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It has been remarked by Cayley,1 as early as in 1854, that the rotations in a four-
dimensional space may be effected by means of a pair of quaternions applied, one
as a prefactor and the other as a postfactor, to the quaternion q whose components
are the four coordinates of a space-point, say

q′ = aqb, (1)

where in the case of pure rotation a and b must of course be either unit-quaternions
or at least such that T 2 a.T 2 b = 1; T denoting the tensor.

On the other hand, it is widely known that the so-called Lorentz-transformation
of the union of ordinary space (x,y,z) and time (t), which is the basis of the modern
theory of Relativity, corresponds precisely to a (hyperbolic) rotation of the four-
dimensional manifoldness (x,y,z, t), or of what Minkowski called the “world.”

Hence the obvious idea of representing explicitly the Lorentz-transformation
in the quaternionic shape (1),— which, together with some allied questions, will
be the subject of the present paper.

To solve this simple problem we have only to write down the well-known rel-
ativistic transformation, i.e., the formulæ of Einstein, then to develop the triple
product in (1) and to compare the two.

For our purpose it will be most convenient to put Einstein’s formulæ at once
in vector form, eliminating thus the quite unessential choice of the axes of coordi-
nates. Let the vector v = vu denote the uniform velocity of the system S ′(x′,y′,z′, t ′)

1A. Cayley Phil. Mag. vol. vii. (1854), and Journ. f. reine u. angew. Mathem. vol. 50 (1855); or
‘Papers,’ vol. ii. Cayley limited himself to the elliptic, i.e. real, rotations, but the extension to the
hyperbolic and parabolic cases was an obvious matter. For the whole subsequent literature of the
subject, see the article of E. Study in the Encyclopédie d. Sc. Math., tome i. vol. i. fascicule 3, p.
452; Paris and Leipzig, 1908. See also F. Klein and A. Sommerfeld’s work Ueber d. Theorie des
Kreisels, iv. pp. 939-943; Leipzig, 1910. It was in fact a general hint at Relativity made by these
authors on p. 942 that, after I had a whole year tried in vain a great variety of quaternionic operations
for relativistic purposes, suggested to me the choice of the particular form (1).
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relatively to the system S(x,y,z, t).2 Let O, O′ be a pair of points in S and S′, re-
spectively, which coincide with one another for t = t ′ = 0. Call r (= xi+ yj+ zk)
the vector drawn in S from O as origin, and r′ the corresponding vector in S′, drawn
from O′ as origin. Then the transformation in question may be stated as follows:—
The component of r′ normal to the velocity v is equal to that of r, i.e.

r′−
(

r′u
)

u = r− (ru)u, (α)

whilst the component of r′ taken along the direction of motion is altered according
to the formula

r′u = γ [(ru)− vt] , (β)

where γ =
(

1−β2
)−1/2

, β = v/c < 1, c = velocity of light.3 Finally, the time is
transformed according to

t ′ = γ
[

t − 1
c2 (rv)

]

.

To get the resultant r′ take the sum of (α) and of (β)×u. Then write, for the
sake of subsequent convenience,

` = ıct, ı =
√
−1,

and similarly `′ = ıct ′.
Thus, the relativistic formulæ will become

r′ = r+(γ−1)(ru)u+ ıβγ`u

`′ = γ [`− ıβ(ru)] ,

}

(2)

quite independent of any system of coordinate-axes.
Now, to obtain the required quaternionic representation (1) of the whole trans-

formation (2), let us introduce the quaternion

q = r+ ` = r+ ıct, (3)

and similarly
q′ = r′ + `′ = r′ + ıct ′. (3′)

2u being a unit-vector in the direction of motion of S′ relatively to S and v the absolute magnitude
of its velocity.

3In these and in all following formulæ (ru), generally (AB), means the modern scalar product of
the vectors A, B, that is to say ABcos (A,B); hence (AB) is the negative scalar part of the complete
Hamiltonian product, AB:

(AB) = −S AB.

On the other hand, the modern vector product V AB is identical with Hamilton’s V AB.
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Then the problem will consist in finding a pair of quaternions a, b such that

r′ + `′ = a(r+ `)b,

and will be solved by developing the right side of this equation.
Having done this, explicitly, and compared with (2), I found immediately that

the quaternions a, b can differ from one another only by an ordinary scalar factor,
and since this may be distributed equally among a, b (their tensors entering only
by the product), we may as well take simply equal a, b, say, both = Q. In fact,
then, the form (1) is much too general for our purpose. Thus, to spare the reader
any superfluous complication, let us at once seek for

q′ = QqQ (1a)

as the quaternionic equivalent of (2).
Denote the unknown vector and scalar parts of Q by w and s respectively, i.e.

write
Q = w+ s (4)

Then, developing the complete product of q, Q, by (3) and (4), and by the funda-
mental rules of Hamilton’s Calculus,

qQ = V rw+ `w+ sr− (rw)+ s`,

and similarly

q′ = QqQ = V wV rw−w(rw)+2s`w+ s2r−2s(wr)+(s2 −w2)`

= (w2 + s2)r−2(rw)w+2s`w+(s2−w2)`−2s(rw),

whence, splitting into the vector and scalar parts,

r′ =
(

w2 + s2)r−2(rw)w+2s`w

`′ =
(

s2 −w2)`−2s(rw)

}

(5)

Comparing this with (2), we get at once, as the conditions to be fulfilled by w,
s,

w2 + s2 = 1; s2 −w2 = γ; 2sw = ıβγ
w = wu.

}

(6)

Hence w = ±
√

(1− γ)/2, s = ±
√

(1+ γ)/2, where, to satisfy the third of the
conditions (6), we must take both square roots with the upper or both with the
lower sign; therefore

Q = ±
(

√

(1+ γ)/2 +u
√

(1− γ)/2
)

,
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and since in (1a) the quaternion Q appears twice, the choice of the ± sign becomes
indifferent.

Thus, we obtain finally the required quaternionic expression of the relativistic
transformation

q′ = QqQ

with Q =
1√
2

(

√

1+ γ+u
√

1− γ
)

,







(I.)

u being a unit vector in the direction of motion of S′ relatively to S.
Observe that γ = (1− v2/c2)−1/2 > 1, so that the vector of Q is imaginary,

whilst its scalar is real.
The tensor of Q is 1; thus denoting its angle by α, i.e., writing

Q = cosα+usinα = eαu, (7)

we have, by (I.),

cos α =
√

(1+ γ)/2, sinα =
√

(1− γ)/2.

Hence

sin2α =
√

1− γ2 = ıβγ =
ıβ

√

1−β2

or
2α = arctg (ıβ) = arctg

(

ı
v
c

)

. (8)

Now this is precisely the (imaginary) angle of rotation in the plane t, x,4 of Minkowski’s
four-dimensional world, corresponding to the transformation (2). Hence, by (I.)
and (7), we may say that one half of this rotation is effected by Q as a prefactor and
the other half by the same quaternion as a postfactor.5 This circumstance throws a
peculiar light on each of our Q’s.

4The axis of x coinciding with u, and x itself being our (ru).
5At the first sight it might seem that, the axis of Q being u, this quaternion turns r round u, i.e. in

the plane y, z normal to u, while in Minkowski’s representation the rotation is in the plane x, t. But
this is only an apparent contradiction. In fact,

Qr = cosα.r+ sinα.V ur+ scalar,

that is to say, Q as a prefactor turns the transversal component of r round u by the angle +α and
stretches its longitudinal component; similarly Q as a postfactor, besides stretching the longitudinal
component of r, turns its transversal component round u by the angle −α, thus undoing the rotatory
effect of the prefactor. Hence, what remains in the final result is but a stretching of r’s longitudinal
component and a change of ` or t, and this amounts precisely to the Minkowskian rotation in the
plane x, t.
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But what we are mainly concerned with is their union, which considered as an
operator may be written

ω = Q[ ]Q, (I.a)

the vacant place being destined for the operand.
We have just seen that this simple operator converts the quaternion q = r+ ıct

into its relativistic correspondent q′. Our q is equivalent to Minkowski’s “space-
time-vector of the first kind” or to Sommerfeld’s “Vierervektor” x, y, z, `. These
authors call by this same name any such and only such tetrad of scalars (three
real and the fourth imaginary) which transforms in the same way as x, y, z, `,—
adding where it is necessary the emphasizing epithet “Weltvector”6 . Similarly we
could call our q and any covariant quaternion a “world-quaternion”; but possibly
the less pretentious name physical quaternion will do as well. Also, at least in the
beginning, no further specification of the “kind” is needed.

Thus ω = Q[ ]Q, defined by (I.), or by (7) and (8), is what I should like to
call the relativistic transformer of any physical quaternion.

To get the inverse transformer ω−1, viz. that which turns q′ into q, apply to
both sides of the equation q′ = QqQ the inverse quaternion Q−1 as a pre- and a
postfactor; then, remembering that Q−1Q = QQ−1 = 1, the result will be

q = Q−1q′Q−1,

or
ω−1 = Q−1[ ]Q−1,

and since Q is a unit quaternion, its inverse is also its conjugate, i.e. Hamilton’s
K Q, which may be more conveniently written Qc; hence

ω−1 = Qc[ ]Qc, (I.b)

where Qc = cos α−usinα. Thus, we see that the inverse transformer is got from
the direct simply by changing the sign of the angle α or by inverting the direction
of u,—as it must be.

6H. Minkowski, Die Grundgleichungen für d. elektromagn. Vorgänge in bewegten Körpern,
Götting. Nachrichten, 1908; Raum und Zeit, Physik. Zeitschrift, vol. x. (1909), also separatim. A.
Sommerfeld, Zur Relativitätstheorie, i. and ii., Annalen d. Physik, vol. xxxii., xxxiii. (1910).

See also the admirably clear and beautiful book Das Relativitätsprinzip by M. Laue (Braun-
schweig, 1911), where the whole work of Einstein, Minkowski, and Sommerfeld, together with
the author’s own contributions, will be found fully developed.
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Observe that, since the product of quaternions is distributive, the transformer
ω has also the distributive property, i.e., A, B being any quaternions,7

Q [A+B]Q = QAQ+QBQ, (9)

and consequently, if ∂ be any scalar differentiator, also

Q [∂A]Q = ∂QAQ,

since Q, being constant, is not exposed to ∂’s action. Again, by the associative
property of quaternionic products, the dot signifying a separator,

A.QBQ = AQ.BQ,

and so on. For our present purpose we scarcely need a full enumeration of ω’s
properties.

In the above we have been concerned with q as an example, or in fact the very
prototype, of a physical quaternion. Another example, which will be needed in the
sequel, is the quaternionic equivalent of Sommerfeld’s “Viererdichte,” or Laue’s
“Viererstrom,” say

C = ρ
(

ı+
1
c

p
)

, (10)

which we may accordingly call the current-quaternion. Here ρ means the volume-
density of electricity and p the velocity of its motion relatively to the system S. To
prove that C is a physical quaternion, write p = dr/dt, and consequently

C = ıρ
dq
d`

, (10a)

and notice that, the charges of corresponding volumes in S and S ′ being equal (by
a fundamental postulate), d`/ρ is itself an invariant of the Lorentz-transformation.

The transformer (I.a) may, of course, be applied not only to quaternionic mag-
nitudes, but also to operators, as, for example, to differentiators, which have the
structure of a quaternion. If Ω be an operator of this kind, in the system S, and Ω ′

its relativistic correspondent in S′, and if Ω′ = QΩQ, we shall say that the operator
Ω has the character of a physical quaternion.

As a chief example of such an operator, which also will be needed for what
follows, we shall consider here our quaternionic equivalent of Minkowski’s matrix

7I.e. generally complete quaternions but also, more especially, pure scalars or pure vectors; either
simple- or bi-vectors, that is to say real or complex. The heavy type (and this merely to suit the
general custom) shall be henceforth used only for pure vectors, both real and complex.
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called by him “lor” to the honour of Lorentz. This will simply be the Hamiltonian
∇ plus the scalar differentiator ∂/∂`. Let us denote it by D ,

D =
∂
∂`

+∇ (11)

= ∂/∂`+ i∂/∂x+ j∂/∂y+k∂/∂z.

Comparing this with
q = `+ r = `+ ix+ jy+kz,

we see at once that the operator D will transform precisely as q did, i.e.

D ′ = QD Q. (12)

Thus D has the character of a physical quaternion.
To obtain the above representation of the relativistic formulæ (2) we have in-

troduced the quaternion q = `+ r. Now, for this purpose we might as well have
used its conjugate, i.e.,

qc = `− r, (3a)

and the corresponding q′c = l′− r′.8 It may often be convenient to recur to qc and
it is therefore of some interest to know how it transforms. Now, a glance at (2)
suffices to see that both of these formulæ remain unchanged if, having changed the
signs of r, r′ (and leaving `, `′ as before), we change also the sign of u. Thus it is
seen that

q′c = QcqcQc, say = ωcqc (I.c)

where
Qc = cosα−usinα = e−αu.

Now qc has precisely the same office as q, that is to say, (I.) and (I.c) are but
two expressions of one and the same thing, namely, of the Lorentz-transformation.
Hence qc and any quaternion covariant with qc is certainly a physical quaternion as
well as q and its covariants.

Thus, the conjugate of a physical quaternion will again be a physical quater-
nion. If the original transformed as q, its conjugate will transform as qc. If A is

8It can be proved immediately that (qc)
′ = (q′)c. Therefore both may be written simply q′c.

Notice also that the invariance of q’s tensor, T q′ = T q, which follows immediately from (I.)
(since Q is a unit quaternion), may be written:

q′q′c = qqc.
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covariant with q, then Ac is covariant with qc, and vice versa. Speaking of a physi-
cal quaternion we shall, when necessary, add the explanation cov.q or cov.qc. But
generally, for the sake of shortness, this will be omitted, and any letters, as A, B,
a, b, &c., without the subscript c will be used to denote quaternions covariant with
q. Observe that, with the above (formal) extension of our original definition, two
physical quaternions may be either covariant with one another or not; in the last
case we may call them antivariant, one being cov.q, and the other cov.qc. Thus,
by the above convention, A, Bc, or a, bc will denote pairs of antivariant quaternions,
the first in each pair transforming as q, and the second as qc.

The above transformer ωc = Qc[ ]Qc, which by (I.b) becomes simply identi-
cal with ω−1, is, of course, distributive, quite in the same way as ω = Q[ ]Q. Thus
the sum, or difference, of two mutually covariant (but not of antivariant) physical
quaternions will again be a physical quaternion.

The reciprocal of a physical quaternion is also a physical quaternion. For we
have

a−1 = ac (T a)−2 ,

while the tensor T a of a physical quaternion is already known to be an invariant.
Notice that a and a−1 are mutually antivariant.

Now for the product of physical quaternions. Take any pair a, b of such quater-
nions. Leave aside ab which transforms in the unmanageable way a′b′ = QaQ2bQ
(a, b being torn asunder), and pass at once to the product of antivariant factors,
which might perhaps be called the alternating product, say

L = acb. (13)

Then L′ = QcacQc.QbQ, whence by the associative property, and remembering that
QcQ = 1,

L′ = QcLQ. (13′)

Thus, L is certainly not a physical quaternion of the kind already considered; but
since it is transformed in such a simple way and since it has, as will be seen in
the sequel, an almost immediate bearing upon relativistic Electromagnetism, it de-
serves to be considered a little more fully. Consider, then, the conjugate of L.
Remember the elementary rule, by which the conjugate of the product of any num-
ber of quaternions is the product of their conjugates in the reversed order, i.e. in
our case

Lc = bca. (14)

Now, transforming this, we get in quite the same way as above

L′
c = QcLcQ. (14′)
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Hence we see that
Qc[ ]Q (II.)

is the relativistic transformer of both R = acb and its conjugate Lc. Similarly,

Q[ ]Qc (II.a)

will be the transformer of both R = abc and its conjugate Rc = bac. Thus the
behaviour of L and R is characteristically distinct from that of q or of qc.

Without trying as yet to invent for these kinds of quaternions any particular
names, let us provisionally call any quaternion which is transformed by (II.) or by
(II.a) an L-quaternion and an R-quaternion, respectively.9

Now, Qc[ ]Q, being the transformer of both L and Lc, is also the transformer
of their sum and of their difference, i.e. also of the scalar and of the vector parts of
the quaternion L separately, s = S L and A = V L. Now, s being a scalar, we have

s′ = QcsQ = sQcQ = s,

i.e. s is an invariant. Then
A′ = QcAQ,

and since Q, Qc are unit quaternions, the tensor of A is another invariant.
Thus, the scalar of any L-quaternion and the tensor of its vector are invariants,

while the vector itself is transformed into

V L′ = Qc [V L]Q (III.)

Or use the form L = σ(cosε + asin ε), where a is the unit of A. Then σcosε
and σsin ε are invariants and consequently also σ and ε, so that another form of the
last theorem will be:—

The tensor and the angle (or argument) of any L-quaternion are invariants,
while its axis is transformed by Qc[ ]Q.

In quite the same way it will be seen that S R is invariant and

V R′ = Q [V R]Qc, (III.a)

or in other words:—
The tensor and the angle of any R-quaternion are invariants, while its axis is

transformed by Q[ ]Qc.

9L, R, being initials of left, right, may remind us of the position of that of the two generating
factors which (as ac or bc) has the subscript c, i.e. which is cov.qc.
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If we wish to return to the generating factors ac &c., we can write the above
properties

S a′cb′ = S acb (15)

V a′cb′ = Qc [V acb]Q (16)

and similarly
S a′b′c = S abc (15a)

V a′b′c = Q [V abc]Qc (16a)

But as a rule it is better to avoid any splitting of quaternions, if we are to expect
simplicity and other advantages from the use of quaternionic language.

Now take the product of any number of L-quaternions, say L1, L2, L3 &c.; then
we see by (II.) that all the internal Q’s and Qc’s as it were neutralize one another,
and what is left is only the Qc at the beginning and the Q at the end of the whole
chain. That is to say the product of any number of L-quaternions is again an L-
quaternion. In quite the same way we see, by (II.a), that the product of any number
of R-quaternions is again an R-quaternion.

Notice also that, a being any physical quaternion cov.q (not necessarily that
implied in L or in R), aL and Ra are again physical quaternions,10 and so are also
Lac and acR, namely

aL and Ra cov.q. (IV.)

Lac and acR cov.qc. (IV.a)

Thus, the alternating product of any number of physical quaternions (abcdec...)
furnishes us either an L- or R- quaternion or again (biquaternions covariant with)
the primary physical quaternions, and never anything more.11

One remark more before leaving this subject. Suppose we are given the equa-
tion

bX = a,

in which a, b are cov.q. What is the relativistic transformer of X? To get it,
write the given equation X = b−1a and remember that b−1 is cov.q. Thus the
transformer of X will be the same as for bca, i.e. Qc[ ]Q. In other words, X will
be an L-quaternion,

X = b−1acov.L. (17)

10Or more exactly biquaternions (in Hamilton’s sense of the word) transforming like the primary
physical quaternions. Cf. p. 808, infra.

11So much as to the alternating products. And as regards the products of covariant factors, like
ab, I have not, up to the present, been able to make out any of their possible applications to physical
subjects, and shall therefore not consider them here at all.
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This will, of course, be still the case if we have instead of b the above differen-
tial operator D, i.e.:

if D X = a, then X is cov.L, (V.)

or the transformer of X is Qc[ ]Q. For D has the structure of q, and the entire
manipulation with the Q’s is done precisely as before, since Q, Qc, being constant
in space and time, are not exposed to D’s differentiating action. Similarly it is seen
that

if Dc Y = ac, then Y is cov.R, (V.a)

or the transformer of Y is Q[ ]Qc. Here the meaning of Dc is of course, according
to (11),

Dc =
∂
∂`

−∇. (11′)

Notice that X and Y may be but are not necessarily full quaternions;12 they can
be, for example, pure vectors, either real (or ordinary vectors) or complex, i.e.
bivectors, if we are to retain Hamilton’s terminology.

Let us now pass to consider the fundamental electromagnetic equations “for
the vacuum,” as they are recently called, i.e. the system of differential equations

∂E
dt

+ρp = c.curl M, divE = ρ

∂M
dt

= −c.curl E, divM = 0











(18)

where E, M are the electric and magnetic vectors of the field, respectively, ρ the
volume-density of electricity and p the vectorial velocity of its motion, both ρ and
p being given functions of space and time.

First, to condense these equations, put together the electric and the magnetic
vectors to make up the electromagnetic bivector (or the bivector of the field)

F = M− ıE (19)

and write again ` = ıct. Both curl and div being distributive, this will give us
instead of the four vector equations (18) the two bivectorial equations13

∂F
∂`

+ curlF =
1
c

ρp; divF = −ıρ,

12This has no influence on their transformational peculiarities as expressed in the above quater-
nionic form.

13The reader will find these equations together with the corresponding bivectorial form of the
density of energy and the Poynting flux in my paper published in 1907 in the Annalen der Physik,
vol. xxii., and (supplement) vol. xxiv. I was then unaware of their possible application to the present
purpose. (The η of that paper is the above ıF.)
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or, using Hamilton’s symbols,

∂F
∂`

+V ∇F =
1
c

ρp; S ∇F = ıρ.

Now, remembering that V ∇F + S ∇F = ∇F and using the quaternionic differen-
tiator D, explained by (11), the last two coalesce at once into the single equation

D F = C, (V I.)

in which C is the current-quaternion, as defined by (10).
Thus the whole system of four equations (18), the fundamental equations of the

electron theory, are represented by one quaternionic equation, (V I.).
This condensation is even more complete than in Minkowski’s matrix-form,

which consists of two equations, lor f = −s, lor f ∗ = 0 (loc. cit. 12), one for the
first pair of (18) and the other for the second pair, or in Sommerfeld’s equivalent
four-dimensional vector form: Div f = P and Div f ∗ = 0 (loc. cit., 5). Here P is the
“Vierervektor” corresponding to the current-quaternion C, and f the “Sechservek-
tor,” corresponding to the bivector F, while f ∗ is the “supplement” (Ergänzung) of
f , which is another “Sechservektor,” though very nearly related to f . Minkowski’s
f is an alternating matrix of 4× 4 elements. But let us return to our quaternionic
differential equation (V I.).

C is a (given) physical quaternion cov.q. The operator D has also the structure
of q. What is the relativistic transformer of F? By (V.) we see at once that it is

Qc[ ]Q,

or that F is transformed like a (scalarless) L-quaternion. Thus, the answer is al-
ready contained in (V.). But to see clearly the true meaning of the process implied
in the relativistic transformation, let us repeat again the whole reasoning some-
what more explicitly. We have, in the system S, as an expression of the laws of
electromagnetic phenomena, the equation

D F = C. (S)

Now, what the Principle of Relativity requires is the same form of the law in the
system S′, i.e.

D ′ F′ = C′ (S′)

Suppose also that both of these equations have been fully confirmed by experience.
How are F′ and F correlated? To adopt language adapted to the general case, use in
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the accented law or equation (S′) the transformer already known, i.e. in our present
ease Q[ ]Q for both D and C; then it becomes

QD QF′ = QCQ, or D QF′ = CQ,

or, by the non-accented equation (S),

D QF′ = D FQ.

Hence, rejecting an additive function of obvious properties, i.e. requiring that F ′

shall vanish together with F,
QF′ = FQ,

or finally, Q being a unit-quaternion,

F′ = QcFQ, (V II.)

which is the required correlation, identical with the above.14 Henceforth we shall
have to admit, in the name of Relativity, bivectors transforming like this calling
them, say, physical bivectors (or in Minkowski’s way, “world”-bivectors). Or we
can make the L-quaternion (of which F is the vector part) the master, calling it,
say, a (left) physical quaternion of the II. kind, and writing F as its special case

F = V L = V acb. (20)

(The supplementary scalar, S acb, necessary to convert F into a full quaternion,
would present no difficulties, since it has been proved to be an invariant.) The short

14Our quaternionic formula (V II.) resembles entirely Minkowski’s

f ′ = A−1 f A,

in which A is a matrix of 4× 4 elements, and A−1 its reciprocal; loc. cit.. §11. The reason of this
analogy will easily be seen to depend on the circumstance that both the product of quaternions and the
product of matrices have the associative property. But at any rate the multiplication by a quaternion,
like Q or Qc, is actually done in a much more simple way than the application of a matrix of 4×4
elements.

Observe also that the above analogy does not extend to the transformation of Minkowski’s vectors
of the I. kind and our physical quaternions in fact, here the matrix-form is

s′ = sA, with s = |s1,s2,s3,s4|,

whereas the quaternionic form is
q′ = QqQ.
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name physical quaternion might then continue to stand for physical quaternion of
the first kind, of which q is the standard.

But leave aside questions of nomenclature and return to (V II.). To verify this
short formula remember that, by (I.),

Q =
√

(1+ γ)/2+u
√

(1− γ)/2, Qc =
√

(1+ γ)/2−u
√

(1− γ)/2,

and expand the right side of (V II.). Then

F′ = (1− γ)(Fu)u+ γF+ ıβγ V Fu, (21)

or splitting into the real and imaginary parts and remembering (19),

E′ = (1− γ)(Eu)u+ γE+βγ V uM

M′ = (1− γ)(Mu)u+ γM−βγ V uE

}

(21a)

Now, these equations give immediately for the components taken along u (the di-
rection of motion)

E ′
1 = E1; M′

1 = M1,

and for the two other pairs of rectangular components (the right-handed system
being used)

E ′
2 = γ(E2 −βM3); M′

2 = γ(M2 +βE3)

E ′
3 = γ(E3 +βM2); M′

3 = γ(M3 −βE2),

which are precisely the well-known transformational formulæ, obtained for the first
time by Einstein. Thus (V II.) is verified.

Again, Q, Qc, being unit-quaternions, we see from (V II.) that, as already has
been remarked, the tensor of F is an invariant,

T F′ = T F, (V III.)

which may also be written, more conveniently,15 F′2 = F2. Now, by (19), −F2 =
M2 −E2 − 2ı(EM); thus we see that (V III.) contains both of the well-known in-
variants of Minkowski:

M2 −E2 and (EM) (22)

Notice that what is called a pure electromagnetic wave is defined by M2 = E2,
(EM) = 0. Using the above form we can characterize a pure wave more simply
by16

T F = 0, or F2 = FF = 0.

15Remember that, F being a scalarless quaternion, its conjugate is simply −F.
16This remark will be found also in my paper of 1907, cited above.
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Thus, by (V III.), a wave which is pure to the S-inhabitants, is also pure to the
S’-inhabitants. But this example only by the way.

Instead of the above F, as defined by (19), we may as well take the comple-
mentary bivector

G = M+ ıE.17 (19a)

Then we shall get as the quaternionic equivalent of the electromagnetic equa-
tions (18), instead of and in quite the same way as (VI.),

Dc G = Cc, (V I.a)

where Cc is the conjugate current-quaternion ρ(ı−p/c) and Dc the conjugate dif-
ferential operator ∂/∂`−∇, as already explained.

We now see, by (V.a), that G is transformed like an R-quaternion, i.e.

G′ = QGQc. (VII.a)

Again we may write, similarly to (20),

G = V R = V dec, (20a)

d, ec being a pair of physical quaternions covariant with q and qc respectively. And
since G is a physical bivector, just as much as F, we may again call R = dec a
(right) physical quaternion of the second kind.

Notice that, at least for the time being, we have no need of both F and G,
since we require either F only or G only. (Possibly for the further development of
Quaternionic Relativity the simultaneous use of F, G may turn out to be convenient
or even necessary.)

As regards the relation of (20a) to (20), observe that generally we cannot write
d = a, e = b; in fact, the reader will easily prove for himself that this would require
(EM) = 0, i.e. E⊥M, and would not, consequently, be sufficiently general. The
only essential thing here is that in (20) it is the first and in (20a) the second factor
which has the subscript c. This is shown also by the symbols L (left), R (right).

Let us return to the quaternionic differential equation for the vacuum, in its first
form, i.e.

D F = C. (V I.)

17G is a complex vector “conjugate” to F, in the sense of the word used in the Theory of Functions.
But to avoid confusion with the quaternionic notion of conjugate, I do not call it by this name and do
not denote it by Fc.
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Remember that D Dc = (T D)2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 + ∂2

∂`2 is the four-dimensional
Laplacian, or Cauchy’s 2,

D Dc = 2 (IX .)

Hence, if Φ be an auxiliary quaternion and if we put F = −V Dc Φ (since F is
scalarless), or more simply if we write

F = −Dc Φ (X .)

demanding at the same time that

S Dc Φ = 0, (XI.)

then we get at once from (V I.)

2Φ = −C, (XII.)

which is the well-known equation, obtained by Sommerfeld for his “Viererpoten-
tial.” But here, I daresay, it follows from (V I.) more immediately, than by the use
of four-dimensional divergences and curls or “Rotations.”

The above Φ, which may be called the potential-quaternion, is easily proved
to be a physical quaternion, namely, cov.q. For by its definition, (X .), and remem-
bering that F is cov.L, we have immediately

Φcov.D−1
c Fcov.D Fcov.D L,

i.e., by (IV.), Φcov.q,—q.e.d.18

Writing the potential-quaternion

Φ = ıφ+A, (23)

where φ is a real scalar and A a real vector, it is seen at once that φ is the ordinary
“scalar potential” and A the ordinary “vector potential.” In fact, developing (X .)
we have

F = V ∇A− ∂A
∂`

+ ı∇φ = M− ıE,

whence the usual formulæ

M = V ∇A = curl A,

18This is seen even more immediately from (XII.). For, since 2 = (T D)2 is an invariant, Φ is
transformed like C and, consequently, like q.
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E = −∇φ− 1
c

∂A
∂t

.

Also the condition (XI.) is expanded immediately into the usual equation

1
c

∂φ
∂t

+divA = 0.

Finally, notice that the “equation of continuity,” as it is commonly called, i.e.

∂ρ
∂t

+div(ρp) = 0,

assumes the quaternionic form

S Dc C = 0. (XIII.)

The scalar of Dc is, in fact, the same thing as Sommerfeld’s four-dimensional di-
vergence Div.

Or we may write, equivalently,

S D Cc = 0. (XIIIa.)

We know already that the electromagnetic bivector F is a (scalarless) L-quaternion.
Hence, by (IV.), if we multiply it, on the left side, by any physical quaternion
cov.q, the resulting product will again be transformed like q. Now, the current-
quaternion C being precisely such a quaternion, consider the product

P = CF, (24)

which, by the above, will again be transformed by Q[ ]Q. Develop it, by (10) and
(19); then

P = ρ
{

ıM+E+
1
c

pM− ı
c

pE
}

or, remembering that the full product AB is V AB− (AB),

P = Pe + ıPm, (25)

where Pe, Pm are the quaternions

Pe = ρ
{

ı
c
(pE)+E+

1
c V pM

}

(25e)

Pm = ρ
{

ı
c
(pM)+M− 1

c V pE
}

(25m)
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The vector of Pe is the well-known ponderomotive force, per unit volume, and
the scalar of Pe is ı/c times the activity of this force, while Pm is the magnetic
analogue of Pe. Notice that the whole P, (25), though having with q the transformer
Q[ ]Q in common, has not the structure of the standard q, inasmuch as it is a full
biquaternion.19 (And how each of its constituents, Pe, Pm, which have the structure
of q, are transformed, we do not as yet know,—though we shall know in a moment.)

Similarly, the complementary electromagnetic bivector G being a (scalarless)
R-quaternion, multiply it on the right side by C. Then the product GC will, by
(IV.), again be transformed by Q[ ]Q, i.e., again like q. Develop it; then, by (10)
and (19a),

GC = ρ
{

ıM+
1
c

Mp−E+
ı
c

Ep
}

,

and this is precisely, with the same meanings of Pe and Pm as above, equal to

GC = −Pe + ıPm. (26)

This again is a full biquaternion.
Now, both biquaternions, P = CF and GC being transformed by the same

Q[ ]Q, this will also be the transformer of their sum, and of their difference, i.e.,
by (25) and (26), of Pm and of Pe.

Thus we see that not only P but also its constituents Pe and Pm, taken separately,
are cov.q; and since each of them has also the structure of q,20 both Pe and Pm are
physical quaternions, cov.q.

They are given explicitly by (25e), (25m), and may, by the above, be written
also

Pe =
1
2
{CF−GC} (27e)

Pm = − ı
2
{CF+GC} (27m)

It is true that (at least on the ground of the fundamental electronic equations)
only Pe has an immediate physical meaning, and not Pm. But this does not seem to
me a disadvantage. On the contrary; since our stock of physical quaternions, as the
reader will certainly have observed, is as yet not very big, it may be better to have
one more.

Pe corresponds to the “Viererkraft”21 and might consequently be called here
the force-quaternion. It has a dynamic vector and an energetic scalar, as observed

19In Hamilton’s, of course, and not in Clifford’s meaning of the word.
20Namely an imaginary scalar and a real vector.
21See Laue, loc. cit., 15.
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above. As to Pm, it is of no importance to give it (at least for the “vacuum”) any
special name. On the other hand, the whole P, which may possibly turn out to be
more convenient for the quaternionic treatment of Relativity, might be called the
dynamical 22 biquaternion, and be looked on as the standard of physical biquater-
nions, in the same manner as q, F have been the standards of physical quaternions
and of physical bivectors, respectively.23

Now, using the quaternionic differential equation (V I.), or C = D F, the for-
mula (27e) for Pe may be written

2Pe = D F.F−G.D F, (28)

and similarly (27m) for Pm, the dot being a separator, as regards the differentiat-
ing action of D. In (28) the force-quaternion Pe, is immediately expressed by the
electromagnetic bivector F and its complementary G. Thus, the formula (28) is
adapted for showing the properties of the Maxwellian stress and of the electromag-
netic momentum along with the flux and the density of energy, in correspondence
to the equivalent formula of Minkowski’s four-dimensional system.

But, since we already know everything about the behaviour of each constituent
of P, i.e. of Pe, Pm, we may dismiss them altogether and use more conveniently the
full dynamical biquaternion P, as defined by (24). Thus, using again the equation
(V I.), we shall have, more simply,

P = D [F.F] , (XIV.)

where the purpose of the brackets is only to emphasize the circumstance that F.F
plays the part of a dyad. This will lead us to the quaternionic treatment of questions
regarding stress, and localization and flux of energy

But these fundamental dynamical questions will best be postponed and re-
served for a future publication, in which also the quaternionic treatment of the
electrodynamics of ponderable bodies and of some other relativistic subjects will
be given.

November, 1911.

XVIII. Intelligence and Miscellaneous Articles.

22Notwithstanding that it is partially energetic.
23It is worth noticing again that F (plus an invariant and consequently unessential scalar) and P

may be regarded as alternating products of 2 and of 3 physical quaternions, respectively. From this
standpoint q, F, P and their respective companions might he considered as quaternionic entities of
the 1st, 2nd, and 3rd degree, respectively.
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Phil. Mag. 24 (1912), 208.
THE QUATERNIONIC FORM OF RELATIVITY
To the Editors of the Philosophical Magazine.

GENTLEMEN,—
The appearance of Prof. Silberstein’s paper entitled “The Quaternionic Form of
Relativity” in the May issue of the Phil. Mag. is a welcome sign that continental
mathematicians, who have already largely availed themselves of various systems
of vector notation, are perhaps awakening to the suitability of quaternions in such
a connexion. Minkowsky (see footnote p. 79, Nach. Gött. 1908) must have had
such an idea, but decided in favour of the matrix notation. The quaternion form
of the Hertz Heaviside equations was given by the present writer at the British
Association Meeting at Dublin (1908), and had been given by him in lectures for
some years previously. An application of quaternions to the Relativity Principle
will be found in a paper, vol. xxix. Section A, No. 1, Proc. Irish Academy (read
Feb. 1911). Other writers, such as Somerfeld, subsequent to Minkowsky, have
used the four-dimensional vector. The obvious defect of this latter method is that
it involves a second kind of vector having six components. Beyond this, however,
the quaternion has the advantage of being asymmetrical, the time-scalar occupy-
ing a different position from the space-vector. It is thus more in touch with real
phenomena. For no matter what view we take of relativity, the physical methods of
measuring time are quite different from those of measuring spaces, and the flexibil-
ity of the quaternion product allows us to put our results at once in a form suitable,
if need be, for numerical computation.

Yours truly,
ARTHUR W. CONWAY
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