion, and therefore is outside the domain of this paper.  The important thing to realize is 
that vacuum solutions to the unified field equations exist whose dispersion equations depend on the 
metric.  This is an indication that unifying gravity and electromagnetism is an appropriate goal.

à Conservation  Laws

Conservation of electric charge is implicit in the Maxwell equations.  Is there also a conserved quantity 
for the gravitational field? Examine how the differential operator acts on the unified field equation:
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��* �* A* = ikjj ¶2 g
����������
¶t2

+ ÑÓ × ÑÓg, ¶2 EÓ
����������
¶t2

+ ÑÓ2
EÓ +

¶2 BÓ
����������
¶t2

+ ÑÓ2
BÓy{zz

Notice that the gravitational force field only appears in the quaternion scalar.  The electromagnetic 
fields only appear in the 3−vector.  This generates two types of constraints on the sources.  No change 
in the electric source applies to the quaternion scalar.  No change in the gravitational source applies to 
the 3−vector.

Scalar H�Je*L =
¶Ρe����������
¶t

+ ÑÓ ×JÓe = 0

Scalar H�JÓAB
*L = Ñ ×JÓAB*

= 0

Vector H�Jm*L = -
¶JÓm����������
¶t

+ ÑÓΡm - ÑÓ ´JÓm = 0
Ó

The first equation is known as the continuity equation, and is the reason that electric charge is con-
served.  For a different inertial observer, this will  appear as a conservation of electric current density.  
There is no source term for the Aharanov−Bohm current, and subsequently no conservation law.  The 3−
vector equation is a constraint on the mass current density, and is the reason mass current density is 
conserved.  For a different inertial observer, the mass density is conserved.

à Transformations  of  the unified  force  field

The transformation properties of the unified field promise to be more intricate than either gravity or 
electromagnetism separately.  What might be expected to happen under a Lorentz transformation? 
Gravity involves mass that is Lorentz invariant, so the field that generates it should be Lorentz invari-
ant.  The electromagnetic field is Lorentz covariant.  However, a transformation cannot do both per-
fectly.  The reason is that a Lorentz transformation mixes a quaternion scalar with a 3−vector.  If a 
transformation left the quaternion scalar invariant and the 3−vector covariant, the two would effectively 
not mix.  The effect of unification must be subtle, since the transformation properties are well known 
experimentally.

Consider a boost along the x−axis.  The gravitational force field is Lorentz invariant.  All  the terms 
required to make the electromagnetic field covariant under a Lorentz transformation are present, but 
covariance of the electromagnetic fields requires the following residual terms:H�’* A’*LResidual = J0, HΓ2 Β2 - 1L 

¶Ax����������
¶t

+ HΓ2 - 1L 
¶Φ
��������
¶x

,

-2 ΓΒ J ¶Az����������
¶t

+
¶Ay����������
¶x

N, 2 ΓΒ J ¶Ay����������
¶t

-
¶Az����������
¶x

NN.
At this time, the correct interpretation of the residual term is unclear.  Most importantly, it was shown 
earlier that charge is conserved.  These terms could be a velocity−dependent phase factor.  If so, it 
might provide a test for the theory.

The mechanics of the Lorentz transformation itself might require careful re−examination when so 
strictly confined to quaternion algebra.  For a boost along the x−axis, if only the differential transforma-
tion is in the opposite direction, then the electromagnetic field is Lorentz covariant with the residual 
term residing with the gravitational field.  The meaning of this observation is even less clear.  Only 
relatively recently has DeLeo been able to represent the Lorentz group using real quaternions (S. De 
Leo, "Quaternions and special relativity," J. Math. Phys., 37(6):2955−2968, 1996).  The delay appears 
odd since the interval of special relativity is the scalar of the square of the difference between two 
events.  In the real 4x4 matrix representation, the interval is a quarter of the trace of the square.  There-
fore, any matrix with a trace of one that does not distort the length of the scalar and 3−vector can multi-
ply a quaternion without effecting the interval.  One such class is 3−dimensional, spatial rotations.  An 
operator that adds nothing to the trace but distorts the lengths of the scalar and 3−vector with the con-
straint that the difference in lengths is constant will  also suffice.  These are boosts in an inertial refer-
ence frame.  Boosts plus rotations form the Lorentz group.
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relatively recently has DeLeo been able to represent the Lorentz group using real quaternions (S. De 
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Three types of gauge transformations will  be investigated: a scalar, a 3−vector, and a quaternion gauge 
field.  Consider an arbitrary scalar field transformation of the potential:

A ® A’ = A - �* Λ.

The electromagnetic fields are invariant under this transformation.  An additional constraint on the 
gauge field is required to leave the gravitational force field invariant, namely that the scalar gauge field 
solves a homogeneous elliptical equation.  From the perspective of this proposal, the freedom to 
choose a scalar gauge field for the Maxwell equations is due to the omission of the gravitational force 
field.

Transform the potential with an arbitrary 3−vector field:

A ® A’ = A - �* L
Ó.

This time the gravitational force field is invariant under a 3−vector gauge field transformation.  Addi-
tional constraints can be placed on the 3−vector gauge field to preserve a chosen electromagnetic invari-
ant.  For example, if the difference between the two electromagnetic fields is to remain invariant, then 
the 3−vector gauge field must be the solution to an elliptical equation.  Other classes of invariants could 
be examined.

The scalar and 3−vector gauge fields could be combined to form a quaternion gauge field.  This gauge 
transformation would have the same constraints as those above to leave the fields invariant.  Is there 
any such gauge field? The quaternion gauge field can be represented the following way:

A ® A’ = A - �* L.

If  a force field is created by hitting this gauge transformation with a differential operator, then the 
gauge field becomes a unified field equation.  Since vacuum solutions have been found for those 
equations, a quaternion gauge transformation can leave the field invariant.

à Future  directions

The fields of gravity and electromagnetism were unified in a way consistent with Einstein’s vision, not 
his technique.  The guiding principles were simple but unusual:generate expressions familiar from 
electromagnetism using quaternions, striving to interpret any extra terms as being due to gravity.  The 
first hypothesis about the unified field involved only a quaternion differential operator acting on a 
potential, no extra terms added by hand.  It contained the typical potential representation of the electro-
magnetic field, along with a symmetric−matrix force field for gravity.  The second hypothesis con-
cerned a unified field equation formed by acting on the unified field with one more differential opera-
tor.  All  the Maxwell equations are included explicitly or implicitly.  Additional terms suggested the 
inclusion of a classical representation of the Aharanov−Bohm effect.  Four linearly independent unified 
field equations exist, but only the hyperbolic and elliptic cases were discussed.  A large family of 
vacuum solutions exists, and will  require future analysis to appreciate.  To work within the guidelines 
of this paper, one should avoid solutions represented by complex−valued quaternions.  

Why did this approach work? The hypothesis that initiated this line of research was that all events in 
spacetime could be represented by quaternions, no matter how the events were generated.  This is a 
broad hypothesis, attempting to reach all areas covered by physics.  Based on the equations presented 
in this paper, a logical structure can be constructed, starting from events (see figure below). A set of 
events forms a pattern that can be described by a potential. The change in a potential creates a field. 
The change in field creates a field equation.  The terms that do not change under differentiation of a 
field equation form conservation laws.  
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Why did this approach work? The hypothesis that initiated this line of research was that all events in 
spacetime could be represented by quaternions, no matter how the events were generated.  This is a 
broad hypothesis, attempting to reach all areas covered by physics.  Based on the equations presented 
in this paper, a logical structure can be constructed, starting from events (see figure below). A set of 
events forms a pattern that can be described by a potential. The change in a potential creates a field. 
The change in field creates a field equation.  The terms that do not change under differentiation of a 
field equation form conservation laws.  
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Einstein’s  vision  II: A unified  force  equation  with  constant  velocity  
solutions

à Abstract

In quantum electrodynamics, photons have four modes of transmission, at least mathematically: two 
transverse modes for electrodynamics, a longitudinal, and a scalar mode. The probabilities of the last 
two modes cancel each other out for photons in a vacuum, but that does not have to be the case for a 
nonhomogeneous equation. One potential solution to the field equations is found which depend on the 
inverse of an interval between two events squared. The force field created by the potential is con-
structed by comparison with the classical Newtonian gravitational field. The Lagrange density L= 
scalar(−(J A*)  − 1/2 Box* A Box A*)  can contribute to a scalar mode, but still has the field equations of 
Maxwell with the choice of the Lorenz gauge. A relativistic force equation is proposed, created by the 
product of charge, normalized force field, and 4−velocity: dmU/dtau = kq Box* A/|A| U*. The solution 
to the force equation using the inverse square interval potential is found. Eliminating the constants 
generates a metric equation, (dtau)^2 = e^−(2GM/c^2 tau) dt^2 − e^(2GM/c^2 tau) dR^2, where tau  is 
a lightlike interval with almost the same magnitude as the radius R of separation between source and 
test masses. For a weak gravitational field, the metric will  pass the same tests as the Schwarzschild 
metric of general relativity. The two metrics differ for higher order terms, which makes the proposed 
metric distinct and testable experimentally. A constant−velocity solution exists for the gravitational 
force equation for a system with an exponentially−decaying mass distribution. The dark matter hypothe-
sis is not needed to explain the constant−velocity profiles seen for some galaxies. Gravity is a metric 
theory, electromagnetism is not.  By using Riemannian quaternions which can have dynamic basis 
vectors, it becomes possible to merge metric theory with the linear Maxwell equations.  The proposal 
may also have implications for classical big bang theory.

à An opportunity  for  classical  gravity?

The electrodynamic field can be quantized in a manifestly covariant form by fixing the gauge (K. 
Bleuler, Helv. Phys. Acta, 23:567, 1950, and S. N. Gupta, "Theory of longitudinal photons in quantum 
electrodynamics", Proc. Phys. Soc., 63:681−691). The starting point is the 4−potential A^mu. There are 
four modes of transmission for photons corresponding to the four degrees of freedom: two transverse, 
one scalar, and one longitudinal. Gupta calculated that "the probability of the emission of a real longitu-
dinal photon is canceled by the ’negative probability’ of the emission of a corresponding scalar pho-
ton." He notes that this does not always have to be the case for the nonhomogeneous Maxwell equa-
tions, which is the focus of this work. A scalar photon would not change signs under a space or time 
reversal, so its symmetry is different from the electric 3−vector field and the magnetic 3−pseudo−vector 
field, and thus does not have an obvious role to play in electrodynamics.

My hypothesis is that the scalar and longitudinal photons for the electromagnetic field constitute grav-
ity. The hypothesis makes several predictions even at this preliminary stage. First, the math of gravity 
and electromagnetism should be similar but not identical. The inverse square form of Newton’s law of 
gravity was a direct inspiration for Coulomb’s law. Gravity should be more symmetric than electromag-
netism because the mode is scalar, instead of transverse. The second rank field strength tensor in gen-
eral relativity is symmetric while the analogous tensor for the electromagnetic field is antisymmetric. 
Since the mode of gravity is orthogonal to electromagnetism, the charges can be likewise, so there will  
be no simple relationship between gravitational charge (mass) and electric charge. Gravitational waves 
in general relativity are transverse, so this proposal is distinct from general relativity. Nature exploits 
all the math available, so it is unreasonable to suppose that scalar and longitudinal photons are never 
used for anything. Whatever phenomenon exploits the scalar and longitudinal photons must be similar, 
but just as important as electromagnetism. Gravity is a natural candidate.
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à A gravitational  field  inside  Maxwell

Newton’s classical gravitational law arises from a scalar potential.Here is the scalar field equation:

Ñ2 Φ = 4 ΠGΡ

For the case of a vacuum, when rho = 0, this is known as the Laplace equation. For a spherically sym-
metric source, one solution is:

Φ = -
GM

��������������������������������!!!!!!!!!!!!!!!!!!!!!!!!
x2 + y2 + z2

The problem with the field equation is that the Laplace operator does not have a time differential 
operator. Any change in in the mass density propagates at infinite speed, in conflict with special relativ-
ity (MTW, chapter 7).  One way to derive the field equations of general relativity involves making 
Newton’s law of gravity consistent with the finite speed of light.

A way to repair the field equations is to use the D’Alembertian operator, which is four dimensional. 
That expression is identical to the A^0 component of the Maxwell equations with the choice of the 
Lorenz gauge.  The sources are of course different.  Yet the argument being made here is that there are 
degrees of freedom which have yet to be exploited.  For the two degrees of freedom, we can have a 
different source term, mass:

�2 A = 4 Π HkJcharge + GJmassL
If  one is studying scalar or longitudinal modes, the source is J_mass, the mass current density.  If one 
is working with transverse modes, the source is J_charge^mu , the electric charge density. Since the 
modes are orthogonal, the sources can be also.

To be consistent with the classic scalar potential yet still be relativistic, the potential must have x^2, 
y^2, z^2, and t^2. This suggests a particular solution to the field equations:

A = J 1
�������������������������������������������
c2 t2 - x2 - y2 - z2

, 0
ÓN = I 1

�������
Τ2 , 0

ÓM
This potential is interesting for several reasons. It is the inverse of the Lorentz−invariant interval 
squared. Like mass, the 4−potential will  not be altered by a change in an inertial reference frame. The 
interval between any two events will  contribute to the potential. General relativity applies to any form 
of energy, including gravitational field energy. A potential that embraces every interval may have a 
broad enough scope to do the work of gravity.

The potential also has serious problems. Classical gravity depends on an inverse square force field, not 
an inverse square potential. Taking the derivative of the potential puts a forth power of the interval in 
the denominator. At this point, I could stop and say that this potential has nothing to do with gravity 
because it has the wrong dependence on distance. An alternative is to look for an algebraic way to 
repair the problem. This is the type of approach used by the early workers in quantum mechanics like 
de Broglie, and will  be adopted here. The equations of motion can be normalized to the magnitude of 
the 4−potential:
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�2 A
�������������È A È = 4 Π HkJcharge + GJmassL

Since the magnitude of the potential is the inverse interval squared, the resulting equation has only an 
interval squared in the denominator. An interval is not necessarily the same as the distance R between 
the source and test mass used in the classical theory. However, I can impose a selection rule that in the 
classical limit, the only events that contribute to the potential are those that are timelike separated 
between the source and the test masses. It takes a timelike interval to know that the source is a distance 
R away. Action−at−a−distance respects the speed of light as it must.

à Search  for  the source  mass

Where is the source mass in the potential? All  that has been discussed so far is an interval, a distance, 
nothing about mass. An idea from general relativity will  be borrowed, that mass can be treated geometri-
cally if multiplied by the constants G/c^2. The distance between the Earth and the Sun is approxi-
mately 1.5x10^11 m, while the Sun’s mass expressed in units of distance, GM_Sun/c^2, is 1.5x10^3 
m, eight orders of magnitude smaller. The overall length of the interval will  not be changed noticeably 
if  the spatial separation and the Sun’s mass expressed as a distance are summed. However, the force 
field is the derivative of the potential, and any change in position in spacetime will  have a far greater 
effect proportionally on the smaller geometric mass than the spatial separation. Make the following 
change of variables:

t -> t’ = A +
GM

��������������
2 c2 A

 t

RÓ -> RÓ’ = BÓ +
GM

����������������������
2 c2 È BÓ È  RÓ

where A and B are locally constants such that tau^2 ~= A^2 − B^2. The change of variables is valid 
locally, but not globally, since it breaks down for arbitrarily long time or distance away. General relativ-
ity is also valid locally and not globally.

What is the physical interpretation of the inverse square potential and the above substitution? Newton 
observed that motion in an ellipse could be caused by either a linear central force or an inverse square 
law.  With the above substitution, there is a linear displacement equation inside an infusers square 
potential. It is like a simple harmonic oscillator inside a simple harmonic oscillator! This oscillator 
works with four dimensions. Although it is confusing to confront the idea of oscillations in time, there 
is no need worry about it, since the equations are quite simple and their mathematical consequences 
can be worked out.   If all the terms where included, the equation would be nonlinear. 

The field is the derivative of the potential.  To be correct technically, it is the contravariant derivative.  
This requires both a metric and a connection.  In effect, all the work presented with quaternions uses 
the Minkowski metric with Cartesian coordinates.  For such a choice of metric and coordinates, the 
contravariant derivative equals the normal derivative.  The derivative of the potential under study, a 
normalized interval squared with the linear displacement substitution, is approximately:

1
�����������������È 1�����Τ2 È  

¶ 1�����Τ2�����������
¶t

= -
GM

�������������
c2 Τ2
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1
�����������������È 1�����Τ2 È  

¶ 1�����Τ2�����������
¶RÓ =

GM
�������������
c2 Τ2

This should look familiar, remembering that employing the event selection rule from above, the magni-
tude of tau ^2 is almost the same as R^2, differing only by the geometric mass of the source.

à A Lagrangian  for  four  modes

Despite its formulation using quaternions, this unification proposal is strikingly similar to earlier work.  
Gupta wanted to quantize the radiation field using a form that was manifestly covariant in its explicit 
treatment of time and space. He fixed the gauge with this Lagrange density:

L = -JΜ AΜ -
1
����
2

 H¶Μ AΜL2 -
1
����
4

 H¶Μ AΝ - ¶Ν AΜL H¶Μ AΝ - ¶Ν AΜL
The equations of motion for this Lagrangian are the same as choosing the Lorenz gauge:

�2 AΜ = JΜ

The problem with the Lagrangian is that the field strength tensor is antisymmetric. Due to the zeros 
along the diagonal, it cannot contribute directly to a scalar mode. What is needed is a Lagrange density 
that could contribute directly to the scalar mode but still have the same field equations. Here is such a 
Lagrangian: 

L = scalar I-JA* -
1
����
2

 �* A �A*M
This is not as miraculous as it might first appear. It is the first of four terms generated in the contrac-
tion of the electromagnetic field strength tensor. In essence, information is not discarded, which is 
what happens in making the field strength tensor antisymmetric. The one remaining modification is to 
normalize both the Lagrangian and equations of motion to the size of the potential.

à From  a relativistic  4−force to a metric

A relativistic 4−force is the change in momentum with respect to the interval. The covariant force law 
is similar in form to the one for electromagnetism except that the second rank tensor is asymmetric and 
normalized:

F =
¶p
��������
¶Τ

= mc 
¶Β
��������
¶Τ

+ Βc 
¶m
��������
¶Τ

= k q 
�* A*
�������������È A È  Β*

If  this equation is to transform like the Lorentz 4−force of electromagnetism, the normalized potential 
must be invariant under a Lorentz transformation.  That is the case of the potential under study.

In the first application of the force law, assume the derivative of the mass with respect to the interval is 
zero. For the scalar photons, assume the charge q is the gravitational test mass. Experiments have 
demonstrated that gravitational and inertial masses are equal.Assuming spherical symmetry, the 
inverse interval squared potential leads to the following equations of motion:ikjj ¶2 t

����������
¶Τ2 +

G M
�������������
c2 Τ2  

¶t
��������
¶Τ

,
¶2 RÓ
����������
¶Τ2 -

G M
�������������
c2 Τ2  

¶RÓ
��������
¶Τ

y{zz = H0, 0
ÓL
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Solve these second−order differential equations for the spacetime position:

t = c1 IΤe
GM��������c2  Τ -

GM
�������
c2

 Ei I GM
����������
c2 Τ

MM + C2

RÓ = C
Ó
1 IΤe- GM��������c2  Τ +

GM
�������
c2

 Ei I-
GM

����������
c2 Τ

MM + C
Ó
2

where Ei is the exponential integral, Ei(t)=the integral from negative infinity to t of e^t/t dt.  The expo-
nential integral plays other roles in quantum mechanics, so its presence is interesting.  

Eight constants need to be eliminated:(c_1, C_1) and (c_2, C_2).  Take the derivative of the spacetime 
position with respect to tau.  This eliminates four constants, (c_2, C_2).  The result is a 4−velocity:

¶t
��������
¶Τ

= c1 e
G M�����������

c2  Τ �

¶RÓ
��������
¶Τ

= C
Ó
1 e

- G M�����������
c2  Τ �

In flat spacetime, beta _mu beta^mu=1, providing four more constraints.  Spacetime is flat if M goes to 
0 or tau goes to infinity, leading to e^(GM/c^2|tau |) goes to 1:  J ¶t

��������
¶Τ

N2
- ikjj ¶RÓ

��������
¶Τ

y{zz × ikjj ¶RÓ
��������
¶Τ

y{zz = c12 - C
Ó
1 ×C

Ó
1 = 1

Solve for c_1^2 and C_1.C_1:

c12 = e- G M�����������
c2  Τ �  

¶t
��������
¶Τ

C
Ó
1 ×C

Ó
1 = e

G M�����������
c2  Τ �  

¶RÓ
��������
¶Τ

Substitute back into the flat spacetime constraint.  Rearrange into a metric:

¶Τ2 = e-2 G M�����������
c3  Τ �  ¶t2 - e2 G M�����������

c3  Τ �  ¶RÓ2

If  the gravitational field is zero, this generates the Minkowski metric of flat spacetime.  Conversely, if 
the gravitational field is non−zero, spacetime is curved

As expected, this become the Minkowski metric for flat spacetime if M goes to 0 or tau goes to infinity.

No formal connection between this proposal and curvature has been established.  Instead a path 
between a proposed gravitational force equation and a metric function was sketched.  There is a histori-
cal precedence for the line of logic followed.  Sir Isaac Newton in the Principia showed an important 
link between forces linear in position and inverse square force laws.  More modern efforts have shown 
that the reason for the connection is due to the conformal mapping of z goes to z^2 (T. Needham, 
"Newton and the transmutation of force," Amer. Math. Mon., 100:119−137, 1993).  This method was 
adapted to a quaternion force law linear in the relativistic velocity to generate a metric.  

For a weak field, write the Taylor series expansion in terms of the total mass over the interval to sec-
ond−order in M/|tau|: 
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¶Τ2 = J1 - 2 
G M

����������
c2 Τ

+ 2 I G M
����������
c2 Τ

M2N ¶t2 -

-J1 + 2 
G M

����������
c2 Τ

+ 2 I G M
����������
c2 Τ

M2N ¶RÓ2
+ O JI G M

����������
c2 Τ

M3N
Contrast this with the Schwarzschild solution in isotropic coordinates expanded to second order in 
M/R (MTW, eq. 31.22):

¶Τ2 = J1 - 2 
G M

����������
c2 R

+ 2 I G M
����������
c2 R

M2N ¶t2 -

-J1 + 2 
G M

����������
c2 R

+ 2.5 I G M
����������
c2 R

M2N ¶RÓ2
+ O JI G M

����������
c2 R

M3N
The magnitude of the lightlike interval tau in the unified field metric is nearly identical to the radius R 
in the Schwarzschild metric, the difference being the geometric mass of the source included in the 
interval \tau . The metric for the scalar potential will  pass the same weak field tests of general relativity 
as the Schwarzschild metric to post−Newtonian accuracy, which does not use the second order spatial 
term. The difference in the higher order terms can be the basis of an experimental test to distinguish 
this proposal from general relativity. Since the effect is second order in the field strength, such a test 
will  challenge experimental techniques.

The two metrics are numerically very similar for weak fields, but mathematically distinct.  For exam-
ple, the Schwarzschild metric is static, but the unified metric contains a dependence on time so is 
dynamic.  The Schwarzschild metric has a singularity at R=0.  The unified gravitational force metric 
becomes undefined for lightlike intervals.  This might pose less of a conceptual problem, since light 
has no rest mass.  

à The constant  velocity  profile  solution

In the previous section, the system had a constant point−source mass with a velocity profile that 
decayed with distance.  Here the opposite situation is examined, where the velocity profile is a con-
stant, but the mass distribution decays with distance.  Expand the definition of the relativistic force 
using the chain rule:

c 
¶m Β
�����������

¶Τ
= m c 

¶Β
��������
¶Τ

+ Β c 
¶m
��������
¶Τ

The first term of the force is the one that leads to an approximation of the Schwarzschild metric, and 
by extension, Newton’s law of gravity.  For a region of spacetime where the velocity is constant, this 
term is zero.  In that region, gravity’s effect is on the distribution of mass over spacetime.  This new 
gravitational term is not due to the unified field proposal per se.  It is more in keeping with the princi-
ples underlying relativity, looking for changes in all components, in this case mass distribution with 
respect to spacetime.

Start with the gravitational force in a region of spacetime with no velocity change: 

Β c 
¶mi����������
¶Τ

= k mg Scalar H�* A*L Β*
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Make the same assumptions as before: the gravitational mass is equal to the inertial mass and the 
gravitational field employs the interval between the worldlines of the test and gravitational masses.  
This generates an equation for the distribution of mass:ikjjΓ 

¶m
��������
¶Τ

+
Γ G M

��������������������
c2 È Τ È2  m, Γ Β

Ó
 

¶m
��������
¶Τ

-
Γ Β

Ó
 G M

��������������������
c2 È Τ È2  m

y{zz = H0, 0
ÓL

 Solve for the mass flow:HΓ m, Γ Β
Ó
mL = Ic e G M�������������

c2ÈΤÈ� , C
Ó
e- G M�������������

c2ÈΤÈ� M
As in the previous example for a classical weak field, assume the magnitude of the interval is an excel-
lent approximation to the radius divided by the speed of light.  The velocity is a constant, so it is the 
mass distribution that shows an exponential decay with respect to the interval, which is numerically no 
different from the radius over the speed of light.  This is a stable solution.  If the mass keeps dropping 
of exponentially, the velocity profile will  remain constant 

Look at the problem in reverse.  The distribution of matter has an exponential decay with distance 
from the center.  It must solve a differential equation with the velocity constant over that region of 
spacetime like the one proposed.

The exponential decay of the mass of a disk galaxy is only one solution to this expanded gravitational 
force equation.  The behavior of larger systems, such as gravitational lensing caused by clusters, can-
not be explained by the Newtonian term (A. G. Bergmann, V. Petrosian, and R. Lynds, "Gravitational 
lens images of arcs in clusters," Astrophys. J., 350:23, 1990. S. A. Grossman and R. Narayan, "Gravita-
tionally lensed images in abell 370," Astrophys. J., 344−637−644, 1989. J. A. Tyson, F. Valdes, and R. 
A. Wenk, "Detection of systematic gravitational lens galaxy image alignments: Mapping dark matter in 
galaxy clusters," Astrophys. J. Let., 349:L1, 1990).  It will  remain to be seen if this proposal is suffi-
cient to work on that scale.

à  Metrics  and forces

Gravity was first described as a force by Isaac Newton.  In general relativity, Albert Einstein argued 
that gravity was not a force at all.  Rather, gravity was Riemannian geometry, curvature of spacetime 
caused by the presence of a mass−energy density.  Electromagnetism was first described as a force, 
modeled on gravity.  That remains a valid choice today.  However, electromagnetism cannot be 
depicted in purely geometric terms.  A conceptual gap exists between purely geometrical and force 
laws.  

The general equivalence principle, introduced in the first paper of this series, places geometry and 
force potentials on equal footing.  Riemannian quaternions, (a_0 i_0,a_1 i_1/3,a_2 i_2/3,a_3 i_3/3), 
has pairs of (possibly) dynamic terms for the 4−potential A and the 4−basis I.  Gauss’ law written with 
Riemannian quaternion potentials and operators leads to this expression:

-
i
`
n
2

���������
9

 
¶En����������
¶in

-
i
`
n En�������������
9

 
¶i

`
n����������

¶in
= 4 ΠΡ, n = 1, 2, 3

If  the divergence of the electric field E was zero, then Gauss’ law would be due entirely to the diver-
gence of the basis vectors.  The reverse case could also hold.  Any law of electrodynamics written with 
Riemannian quaternions is a combination of changes in potentials and/or basis vectors.
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à  Future  directions

An algebraic path between a solution to the Maxwell equations and a classical metric gravitational 
theory has been shown. No effort has been extended yet to quantize the unification proposal. Like the 
early work in quantum mechanics, a collection of hunches is used to connect equations. One is left 
with the question of why this might work? The action of a gauge invariant theory cannot be inverted to 
generate the propagator needed for quantum mechanics. Fixing the gauge makes the action invertible, 
but the additional constraint decreases the degrees of freedom. By using quaternions, a division alge-
bra, the equation is necessarily invertible without imposing a constraint. If the operation of multiplica-
tion surpasses what can be done with division, then Nature cannot harness the most robust mathemati-
cal structure, a topological algebraic field, the foundation for doing calculus. Nature does calculus in 
four dimensions, and it is this requirement that fixes the gauge. In the future, when we understand how 
to do calculus with four−dimensional automorphic functions, we may have a deep appreciation of 
Nature’s methods.

There is a physical explanation for gravity − it is a local, nonlinear, four−dimensional simple harmonic 
oscillator.  Gravity is all about oscillations.  The Earth returns to approximately the same place after 
one year of travel.  If there were no interfering matter in the way, an apple dropped would fall to the 
center of the Earth, reach the other side, and return in a little over eighty minutes.  The metric equation 
that results from this analysis is within the experimental constraints of current tests of general relativ-
ity.  That makes the proposal reasonable.  For higher order terms of a weak field, the proposal is differ-
ent than the Schwarzschild metric of general relativity.  That makes it testable.  There are very few 
reasonable, testable classical unified field theories in physics, so this alone should spark interest in this 
line of work.

For a spiral galaxy with an exponential mass distribution, dark matter is no longer needed to explain 
the flat velocity profile observed or the long term stability of the disk.  Mass distributed over large 
distances of space has an effect on the mass distribution itself.  This raises an interesting question: is 
there also an effect of mass distributed over large amounts of time? If the answer is yes, then this might 
solve two analogous riddles involving large time scales, flat velocity profiles and the stability of solu-
tions.  Classical big bang cosmology theory spans the largest time frame possible and faces two such 
issues.  The horizon problem involves the extremely consistent velocity profile across parts of the 
Universe that are not casually linked (MTW, p. 815).  The flatness problem indicates how unstable the 
classical big bang theory is, requiring exceptional fine tuning to avoid collapse.  Considerable effort 
will  be required to substantiate this tenuous hypothesis.  Any insight into the origin of the unified 
engine driving the Universe of gravity and light is worthwhile.
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Strings  and Quantum  Gravity

In this section, a quaternion 3−string will  be defined.  By making this quantity dimensionless, I will  
argue that it my be involved in a relativistic quantum gravity theory, at least one consistent with cur-
rent experimental tests.  At the current time, this is an idea in progress, not a theory, since the equa-
tions of motion have not been determined.  It is hoped that the work in the previous section on unified 
fields will  provide that someday. 

à Strings

Let us revisit the difference between two quaternions squared, as worked out in the section of analysis.  
A quaternion has 4 degrees of freedom, so it can be represented by 4 real numbers:

q = Ha0, a1, a2, a3L
Taking the difference between two quaternions is only a valid operation if they share the same basis.  
Work with defining the derivative with respect to a quaternion has required that a change in the scalar 
be equal in magnitude to the sum of changes in the 3−vector (instead of the usual parity with compo-
nents).  These concerns lead to the definition of the difference between two quaternions:

dq = Ida0 e0, da1 
e1�������
3
, da2 

e2�������
3
, da3 

e3�������
3

M
What type of information must e0, e1, e2, and e3 share in order to make subtraction a valid operation?  
There is only one basis, so the two events that make up the difference must necessarily be expressed in 
the same basis.  If not, then the standard coordinate transformation needs to be done first.  A more 
subtle issue is that the difference must have the same amount of intrinsic curvature for all three spatial 
basis vectors.  If this is not the case, then it would not longer be possible to do a coordinate transforma-
tion using the typical methods.  There would be a hidden bump in an otherwise smooth transformation!  
At this point, I do not yet understand the technical link between basis vectors and intrinsic curvature.  I 
will  propose the following relationship between basis vectors because its form suggests a link to intrin-
sic curvature:

-
1

���������
e12

= -
1

���������
e22

= -
1

���������
e32

= e02

If  e0 = 1, this is consistent with Hamilton’s system for 1, i, j, and k.  The dimensions for the spatial 
part are 1/distance^2, the same as intrinsic curvature.  This is a flat space, so −1/e1^2 is something like 
1 + k.  In effect, I am trying to merge the basis vectors of quaternions with tools from topology.  In 
math, I am free to define things as I choose, and if lucky, it will  prove useful later on :−)

Form the square of the difference between two quaternion events as defined above:
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dq2 = Jda02 e02 + da1
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N =

= Hinterval2, 3 - stringL
The scalar is the Lorentz invariant interval of special relativity if e0 = 1.  

Why use a work with a powerful meaning in the current physics lexicon for the vector dt dX?  A string 
transforms differently than a spatial 3−vector, the former flipping signs with time, the latter inert.  A 
string will  also transform differently under a Lorentz transformation.  

The units for a string are time*distance.  For a string between two events that have the same spatial 
location, dX = 0, so the string dt dX is zero.  For a string between two events that are simultaneous, dt 
= 0 so the string is again of zero length.  Only if two events happen at different times in different 
locations will  the string be non−zero.  Since a string is not invariant under a Lorentz transformation, the 
value of a string is 

We all appreciate the critical role played by the 3−velocity, which is the ratio of dX by dt.  Hopefully 
we can imagine another role as important for the product of these same two numbers.  

à Dimensionless  Strings

Imagine some system that happens to create a periodic pattern of intervals and strings (a series of 
events that when you took the difference between neighboring events and squared them, the results had 
a periodic pattern).  It could happen :−)  One might be able to use a collection of sines and cosines to 
regenerate the pattern, since sines and cosines can do that sort of work.  However, the differences 
would have to first be made dimensionless, since the infinite series expansion for such transcendental 
functions would not make sense.  The first step is to get all the units to be the same, using c.  Let a0 
have units of time, and a1, a2, a3 have units of space.  Make all components have units of time:
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N
Now the units are time squared.  Use a combination of 3 constants to do the work of making this 
dimensionless.

1���G -> mass time2��������������������
distance3

1���h -> time���������������������������
mass distance2

c5 -> distance5�������������������
time5

The units for the product of these three numbers are the reciprocal of time squared.  This is the same as 
the reciprocal of the Planck time squared, and in units of seconds is 5.5x10^85s^−2.  The symbols 
needed to make the difference between two events dimensionless are simple:
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e3��������
3 c

N

37

     



As far as the units are concerned, this is relativistic (c) quantum (h) gravity (G).   Take this constants to 
zero or infinity, and the difference of a quaternion blows up or disappears.

à Behaving  Like  a Relativistic  Quantum  Gravity  Theory

Although the units suggest a possible relativistic quantum gravity, it is more important to see that it 
behaves like one.  Since this unicorn of physics has never been seen I will  present 4 cases which will  
show that this equation behaves like that mysterious beast!

Consider a general transformation T that brings the difference between two events dq into dq’.  There 
are four cases for what can happen to the interval and the string between these two events under this 
general transformation.

Case 1:  Constant  Intervals  and Strings

T : dq -> dq’ such that scalar Hdq2L =
scalar Hdq’2L and vector Hdq2L = vector Hdq’2L

This looks simple, but there is no handle on the overall sign of the 4−dimensional quaternion, a smoke 
signal of O(4).  Quantum mechanics is constructed around dealing with phase ambiguity in a rigorous 
way.  This issue of ambiguous phases is true for all four of these cases.

Case 2:  Constant  Intervals

T : dq -> dq’ such that scalar Hdq2L =
scalar Hdq’2L and vector Hdq2L != vector Hdq’2L

Case 2 involves conserving the Lorentz invariant interval, or special relativity.  Strings change under 
such a transformation, and this can be used as a measure of the amount of change between inertial 
reference frames.

Case 3:  Constant  Strings

T : dq -> dq’ such that scalar Hdq2L !=
scalar Hdq’2L and vector Hdq2L = vector Hdq’2L

Case 3 involves conserving the quaternion string, or general relativity.  Intervals change under such a 
transformation, and this can be used as a measure of the amount of change between non−inertial refer-
ence frames.  All  that is required to make this simple but radical proposal consistent with experimental 
tests of general relativity is the following:

1 - 2
G M

����������
c2 R

= -
1

���������
e12

= -
1

���������
e22

= -
1

���������
e32

= e02

The string, because it is the product of e0 e1, e0 e2, and e0 e3, will  not be changed by this.  The phase 
of the string may change here, since this involves the root of the squared basis vectors.  The interval 
depends directly on the squares of the basis vectors (I think of this as being 1+/− the intrinsic curvature, 
but do not know if that is an accurate technical assessment).  This particular value regenerates the 
Schwarzschild solution of general relativity.
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Case 4:  No Constants

T : dq -> dq’ such that scalar Hdq2L !=
scalar Hdq’2L and vector Hdq2L != vector Hdq’2L

In this proposal, changes in the reference frame of an inertial observer are logically independent from 
changing the mass density.  The two effects can be measured separately.  The change in the length−
time of the string will  involve the inertial reference frame, and the change in the interval will  involve 
changes in the mass density.

à The Missing  Link

At this time I do not know how to use the proposed unified field equations discussed earlier to generate 
the basis vectors shown.  This will  involve determining the precise relationship between intrinsic 
curvature and the quaternion basis vectors.  
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Answering  Prima  Facie Questions  in Quantum  Gravity  Using  Quaternions

(Note: this was a post sent to the newsgroup sci.physics.research June 28, 1998)

Chris Isham’s paper "Prima Facie Questions in Quantum Gravity" (gr−qc/9310031,  October, 1993) 
details the structure required of any approach to quantum gravity.  I will  use that paper as a template 
for this post, noting the highlights (but please refer to this well−written paper for details).  Wherever 
appropriate, I will  point out how using quaternions in quantum gravity fits within this superstructure.  I 
will  argue that all the technical parts required are all ready part of quaternion mathematics.  These tools 
are required to calculate the smallest norm between two worldlines, which may form a new road to 
quantum gravity.

à What Is Quantum  Gravity?

Isham sorts the approaches to quantum gravity into four groups.  First, there is the classical approach.  
This begins with Einstein’s general relativity.  Systematically substitute self−adjoint operators for 
classical terms like energy and momentum.  This gets further subdivided into the ’canonical’ scheme 
where spacetime is split into time and space−−Ashtekar’s work−−and a covariant formulation, which is 
believed to be perturbatively non−renormalizable.  

The second approach takes quantum mechanics and transforms it into general relativity.  Much less 
effort has gone in this direction, but there has been work done by Haag.

The third angle has general relativity as the low energy limit of ideas based in conventional quantum 
mechanics.  Quantum gravity dominates the world on the scale of Plank time, length, or energy, a 
place where only calculations can go.  This is where superstring theory lives.

The fourth possibility involves a radical new perspective, where general relativity and quantum mechan-
ics are only different applications of the same mathematical structure.  This would require a major 
"retooling".  People with the patience to have read many of my post (even if not followed :−) know this 
is the task facing work with quaternions.  Replace the tools for doing special relativity−−4−vectors, 
metrics, tensors, and groups−−with quaternions that preserve the scalar of a squared quaternion.  
Replace the tools for deriving the Maxwell equations−−4−potentials, metrics, tensors, and groups−−by 
quaternion operators acting on quaternion potentials using combinations of commutators and anticom-
mutators.  It remains to be shown in this post whether quaternions also have the structure required for a 
quantum gravity theory.

à Why Do We Study  Quantum  Gravity?

Isham gives six reasons: the inability to calculate using perturbation theory a correction for general 
relativity, singularities, quantum cosmology (particularly the Big Bang), Hawking radiation, unifica-
tion of particles, and the possibility of radical change.  This last reason could be a lot of fun, and it is 
the reason to read this post :−)
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à What Are Prima  Facie Questions?

The first question raised by Isham is the relation between classical and quantum physics.  Physics with 
quaternions has a general guide.  Consider two arbitrary quaternions, q and q’.  The classical distance 
between them is the interval. IHt, XÓL - It¢, X¢ÓÖÖ MM2

= Hdt2 - d XÓ.d XÓ, 2 dt d XÓL
This involves retooling, because the distance also includes a 3−vector.  There is nothing inherently 
wrong with this vector, and it certainly could be computed with standard tools.  To be complete, mea-
sure the difference between two quaternions with a quaternion containing the usual invariant scalar 
interval and a covariant 3−vector.  To distinguishing collections of events that are lightlike separated 
where the interval is zero, use the 3−vector which can be unique.  Never discard useful information!

Quantum mechanics involves a Hilbert space.  Quaternions can be used to form an inner−product 
space.  The norm of the difference between q and q’ isIHt, XÓL - It¢, X¢ÓÖÖ MM*

 IHt, XÓL - It¢, X¢ÓÖÖ MM = Hdt2 + d XÓ.d XÓ, 0
ÓL

The norm can be used to build all the equipment expected of a Hilbert space, including the Schwarz 
and triangle inequalities.  The uncertainty principle can be derived in the same way as is done with the 
complex−valued wave function.

I call q q’ a Grassman product (it has the cross product in it) and q* q’ the Euclidean product (it is a 
Euclidean norm if q = q’).  In general, classical physics involves Grassman products and quantum 
mechanics involves Euclidean products of quaternions.

Isham moves from big questions to ones focused on quantum gravity.Which classical spacetime con-
cepts are needed?  Which standard parts of quantum mechanics are needed?  Should particles be 
united?  With quaternions, all these concepts are required, but the tools used to build them morph and 
become unified under one algebraic umbrella.

Isham points out the difficulty of clearly marking a boundary between theories and fact.  He writes:

"...what we call a ’fact’ does not exist without some theoretical schema for organizing experimental 
and experiential data; and, conversely, in constructing a theory we inevitably impose some prior idea 
of what we mean by a fact."

My structure is this:  the description of events in spacetime using the topological algebraic field of 
quaternions is physics.

à Current  Research  Programs  in Quantum  Gravity

There is a list of current approaches to quantum gravity.  This is solid a description of the family of 
approaches being used, circa 1993.  See the text for details.

à Prima  Facie Questions  in Quantum  Gravity

Isham is concerned with the form of these approaches.  He writes:

 "I mean (by background structure) the entire conceptual and structural framework within whose lan-
guage any particular approach is couched. Different approaches to quantum gravity differ significantly 
in the frameworks they adopt, which causes no harm−−indeed the selection of such a framework is an 
essential pre−requisite for theoretical research−−provided the choice is made consciously."
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My framework was stated explicitly above, but it literally does not appear on the radar screen of this 
discussion of quantum gravity.  Moments later comes this comment:

"In using real or complex numbers in quantum theory we are arguably making a prior assumption 
about the continuum nature of space."

This statement makes a hidden assumption, that quaternions do not belong on a list that includes real 
and complex numbers.  Quaternions have the same continuum properties as the real and complex 
numbers.  The important distinction is that quaternions do not commute.  This property is shared by 
quantum mechanics so it should not banish quaternions from the list.  The omission reflects the history 
of work in the field, not the logic of the mathematical statement.

General relativity may force non−linearity into quantum theory, which require a change in the formal-
ism.  It is easy to write non−linear quaternion functions.  Near the end of this post I will  do that in an 
attempt to find the shortest norm in spacetime which happens to be non−linear.

Now we come to the part of the paper that got me really excited!  Isham described all the machinery 
needed for classical general relativity.  The properties of quaternions dovetail the needs perfectly.  I 
will  quote at length, since this is helpful for anyone trying to get a handle on the nature of general 
relativity.

"The mathematical model of spacetime used in classical general relativity is a differentiable manifold 
equipped with a Lorentzian  metric.  Some of the most important pieces of substructure underlying this 
picture are illustrated in Figure 1.

The bottom level is a set M whose elements are to be identified with spacetime ’points’ or ’events’. 
This set is formless with its only general mathematical property being the cardinal number.  In particu-
lar, there are no relations between the elements of M and no special way of labeling any such element.  

The next step is to impose a topology on M so that each point acquires a family of neighborhoods.  It 
now becomes possible to talk about relationships between point, albeit in a rather non−physical way.  
This defect is overcome by adding the key of all standard views of spacetime: the topology of M must 
be compatible with that of a differentiable manifold.  A point can then be labeled uniquely in M (at 
least locally) by giving the values of four real numbers.  Such a coordinate system also provides a 
more specific way of describing relationships between points of M, albeit not intrinsically in so far as 
these depend on which coordinate systems are chosen to cover M.

In the final step a Lorentzian metric g is placed on M, thereby introducing the ideas of the length of a 
path joining two spacetime points, parallel transport with respect to a Riemannian connection, causal 
relations between pairs of points etc.  There are also a variety of possible intermediate steps between 
the manifold and Lorentzian pictures; for example, as signified in Figure 1, the idea of  causal structure 
is more primitive than that of a Lorentzian metric."

My hypothesis to treat events as quaternions lends more structure than is found in the set M.  Specifi-
cally, Pontryagin proved that quaternions are a topological algebraic field.  Each point has a neighbor-
hood, and limit processes required for a differentiable manifold make sense.  Label every quaternion 
event with four real numbers, using whichever coordinate system one chooses.  Earlier in this post I 
showed how to calculate the Lorentz interval, so the notion of length of a path joining two events is 
always there.  As described by Isham, spacetime structure is built up with care from four unrelated real 
numbers.  With quaternions as events, spacetime structure is the observed properties of the mathemat-
ics, inherited by all quaternion functions.

Much work in quantum gravity has gone into viewing how flexible the spacetime structure might be.  
The most common example involves how quantum fluctuations might effect the Lorentzian metric.  
Physicists have tried to investigate how such fluctuation would effect every level of spacetime struc-
ture, from causality, to the manifold to the topology, even the set M somehow.

None of these avenues are open for quaternion work.  Every quaternion equation inherits this wealth of 
spacetime structure.  It is the family quaternion functions are born in.  There is nothing to stop combin-
ing Grassman and Euclidean products, which at an abstract level, is the way to merge classical and 
quantum descriptions of collections of events.  If a non−linear quaternion function can be defined that 
is related to the shortest path through spacetime, the cast required for quantum gravity would be 
complete.
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None of these avenues are open for quaternion work.  Every quaternion equation inherits this wealth of 
spacetime structure.  It is the family quaternion functions are born in.  There is nothing to stop combin-
ing Grassman and Euclidean products, which at an abstract level, is the way to merge classical and 
quantum descriptions of collections of events.  If a non−linear quaternion function can be defined that 
is related to the shortest path through spacetime, the cast required for quantum gravity would be 
complete.

According to Isham, causal structure is particularly important.  With quaternions, that issue is particu-
larly straightforward.  Could event q have caused q’?  Take the difference and square it.  If the scalar is 
positive, then the relationship is timelike, so it is possible.  Is it probable?  That might depend on the 3−
vector, which could be more likely if the vector is small (I don’t understand the details of this sugges-
tion yet).  If the scalar is zero, the two have a lightlike relationship.  If the scalar is negative, then it is 
spacelike, and one could not have caused the other.

This causal structure also applies to quaternion potential functions.  For concreteness, let q(t) = cos(pi t 
(2i + 3j + 4k)) and q’(t) = sin( pi t (5i − .1j + 2k).  Calculate the square of the difference between q and 
q’.  Depending on the particular value of t, this will  be positive, negative or zero.  The distance vectors 
could be anywhere on the map.  Even though I don’t know what these particular potential functions 
represent, the causal relationship is easy to calculate, but is complex and not trivial.

à The Role of  the Spacetime  Diffeomorphism  Group  Diff(M)

Isham lets me off the hook, saying "...[for type 3 and 4 theories]  there is no strong reason to suppose 
that Diff(M)  will  play any  fundamental role in [such] quantum theory."  He is right and wrong.  My 
simple tool collection does not include this group.  Yet the concept that requires this idea is essential.  
This group is part of the machinery that makes possible causal measurements of lengths in various 
topologies.  Metrics change due to local conditions.  The concept of a flexible, causal metric must be 
preserved.

With quaternions, causality is always found in the scalar of the square of the difference.  For two 
events in flat spacetime, that is the interval.  In curved spacetime, the scalar of the square is different, 
but it still is either positive, negative or zero.

à The Problem  of  Time

Time plays a different role in quantum theory and in general relativity.  In quantum, time is treated as a 
background parameter since it is not represented by an operator.  Measurements are made at a particu-
lar time.  In classical general relativity in curved spacetime, there are many possible metrics which 
might work, but no way to pick the appropriate one.  Without a clear definition of measurement, the 
definition is non−physical.  Fixing the metric cannot be done if the metric is subject to quantum 
fluctuations.

Isham raises three questions:

"How is the notion of time to be incorporated in a quantum theory of gravity?

Does it play a fundamental role in the construction of the theory or is it a ’phenomenological’ concept 
that applies, for example, only in some coarse−grained, semi−classical sense?

In the latter case, how reliable is the use at a basic level of    techniques drawn from standard quantum 
theory?"

Three solutions are noted: fix the background causal structure, locate events within functionals of 
fields, or make no reference to time.

With quaternions, time plays a central role, and is in fact the center of the matrix representation.  Time 
is isomorphic to the real numbers, so it forms a totally ordered sub−field of the quaternions.  It is not 
time per se, but the location of time within the event quaternion (t, x i, y j, z k) that gives time its 
significance.  The scalar slot can be held by energy (E, px i, py j, pz k), the tangent of spacetime, by 
                           
mechanics (t^2 + x^2 + y^2 + z^2, 0, 0, 0).  Time, energy, intervals, norms,...they all can take the same 
throne isomorphic to the real numbers, taking on the properties of a totally ordered set within a larger, 
unordered framework.  Events are not totally ordered, but time is.  Energy/momenta are not totally 
ordered, but energy is.  Squares of events are not totally ordered, but intervals are.  Norms are totally 
ordered and bounded below by zero. 
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With quaternions, time plays a central role, and is in fact the center of the matrix representation.  Time 
is isomorphic to the real numbers, so it forms a totally ordered sub−field of the quaternions.  It is not 
time per se, but the location of time within the event quaternion (t, x i, y j, z k) that gives time its 
significance.  The scalar slot can be held by energy (E, px i, py j, pz k), the tangent of spacetime, by 
the interval of classical physics (t^2 − x^2 − y^2 − z^2, 2 tx i, 2 ty j, 2 tz k) or the norm of quantum 
mechanics (t^2 + x^2 + y^2 + z^2, 0, 0, 0).  Time, energy, intervals, norms,...they all can take the same 
throne isomorphic to the real numbers, taking on the properties of a totally ordered set within a larger, 
unordered framework.  Events are not totally ordered, but time is.  Energy/momenta are not totally 
ordered, but energy is.  Squares of events are not totally ordered, but intervals are.  Norms are totally 
ordered and bounded below by zero. 

Time is the only element in the scalar of an event.  Time appears in different guises for the scalars of 
energy, intervals and norms.  The richness of time is in the way it weaves through these other scalars, 
sharing the center in different ways with space.

à Approaches  to Quantum  Gravity

Isham surveys the field.  At this point I think I’ll  just explain my approach.  It is based on a concept 
from general relativity.  A painter falling from a ladder travels along the shortest path through space-
time.  How does one go about finding the shortest path?  In Euclidean 3−space, that involves the trian-
gle inequality.  A proof can be done using quaternions if the scalar is set to zero.  That proof can be 
repeated with the scalar set free.  The result is the shortest distance through spacetime, or gravity, 
according to general relativity.

What is the shortest distance between two points A and B in Euclidean 3−space?

A = H0, ax, ay, azL
B = H0, bx, by, bzL

What is the shortest distance between two worldlines A(t) and B(t) in spacetime?

A HtL = Ht, ax HtL, ay HtL, az HtLL
B HtL = Ht, bx HtL, by HtL, bz HtLL

The Euclidean 3−space question is a special case of the worldline question.  The same proof of the 
triangle inequality answers both questions.  Parameterize the norm N(k) of the sum of A(t) and B(t).

N HkL = HA + k BL* HA + k BL
= A* A + k HA* B + B* AL + k^2 B* B

Find the extremum of the parameterized norm.

dN
�������
dk

= 0 = A* B + B* A + 2 k B* B

The extremum is a minimum

d2 N
����������
dk2

= 2 B* B >= 0

The minimum of a quaternion norm is zero.  Plug the extremum back into the first equation.
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0 <= A* A -
HA* B + B* AL2
����������������������������������

2 B* B
+

HA* B + B* AL2
����������������������������������

4 B* B

Rearrange.HA* B + B* AL2 <= 4 A* A B* B

Take the square root.

A* B + B* A <= 2 
�!!!!!!!!!!!!!!!!!!A* A B* B

Add the norm of A and B to both sides.

A* A + A* B + B* A + B* B <= A* A + 2 �!!!!!!!!!!!!!!!!!!A* A B* B + B* B

Factor.

N HA + BL = HA + BL* HA + BL <= I�!!!!!!!!!A* A +
�!!!!!!!!!B* BM2

The norm of the worldline of A plus B is less than the norm of A plus the norm of B.

List the mathematical structures required.  To move the triangle inequality from Euclidean 3−space to 
worldlines required the inclusion of the scalar time component of quaternions.  The proof required 
differentiation to find the minimum.  The norm is a Euclidean product, which plays a central role in 
quaternion quantum mechanics.  Doubling A or B does not double the norm of the sum due to cross 
terms, so the minimal function is not linear. 

To address a question raised by general relativity with quaternions required all the structure Isham 
suggested except causality using the Grassman product.  The above proof could be repeated using 
Grassman products.  The only difference would be that the extremum would be an interval which can 
be positive, negative or zero (a minimum, a maximum or an inflection point).  

à Certainty  Is Seven for  Seven 

I thought I’d end this long post with a personal story.  At the end of my college days, I started drinking 
heavily.  Not alcohol, soda.  I’d buy a Mellow Yellow and suck it down in under ten seconds.  See, I 
was thirsty.  Guzzle that much soda, and, well, I also had to go to the bathroom, even in the middle of 
the night.  I was trapped in a strange cycle.  Then I noticed my tongue was kind of foamy.  Bizarre.  I 
asked a friend with diabetes what the symptoms of that disease were.  She rattled off six: excessive 
thirst, excessive urination, foamy tongue, bad breath, weight loss, and low energy.  I concluded on the 
spot I had diabetes.  She said that I couldn’t be certain.  Six for six is too stringent a match, and I felt 
very confident I had this chronic illness.  I got the seventh later when she tested my blood glucose on 
her meter and it was off−scale.  She gave me sympathy, but I didn’t feel at all sorry for myself.  I 
wanted facts: how does this disease work and how do I cope?

Nothing was made official until I visited the doctor and he ran some tests.  The doctor’s prescription 
got me access to the insulin I could no longer produce.  It was, and still is today, a lot of work to man-
age the disease.

When I look at Isham’s paper, I see six constraints on the structure of any approach to quantum grav-
ity: events are sets of 4 numbers, events have topological neighborhoods, they live on differential 
manifolds, there is one of the three types of causal relationships between all events, the distance 
between events is the interval whose form can vary and a Hilbert space is required for quantum mechan-
ics.  Quaternions are six for six.  The seventh match is the non−linear shortest norm of spacetime.  I 
have no doubt in the diagnosis that the questions in quantum gravity will  be answered with quater-
nions.  Nothing here is official.  There are many test that must be passed.  I don’t know when the 
doctor will  show up and make it official.  It will  take a lot of work to manage this solution.
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Length  in Curved  Spacetime

à The Affine  Parameter  of  General  Relativity

The affine parameter is defined in Misner, Thorne and Wheeler as a multiple of the proper time plus a 
displacement.

Λ = a Τ + b

The affine parameter is used to determine length in curved spacetime.  In this notebook, the length of a 
quaternion in curved spacetime will  be analyzed.  Under certain approximations, this length will  
depend on the square of the affine parameter, but the two measures are slightly different.

à Length  in Flat  Spacetime

Calculating the square of the interval between two events in flat spacetime was straightforward: take 
the difference between two quaternions and square it.

Lflat = Hq - q¢L2 = Idt2 - d XÓ2
, 2 dt d XÓM

The first term is the square of the interval.  Spacetime is flat in the sense that the first term is exactly 
like the Minkowski metric in spacetime. There are quaternions which preserve the interval, and those 
quaternions were used to solve problems in special relativity. 

Although not important in this context, it is significant that the value of the vector portion depends 
upon the observer.  This gives a way to distinguish between various frequencies of light for example.

à Length  in Curved  Spacetime

Consider if the origin  is located at two different locations in spacetime.  Characterize each origin as a 
quaternion, calling the o and o’.  In flat spacetime, the two origins would be identical.  Calculate the 
interval as done above, but account for the change in the origin.

Lcurved = HHq + oL - Hq¢ + o¢LL2

= Id Ht + toL2 - d HXÓ + XÓoL2
, 2 d Ht + toL d HXÓ + XÓoLM

Examine the first term more closely by expanding it.Idt2 - d XÓ2M + Idto2 - d XÓo
2M + 2 dt dto - 2 d XÓ d XÓo

The length in curved spacetime is the square of the interval (invariant under a boost) between the two 
origins, plus the square of the interval between the two events, plus a cross term, which will  not be 
invariant under a boost.  The length is symmetric under exchange of the event with the origin 
translation.
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The length in curved spacetime is the square of the interval (invariant under a boost) between the two 
origins, plus the square of the interval between the two events, plus a cross term, which will  not be 
invariant under a boost.  The length is symmetric under exchange of the event with the origin 
translation.

L curved looks similar to the square of the affine parameter:

Λ2 = b2 + 2 a b Τ + a2 Τ2

In this case, b^2 is the origin interval squared and a = 1.  There is a difference in the cross terms.  
However, in the small curvature limit, delta to >> delta Xo, so tau ~ delta to.  Under this approxima-
tion, the square of the affine parameter and L curved are the same.

For a strong gravitational field, L curved will  be different than the square of the affine parameter.  The 
difference will  be solely in the nature of the cross term.  In general relativity, b and tau are invariant 
under a boost.  For L curved, the cross term should be covariant.  Whether this has any effects that can 
be measured needs to be explored.

There exist quaternions which preserve L curved because quaternions are a field (I haven’t found them 
yet because the math is getting tough at this point!)  It is my hope that those quaternions will  help 
solve problems in general relativity, as was the case in special relativity.

à Implications

A connection to the curved geometry of general relativity was sketched.  It should be possible to solve 
problems with this "curved" measure.  As always, all the objects employed were quaternions.  There-
fore any of the previously outline techniques should be applicable.  In particular, it will  be fun in the 
future to think about things likeHHq + oL - Hq¢ + o¢LL* HHq + oL - Hq¢ + o¢LL

= Id Ht + toL2 + d HXÓ + XÓoL2
, 2 d Ht + toL d HXÓ + XÓoLM

= IIdt2 - d XÓ2M + Idto2 - d XÓo
2M + 2 dt dto + 2 d XÓ d XÓo, ...M

which could open the door to a quantum approach to curvature.
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A New Idea for  Metrics

In special relativity, the Minkowski metric is used to calculate the  interval between two spacetime 
intervals for inertial observers.  Einstein  recognized that inertial observes were "special", a unique 
class.  Therefore he set out to understand what was the most general notion for  transformations and 
metrics.  This lead to his study of Riemannian geometry, and eventually to general relativity.  In this 
post I shall start from the Lorentz invariant interval using quaternions, then try to generalize this 
approach using a different way which might prove compatible with quantum mechanics.

For the physics of gravity, general relativity (GR) makes the right  predictions of all experimental tests 
conducted to date.  For the physics  of atoms, quantum mechanics (QM) makes the right predictions to 
an even  high degree of precision.  The problem of building a quantum theory of  gravity (QG) hides 
between general relativity and quantum mechanics.  General relativity deals with the measurements of 
intervals in curved  spacetime, special relativity (SR)  being adapted to work in flat space.  Quantum 
mechanics is used to calculate the norms of wave functions in  a flat linear space.  A quantum gravity 
theory will  be used to calculate  norms of wave functions in curved space.

                   measurement

                 interval  norm

  diff.  flat       SR      QM

  geo.   curved     GR      QG

This chart suggests that the form of measurement (interval/norm) should   be  independent of differen-
tial geometry (flat/curved).  That will   be the explicit goal of this post.

Quaternions come with a metric, a means of taking 4 numbers and returning a scalar.  Hamilton 
defined the roles like so:

i
Ó2

= j
Ó2

= k
Ó2

= -1 i
Ó
j
Ó
k
Ó

= -1

The scalar result of squaring a differential quaternion in the interval of special relativity:

scalar IHdt, d XÓL2M = dt2 - d XÓ.d XÓ
How can this be generalized?  It might seem natural to explore variations  on Hamilton’s rules shown 
above.  Riemannian geometry uses that strategy.  When working with a field like quaternions, that 
approach bothers me  because Hamilton’s rules are fundamental to the very definition of a  quaternion.  
Change these rules and it may not be valid to compare physics  done with different metrics.  It may 
cause a compatibility problem.

Here is a different approach which generalizes the scalar of the square while being consistent with 
Hamilton’s rules.

interval2 = scalar Hg dq g dqL
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if g = H1, 0
ÓL,

then interval2 = dt2 - d XÓ.d XÓ
If  g is the identity matrix.  Then then result is the flat Minkowski  interval.  The quaternion g could be 
anything.  What if g = i?  (what  would you guess, I was surprised :−)

scalar HHH0, 1, 0, 0L Ht, x, y, zLL2L =

= H-t2 + x2 - y2 - z2, 0
ÓL

Now the special direction x plays the same role as time!  Does this make  sense physically?  Here is 
one interpretation.  When g=1, a time−like  interval is being measured with a wristwatch.  When g=i, a 
space−like  interval along the x axis is being measured with a meter stick along the  x axis.

Examine the most general case, where small letters are scalar, and capital letters are 3−vectors:

interval2 = scalar HHg, G
ÓL Hdt, d XÓL Hg, G

ÓL Hdt, d XÓLL =

= g2 Hdt2 - d XÓ.d XÓL - 4 g dt G
Ó
.d XÓ +HGÓ.d XÓL2

- dt2 d G
Ó
.d G

Ó
- HGÓ xd XÓL.HGÓ xd XÓL =

In component form...

= H+ g2 - Gx2 - Gy2 - Gz2L dt2 +

+ H- g2 + Gx2 - Gy2 - Gz2L dx2 +

+ H- g2 - Gx2 + Gy2 - Gz2L dy2

+ H- g2 - Gx2 - Gy2 + Gz2L dz2 +

- 4 g Gx dt dx - 4 g Gy dt dy - 4 g Gz dt dz

+ 4 Gx Gy ds dy + 4 Gx Gz dx dz + 4 Gy Gz dy dz

This has the same combination of ten differential terms found in the  Riemannian approach.  The 
difference is that Hamilton’s rule impose an  additional structure.

I have not yet figured out how to represent the stress tensor, so  there are no field equations to be 
solved.  We can figure out some of the  properties of a static, spherically−symmetric metric.  Since it is 
static,  there will  be no terms with the deferential element dt dx, dt dy, or dt  dz.  Since it is spherically 
symmetric, there will  be no terms of the  form dx dy, dx dz, or dy dz.  These constraints can both be 
achieved if Gx  = Gy = Gz = 0.  This leaves four differential equations.

Here I will  have to stop.  In time, I should be able to figure out  quaternion field equations that do the 
same work as Einstein’s field  equations. I bet it will  contain the Schwarzschild solution too :−)  Then it 
will  be easy to create a Hilbert space with a non−Euclidean norm,  a norm that is determined by the 
distribution of mass−energy.  What sort  of calculation to do is a mystery to me, but someone will  get 
to that  bridge...
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The Gravitational  Redshift

Gravitational redshift experiments are tests of conservation of energy in a gravitational potential.  A 
photon lower in a gravitational potential expends energy to climb out, and this energy cost is seen as a 
redshift.  In this notebook, the difference between weak gravitational potentials will  be calculated and 
shown to be consistent with experiment.  Quaternions are not of much use here because energy is a 
scalar, the first term of a quaternion that is a scalar multiple of the identity matrix.

à The Pound  and Rebka Experiment

The Pound and Rebka experiment used the Mossbauer effect to measure a redshift between the base 
and the top of a tower at Harvard University.  The relevant potentials are

Φtower =
G M

��������������
r + h

;

Φbase =
G M
��������
r

;

The equivalence principle is used to transform the gravitational potential to a speed (this only involves 
dividing phi by the constant c^2). 

Βtower =
G M

��������������������������
c2 Hr + hL ;

Βbase =
G M

����������
c2 r

;

Now the problem can be viewed as a relativistic Doppler effect problem.  A redshift in a frequency is 
given by

Ν’ == HΓ@ΒD + Β Γ@ΒDL Νo

For small velocities, the Doppler effect is

Series@Γ@ΒD + Β Γ@ΒD, 8Β, 0, 1<D
= 1 + Β + O@ΒD2

The experiment measured the difference between the two Doppler shifts.

Series@HH1 + ΒtowerL - H1 + ΒbaseLL Νo, 8h, 0, 1<D
= -

G M Νo h������������������
c2 r2

+ O@hD2
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Or equivalently, 

Ν’ = g h Νo

This was the measured effect.

à Escape  From  a Gravitational  Potential

A photon can escape from a star and travel to infinity ( or to us, which is a good approximation).  The 
only part of the previous calculation that changes is the limit in the final step.

Limit@HH1 + ΒtowerL - H1 + ΒbaseLL Νo, h -> InfinityD
= -

G M Νo��������������
c2 r

This shift has been observed in the spectral lines of stars.

à Clocks  at different  heights  in  a gravitational  field

C. O. Alley conducted an experiment which involved flying an atomic clock at high altitude and com-
paring it with an atomic clock on the ground.  This is like integrating the redshift over the time of the 
flight.

à
0

t

-
G M h
�������������
c2 r2

 ât = -
G h M t
����������������
c2 r2

This was the measured effect.

à Implications

Conservation of energy involves the conservation of a scalar.  Consequently, nothing new will  happen 
by treating it as a quaternion.  The approach used here was not the standard one employed.  The equiva-
lence principle was used to transform the problem into a relativistic Doppler shift effect.  Yet the 
results are no different.  This is just part of the work to connect quaternions to measurable effects of 
gravity.

à References

For the Pound and Rebka experiment, and escape:

Misner, Thorne, and Wheeler, Gravitation, 1970.

For the clocks at different heights:

Quantum optics, experimental gravitation and measurement theory, Ed. P. Meystre, 1983 (also men-
tioned in Taylor and Wheeler, Spacetime Physics, section 4.10)
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