Defective Sign & Encrypt in S/MIME,
PKCS#7, MOSS, PEM, PGP, and XML

Don Davis*

Trust, but verify. — Russian proverb

Abstract

Simple Sign & Encrypt, by itself, is not very secure.
Cryptographers know this well, but application pro-
grammers and standards authors still tend to put too
much trust in simple Sign-and-Encrypt. In fact, ev-
ery secure e-mail protocol, old and new, has codified
naive Sign & Encrypt as acceptable security practice.
S/MIME, PKCS#7, PGP, OpenPGP, PEM, and
MOSS all suffer from this flaw. Similarly, the secure
document protocols PKCS#7, XML-Signature, and
XML-Encryption suffer from the same flaw. Naive
Sign & Encrypt appears only in file-security and mail-
security applications, but this narrow scope is be-
coming more important to the rapidly-growing class
of commercial users. With file- and mail-encryption
seeing widespread use, and with flawed encryption in
play, we can expect widespread exposures.

In this paper, we analyze the naive Sign & Encrypt
flaw, we review the defective sign/encrypt standards,
and we describe a comprehensive set of simple re-
pairs. The various repairs all have a common fea-
ture: when signing and encryption are combined, the
inner crypto layer must somehow depend on the outer
layer, so as to reveal any tampering with the outer
layer.

1 Introduction

Since the invention of public-key cryptography, cryp-
tographers have known that naive combinations of
encryption and signature operations tend to yield in-
secure results [1, 2]. To guarantee good security prop-
erties, carefully designed security protocols are nec-
essary. However, most security protocols of the past
25 years have focused on securing network connec-
tions, and relatively simple file-encryption problems
have received surprisingly little attention from proto-
col designers.
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Users and programmers prefer to think about se-
curity by analogy with familiar symmetric-key “se-
cret codes.” For mail-handling and file-handling, se-
curity designers have relied heavily on simple asym-
metric encryption and signing, rather naively com-
bined. Naive sign & encrypt has surprisingly differ-
ent security semantics from symmetric encryption,
but the difference is subtle, perhaps too subtle for
non-specialist users and programmers to grasp. In-
deed, for senders, sign-and-encrypt guarantees the
same security properties as symmetric-key cryptog-
raphy gives. With both types of crypto, the sender is
sure that:

e The recipient knows who wrote the message; and
e Only the recipient can decrypt the message.

The difference appears only in the recipient’s security
guarantees: the recipient of a symmetric-key cipher-
text knows who sent it to him, but a “simple sign
& encrypt” recipient knows only who wrote the mes-
sage, and has no assurance about who encrypted it.
This is because naive sign & encrypt is vulnerable
to “surreptitious forwarding,” but symmetric-key en-
cryption is not. Since users always will assume that
sign & encrypt is similar to symmetric-key “secret
codes,” they will tend to trust naive sign & encrypt
too much.

The standards that exist for simple file-encryption,
chiefly PKCS#7 [23] and S/MIME [20], tend to allow
secure Sign & Encrypt implementations (i.e., such
as would prevent surreptitious forwarding), but sur-
prisingly, these file-security standards don’t require
fully-secure implementation and operation. Similarly,
some important new security standards, such as the
XML ! security specifications [6, 26], offer only low-
level “toolbox” APIs. Too often, both the established
standards and the new ones allow insecure yet compli-
ant implementations. Application programmers need
more security guidance than these “toolbox” APIs
offer, in order to build effective security into their
applications. Without such guidance, programmers
tend to suppose incorrectly that simply signing and
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then encrypting a message or a file will give good
security.

The limitations of naive sign & encrypt probably
were well-known to the designers of all of the stan-
dards we discuss here (see §4.6). The standards au-
thors assumed, sometimes explicitly and sometimes
implicitly, that applications programmers and end-
users would understand that naive sign & encrypt
is not a complete security solution. Application pro-
grammers were expected to know how to bolster each
standard’s sign & encrypt feature with other proto-
col elements. At the same time, end-users were ex-
pected to make careful security judgments about any
application they might use, so as to use the appli-
cation’s security features correctly, and so as not to
over-rely on a product that offers only limited secu-
rity. The standards authors’ expectations may have
been realistic ten years ago, before Everyman and
the Acme Boot-Button Co. began using the Inter-
net. It seems unfair to fault the standards designers
for insufficient prescience, but now, these expecta-
tions are hopelessly outdated, and those standards
cannot serve end-users well.

1.1 Surreptitious Forwarding

Why is naive Sign & Encrypt insecure? Most sim-
ply, S&E is vulnerable to “surreptitious forwarding:”
Alice signs & encrypts for Bob’s eyes, but Bob re-
encrypts Alice’s signed message for Charlie to see. In
the end, Charlie believes Alice wrote to him directly,
and can’t detect Bob’s subterfuge. Bob might do this
just to embarass Alice, or Charlie, or both: 2

A— B
B—C

{{I love you”}*}P
{{¢I love you”}*}¢

(1)
(2)

Here, Bob has misled Charlie to believe that “Al-
ice loves Charlie.” More serious is when Bob un-
detectably exposes his coworker Alice’s confidential
information to a competitor:

A— B
B—=C

{{“sales plan”}*}?
{{“sales plan”}?}“

(3)
(4)

In this case, Alice will be blamed conclusively for
Bob’s exposure of their company’s secrets.

Further, when Alice signs a message to Bob, Alice
may be willing to let Charlie see that message, but

2Notation: “A” is Alice’s public key, and “a” is her private
key. Thus, {msg}A is an encrypted ciphertext, and {msg}? is
a signed message. We assume that the asymmetric-key cryp-
tosystem behaves similarly to RSA [21], so that a signature is
a private-key encryption.

not to sign the same message for Charlie:

A= B
B—C

{{“1.0.U.$10K7}*}"
{{“1.0.U.$10K”}*}¢

(5)
(6)

If every user could be relied upon to understand that
Sign & Encrypt is vulnerable to surreptitious for-
wards, then Alice wouldn’t have to worry about Bob
forwarding her message to Charlie. But in reality,
when Charlie gets Alice’s message via Bob, Charlie
very likely will assume that Alice sent it to him di-
rectly. Thus, even if Alice doesn’t care whether Bob
divulges the message, she may be harmed if Bob is
able to forward her signature surreptitiously.

1.2 Don’t Sign Ciphertexts

Interestingly, naive Encrypt-then-Sign isn’t any bet-
ter than Sign & Encrypt. In this case, it’s easy for
any eavesdropper to replace the sender’s signature
with his own, so as to claim authorship for the en-
crypted plaintext:

A—>|B
C—>B

{{ccmy Z'dean}B}a
{{ccmy ideaw}B}c

(7)
(8)

Note that Charlie has to block Bob’s receipt of Al-
ice’s original message, before sending the re-signed
ciphertext.

Another problem with Encrypt-then-Sign arises,
when Alice uses RSA or El Gamal encryption. In a
sequel to Abadi’s “Robustness Principles” paper [1],
Anderson showed that Encrypt&Sign is dramatically
weaker than had been thought [2]. Suppose Alice uses
RSA keys to send Bob an E&S message:

A5 B {{msglP} (9)
Then Bob can pretend that Alice encrypted and
signed an arbitrary message msg’, of his choice. To
alter Alice’s plaintext, Bob uses the factors of his own
RSA modulus np to calculate the discrete logarithm
z of Alice’s message msg, using as base Bob’s arbi-
trary message msg’:
{msg'}* = msg (mod ng) (10)
Now, Bob needs only to certify (zB,np) as his pub-
lic key, in order to make Alice’s original ciphertext
signature valid for Bob’s new encryption {msg'}*?:

B— B (11)

{{msg'}*7}"



Anderson’s attack has two minor limitations:

¢ Each modulus factor must be short enough (7120
digits, or "400 bits) to allow a discrete-log calcu-
lation [13];

e Bob’s new public exponent xB will be obviously
unusual, in that it will be a full-length bitstring,
instead of the usual small integer value.

So, it might seem that Alice should be safe from this
attack, as long as Bob’s public key B is substantially
longer than 240 digits (800 bits). Unfortunately, Al-
ice cannot tell, without factoring Bob’s RSA key-
modulus, whether Bob used three or more prime fac-
tors to prepare his RSA key-pair [22]. If Bob has a
large-modulus key-pair made up from several small
factors, then Alice’s naive use of Encrypt & Sign
would still leave her vulnerable to Bob’s substituted-
ciphertext attack.

Thus, whenever we want to sign a ciphertext, An-
derson’s attack forces Alice to sign, along with her
ciphertext, either the plaintext itself or Bob’s public
key B:

A— B {{msg}?, #msg}® (12)
A= B : {{msg}? #B}" (13)
The two formats offer different advantages: sign-

ing the plaintext alongside the ciphertext gives non-
repudiation, while signing the encryption key is more
easily understood as a defense against Anderson’s at-
tack. In either format, Bob can still alter B and msg
simultaneously, so that {msg’}® is the same as Al-
ice’s ciphertext {msg}”. But, in order to preserve
Alice’s signature, Bob now also has to choose msg’
to have the same hash value as the one Alice signed,
and this is too difficult.

Of course, Encrypt-then-Sign isn’t very useful any-
way, because only the illegible ciphertext, not the
plaintext, would be non-repudiable. In what follows,
for simplicity, we’ll mostly ignore Encrypt & Sign,
and we’ll concentrate on analyzing and fixing Sign &
Encrypt’s defects.

1.3 Purpose of the Paper

This paper intends to fill the gap between the “do-
it-yourself” toolbox APIs and the “out-of-the-box”
secure-networking standards:

e Section 2 describes the problem’s technical and
social scope,

e Section 3 analyzes the problem cryptographi-
cally,

e Section 4 reviews several standards that accept
naive Sign / Encrypt as secure, and

e Section 5 presents a comprehensive variety of
simple solutions.

Our goal is to help security standards offer a variety
of secure ways to sign and encrypt messages. Applica-
tion programmers should not be constrained by “one
size fits all” protocols, but they also shouldn’t have
to understand the nuances of cryptographic design.

2 Problem Scope

Why is this old and easy problem worth discussing
at this late date? Though designing a secure Sign
& Encrypt protocol is easy for cryptographers, it’s
a different class of engineer who faces this problem
nowadays. Application programmers have to rely
on crypto vendors and crypto standards, in order
to learn how to write crypto applications. Unfortu-
nately, the vendors and standards have left untended
a big gap in their support for application program-
mers. Current security standards don’t give applica-
tion programmers a simple recipe for file-encryption
problems.

2.1 Technical Scope

Secure session protocols have attracted a lot of re-
search attention, and several effective session-security
protocols have been standardized, so naive Sign &
Encrypt is not a problem in session security. Session-
security standards, like Kerberos [19], TLS [5], and
SET [28], give straightforward, out-of-the-box solu-
tions. For files and one-way messaging, though, cur-
rent security standards give developers only a kind
of “toolbox” support, with a variety of security op-
tions, but with no clear or firm guidance about how
to combine the options to make Sign & Encrypt an
effective security solution. Providing only toolbox-
style cryptographic protocols is appropriate for a
low-level mechanism like TPSEC [12], but for user-
visible applications like secure e-mail, programmers
need “turnkey” cryptography, not only cryptographic
toolkits.

Thus, naive Sign & Encrypt has come to char-
acterize file-handling and e-mail security applica-
tions. PKCS#7 [23], CMS? [9], S/MIME [20], and
PGP* [29], all suffer from this defect. Further, the
W3C’s® XML-Signature & XML-Encryption Work-
ing Groups have explicitly set themselves the task

3Cryptographic Message Syntax.
4Pretty Good Privacy
5The World Wide Web Consortium, see http://w3.org .



of supplying XML with S/MIME-style security. The
demand for simple file-security and message-security
is big and growing, so widespread use of these
naive Sign & Encrypt security models will lead to
widespread exposures.

2.2 Social Scope

Increasingly, secure applications are being designed
and built by application programmers, not by cryp-
tographers. Several factors have obliged mainstream
application programmers to undertake public-key
protocol design:

e Commercial PKI is in widespread deployment;

e Secure networking standards don’t address file-
encryption,;

e Demand for cryptographers greatly exceeds the
supply.

So, when application programmers need file-
encryption help, they can seek help from crypto
vendors and from crypto standards. Unfortunately,
the vendors and the standards both offer either
high-level secure connections, or low-level “toolkit”
mechanisms. Neither offering makes file-encryption
easy. The available standards specifications for file-
encryption intend to support security applications,
but the specifications tend to standardize only low-
level APIs for cryptographic primitives, so as to leave
designers as much flexibility as possible.

3 Defective Standards

The delicacy of naive Sign & Encrypt is a well-known
issue in S/MIME. Similar flaws appeared in 1986 in
the first version of the PGP message-format [30], and
in 1988 in X.509v1 [14]. X.509’s flaw was discovered
in 1989 by Burrows et al. [4], and a correct repair was
proposed in 1990 by I’Anson and Mitchell [11]. Un-
fortunately, more recent workers have failed to apply
I’Anson’s simple repair correctly; PEM and PKCS#7
suffer from a defective version of I’Anson’s repaired
Sign & Encrypt, and the same defect is now codi-
fied by S/MIME. In parallel with these developments,
PGP independently retained the same naive Sign &
Encrypt defect. The current protocols’ flaw is sub-
stantially similar to the original flaws in X.509 and
PGP. So, the historical flow of inheritance is:

e Zimmermann described a naive RSA-based Sign
& Encrypt protocol, which later became PGP;

e X.509v1 codified a flawed, naive Encrypt & Sign,
independently of PGP;

e Burrows et al. and I’Anson described a workable
Sign & Encrypt protocol for X.509;

e PEM applied X.509’s cryptography to e-mail
transport, using naive S&E instead of I’Anson’s
repaired S&E;

e Three standards extended and generalized PEM:

1. MOSS extended PEM to support MIME-
encoded e-mail, by adding naive Sign & En-
crypt for e-mail attachments;

2. PKCS#T7 generalized PEM to non-mail file-
handling applications, but preserved the
S&E flaw intact;

3. CMS and S/MIME carried PKCS#7’s gen-
erality and the flawed S&E back to the e-
mail community.

e Today, the nascent XML security standards ex-
pressly intend to support naive Sign & Encrypt.

These relationships aren’t as complicated as they
look, because MOSS, PKCS#7, and S/MIME are all
descended from PEM, and through PEM from X.509,
while PGP and XML are completely independent ef-
forts.

In the rest of this section, we discuss the defective
standards in the chronological order listed above.

3.1 PGP and OpenPGP

PGP is similar to PEM and simpler than S/MIME, in
that PGP provides only three security options: Sign,
Encrypt, and Sign & Encrypt. Of these security op-
tions, we are only interested in PGP’s Sign & En-
crypt (we will discuss only Sign & Encrypt in the
other standards’ subsections, t00).

PGP’s message-format had several similarities with
later features of PEM and S/MIME:

e symmetric-key encryption for message bodies;
e unformatted message-bodies;
e independent crypto layers.

In our discussion, we’ll omit PGP’s use of symmetric-
key ciphers for bulk encryption, because it is irrele-
vant to our surreptitious forwarding attack.

PGP’s strongest security option is naive Sign &
Encrypt, so PGP is vulnerable to surreptitious for-
warding:

A—= B
B—C

{{“The deal is off ”}*}?
{{“The deal is off ?}°}“

(14)
(15)



Here, Alice has cancelled a deal with Bob, so Bob gets
even with her later, by re-encrypting and redirecting
Alice’s signed message to her next business partner,
Charlie.

Note that PGP’s plaintext message-bodies are un-
formatted, containing no names for the sender or re-
cipient. Because PGP doesn’t allow formatted mes-
sage bodies, an extra signature layer, or signed at-
tributes, PGP doesn’t admit any of the protocol re-
pairs we describe below for S/MIME and PKCS#7
(see §§3.5,3.6, & 5.1).

3.2 X.509, Version 1

The first version of X.509 included a simple protocol
for secure message-exchange, employing secure mes-
sage “tokens” with the following structure:

A— B

{Bob, #msg, {msg}”}*  (16)

Burrows et al. [4] pointed out that C could readily
replace A’s signature with his own, leading B to at-
tribute A’s message to C:

C— B {Bob, #msg, {msg}B}c  (17)
(See also Eqn.7). So, I’Anson and Mitchell [11] of-
fered a repaired token-structure for X.509:

A= B i {{#(Bob, msg)}*, msg}”

(18)
Unfortunately, I’Anson’s cryptographic notation was
hard to understand,® and his text didn’t emphasize
exactly what made his corrected token secure:

This modification involves no additional ef-
fort as far as token construction is con-
cerned, and 1t is simply to require that the
encryption of enc-Data is done after the sig-
nature operation instead of before.

I’Anson’s text incorrectly implied that he had only re-
placed E&S with S&E. In fact, his repair worked only
because he made Alice sign her recipient’s name, Bob,
along with her message. This signed name proved
Alice’s intent to write for Bob. If Alice’s signature
hadn’t included Bob’s name, then I’Anson’s new to-
ken would have been just a naive Sign & Encrypt,
fully vulnerable to surreptitious forwarding.

Clearly, I’Anson’s paper influenced the early PKI
standards community, because PKCS#1 and various
later RFCs cited the paper. Though PEM and later
mail standards didn’t cite I’Anson, they followed his
paper’s advice: PEM, PKCS#7, and CMS provided

8In Eqn.16, we've simplified the X.509 token’s structure, by
leaving out various nonces and other parameters.

Sign & Encrypt as a basic operation, and S/MIME
explicitly deprecated Encrypt & Sign. We suggest
that had I’Anson explained the necessity of signing
the recipient’s name, the later standards would have
used Sign & Encrypt correctly.

Note that X.509’s original Encrypt & Sign token
(cf. Eqn. 16, above) could have been fixed without
signing first, by the simple addition of the sender’s
name, similar to I’Anson’s signed recipient-name:

{#msg, {Alice, msg}P}*  (19)

This repair, like I’Anson’s, blocks Burrow’s signature-
replacement attack (cf. Eqn. 17), because Bob can
now detect Charlie’s replacement: if the signer’s cer-
tificate doesn’t match Alice’s name inside the plain-
text, then Bob can conclude that the message was
tampered with. This repair also repairs Encrypt &
Sign’s non-repudiation problem, since Alice signs her
plaintext explicitly. Finally, this repair also blocks
Anderson’s plaintext-replacing attack (see §1.2).

A— B

3.3 PEM

Privacy-Enhanced Mail was the first notable secure-
email standard for the Internet. PEM was designed
and specified in the late 1980’s and early 1990’s
[15]. The first version of PEM relied exclusively
on symmetric-key cryptography, but as X.509’s PKI
specification settled, later versions of PEM increas-
ingly emphasized public-key cryptography. It seems
likely that PEM’s over-reliance on naive Sign & En-
crypt led PEM’s descendants MOSS, PKCS#7, and
S/MIME to follow suit. Indeed, the later specifica-
tions tried hard to support backward-compatibile in-
teroperation with PEM.

For our purposes, PEM provides essentially only
two variants of mail security; a message can be signed
only, or it can be signed and then encrypted. Like
PGP, and like PEM’s descendants PKCS#7, CMS,
and S/MIME, PEM applies its signature and encryp-
tion steps to the message-body, i.e., not to the SMTP
header, the “From: / To:” header, or to the “encap-
sulated header,” which carries a PEM message’s keys
and names. PEM has no notion of signing or authen-
ticating ancillary attributes, and also doesn’t support
extra crypto layers, so the repairs we discuss below for
S/MIME and PKCS#7 (see §§ 3.5 & 3.6) won’t work
for PEM. To prevent surreptitious forwarding, a PEM
message’s author would have to include the recipi-
ent’s name directly in the message-body. Of course,
it could be very difficult for the receiving PEM mail-
client to find the recipient’s name in the body, so as
to check automatically for surreptitious forwarding.

Today, PEM is not widely used, and PEM’s vul-
nerability to surreptitious forwarding is mostly just



a matter of historical interest. But PEM’s accom-
plishment and influence were great, because PEM
successfully achieved platform-independent crypto-
graphic interoperation, at a time when the still-new
Internet was a much more heterogenous affair than it
is today.

3.4 MOSS

MOSS extended PEM’s cryptography in three prin-
cipal ways:

1. By adding cryptographic support for MIME-
formatted multipart messages (popularly known
as attachments);

2. By allowing encryptions and signatures to be ap-
plied in any order, like S/MIME;

3. By decoupling secure mail from the monolithic
X.500 public-key infrastructure, which had failed
by the mid-1990’s.

Like PEM, MOSS was eclipsed by S/MIME and by
PGP, and is little heard-of today.

MOSS had another feature, one very valuable for
our purposes: unlike the other secure e-mail pro-
tocols, MOSS explicitly provided by default for a
sender Alice to be able to sign her message-header,
along with her message-body. MOSS is the only e-
mail standard that gives users such an out-of-the-box
mechanism for signing the recipient-list. (S/MIME’s
ESS feature did allow header-signing, but this was
explicitly intended as a link-oriented security feature
for military mail servers. See the discussion of ESS,
in the last half of §3.6.)

Header-signing was easy for MOSS to provide,
because MOSS treated the header as just another
“part” in the message. If Alice’s MOSS message
carried her signature and encryption on both the
message-body and the message-header, Alice’s MOSS
message and her recipients would be fairly well-
protected against surreptitious forwarding. Unfortu-
nately, MOSS made header-signing an optional fea-
ture, and the MOSS RFCs don’t discuss why header-
signing is valuable. As specified, MOSS is as vulner-
able to our attack as the other e-mail protocols are.

It’s worth noting that even when Alice does choose
to sign MOSS’s header, MOSS’s cryptography still
relies too much on Bob’s sophistication about e-mail
security:

e When Bob receives Alice’s MOSS message, he
does have to read Alice’s signed header, so as to
make sure that Alice intended to send the mes-
sage to him.

e Further, when Alice’s cc-list is long, Bob still has
to read the signed header, but this step is neither
as automatic nor as reliable as one would like.

e Finally, if Alice’s mail-client doesn’t bother to
sign her mail-headers, Bob probably won’t no-
tice, so he’ll still be vulnerable to surreptitiously-
forwarded messages.

All of these issues would vanish, if MOSS had made
header-signing mandatory. Bob’s e-mail reader pre-
sumably would automatically scan the header, look-
ing for Bob’s decryption-key’s “name form,” and if
this search were to fail, the MOSS mail-reader would
raise an error-message warning Bob.

3.5 PKCS#7

PKCS#7 was created as a file-oriented adaptation
and extension of PEM’s platform-independent cryp-
tographic features. Accordingly, PKCS#7 inherited
naive Sign & Encrypt from PEM.

In order to bolster PKCS#7’s Sign & Encrypt se-
curity, how might a PKCS#7 author securely attach
names to a file or message? Each PKCS#7 message
has SignerInfo and RecipientInfo fields, but the spec-
ification does not allow these fields to be signed or
encrypted. PKCS#7 does provide for application-
defined “authenticated attributes,” though, so a
PKCS#7 application could create a signed “To-List”
attribute, so as to prove to recipients that they are the
author’s intended recipients. But crucially, PKCS#7
does not require or even suggest that for effective se-
curity, such a signed “To-list” should accompany the
message. Further, PKCS#9 [24], which defines vari-
ous attributes for PKCS#7 messages, similarly fails
to provide any attributes for holding senders’ or re-
cipients’ names.

Note also that in order to use authenticated at-
tributes for repairing PKCS#7 Sign and Envelope,
one must separately apply the signature and encryp-
tion steps, instead of using the Signed-and-Enveloped
construct. This is because the combined construct
doesn’t support attributes at all [23]:

Note. The signed-and-enveloped-data con-
tent type provides cryptographic enhance-
ments similar to those resulting from the
sequential combination of signed-data and
enveloped-data content types. However,
since the signed-and-enveloped-data content
type does not have authenticated or unau-
thenticated attributes, nor does it provide
enveloping of signer information other than
the signature, the sequential combination
of signed-data and enveloped-data content



types is gnerally preferable to the Signed-
AndEnvelopedData content type, except
when compatibility with the ENCRYPTED
process type in Privacy-Enhanced Mail is in-
tended.

Thus, for PKCS#7’s simple Signed-and-Enveloped
message, the protocol affords no cryptographically se-
cure naming. The only way a Signed-and-Enveloped
recipient can know that he is intended to see the
message, and that no surreptitious forwarding has
occurred, is for the sender to include the recipient’s
name within the message-body.

3.6 S/MIME and CMS

S/MIME is a set of secure email standards, which
specify not only how to encrypt and sign messages,
but also how to handle keys, certificates, and crypto
algorithms. CMS is the specification that describes
the data-formats and procedures needed for encryp-
tion and signatures. CMS is mostly identical to
PKCS#7, from which it descends.

The S/MIME specification itself acknowledges that
CMS’ Sign & Encrypt isn’t very secure, but the
S/MIME specification fails to discuss the main de-
fect. Further, the document tells implementors noth-
ing about how to shore up Sign & Encrypt. Instead,
the S/MIME specification merely cautions users and
implementors not to over-rely on a message’s secu-
rity:

1. “An S/MIME implementation MUST be
able to receive and process arbitrarily nested
S/MIME within reasonable resource limits
of the recipient computer.

2. “It is possible to either sign a message
first, or to envelope” the message first. It
is up to the implementor and the user to
choose. When signing first, the signatories
are then securely obscured by the envelop-
ing. When enveloping first, the signatories
are exposed, but it is possible to verify sig-
natures without removing the enveloping.
This may be useful in an environment where
automatic signature verification is desired,
as no private key material is required to ver-
ify a signature.

3. “There are security ramifications to
choosing whether to sign first or to encrypt
first. A recipient of a message that i1s en-
crypted and then signed can validate that

"The S/MIME, CMS, and PKCS#7 specification docu-

ments use the verbs “encrypt” and “envelope” interchangeably.

the encrypted block was unaltered, but can-
not determine any relationship between the
signer and the unencrypted contents of the
message. A recipient of a message that
is signed-then-encrypted can assume that
the signed message itself has not been al-
tered, but that a careful attacker may have
changed the unauthenticated portion of the
encrypted message” [sic].

— [20] Sec. 3.5, “Signing and Encrypting.”

This excerpt is the S/MIME specification’s only dis-
cussion of Sign & Encrypt’s limitations. Several fea-
tures in the excerpt deserve comment:

e Paragraph 2 presents the security issues as a
tradeoff between confidentiality and ease of ver-
ification;

e Paragraph 3 hints that an attacker can replace
the external signature in an encrypted-then-
signed message,

e But there’s no mention that sign-then-encrypt
is vulnerable to surreptitious forwarding, by re-
placement of the outermost encryption layer. (In
paragraph 3, “unauthenticated portion” seems
to refer not to the unauthenticated ciphertext,
but to unauthenticated plaintext.)

e The excerpt presents only the choice between
signing first and encrypting first. There’s no
mention of repairing either option’s defects.

S/MIME s flexible enough to allow the Sign
& Encrypt defect to be repaired. In the spec-
ification excerpt above, the first paragraph pro-
vides that every S/MIME application must be able
to process Sign/Encrypt/Signed messages and En-
crypt/Sign/Encrypted messages. Either S/E/S or
E/S/E suffices to reveal any alteration of the sender’s
crypto layers, as long as the receiving client knows
how to detect the alterations (See §§5.2 & 5.3, be-
low).

Note that our S/E/S double-signing only su-
perficially resembles S/MIME’s optional “triple-
wrapping” feature; the two are different in mech-
anism and in purpose. S/MIME’s Enhanced Se-
curity Services specification [7] provides specialized
security-related message-attributes, in support of cer-
tain features such as signed receipts and secure
mailing-lists. In order to support the ESS features,
some mail servers will apply an extra signature to
the ciphertext of an end-user’s Signed-and-Encrypted
message:



1.1 Triple Wrapping Some of the features
of each service use the concept of a ”triple
wrapped” message. A triple wrapped mes-
sage 1s one that has been signed, then en-
crypted, then signed again. The signers of
the inner and outer signatures may be dif-
ferent entities or the same entity. Note that
the S/MIME specification does not limit the
number of nested encapsulations, so there
may be more than three wrappings.

1.1.1 Purpose of Triple Wrapping Not all
messages need to be triple wrapped. Triple
wrapping is used when a message must
be signed, then encrypted, and then have
signed attributes bound to the encrypted
body. Outer attributes may be added or
removed by the message originator or inter-
mediate agents, and may be signed by inter-
mediate agents or the final recipient. [...]

The outside signature provides authentica-
tion and integrity for information that is
processed hop-by-hop, where each hop is an
intermediate entity such as a mail list agent.
The outer signature binds attributes (such
as a security label) to the encrypted body.
These attributes can be used for access con-
trol and routing decisions.

Triple-wrapping allows mail servers to securely an-
notate messages on-the-fly (“hop-by-hop”), primar-
ily for the benefit of other mail-servers. In contrast,
in our S/E/S repair, Alice applies her outer signa-
ture, without any extra attributes, to her own Signed
& Encrypted message, as the basic CMS specifica-
tion allows. Similarly, only Alice’s intended S/E/S
recipient Bob would validate her inner and outer sig-
natures. In sum, our S/E/S is an end-to-end security
feature, while ESS uses triple-wrapping to support
link-oriented security features.

Further, ESS triple-wrapping and S/E/S serve dif-
ferent purposes. Though the first two ESS para-
graphs do mention that an end-user like our Alice
might apply an outer signature herself, the ESS doc-
ument gives no reason that she might do so, except
to attach signed attributes to the ciphertext. The
ESS document nowhere suggests that triple-wrapping
might be necessary to repair a security defect in Sign
& Encrypt. In fact, the ESS specification commit-
tee did not intend triple-wrapping to be a repair for
the surreptitious-forwarding defect. Instead, the ESS
specification was written to fulfill the U.S. Dept. of
Defense’s purchasing criteria for secure e-mail, which
demanded server-oriented security features [8].

Besides S/E/S, another S/MIME repair option
comes from the CMS specification, which is a core

piece of the S/MIME standards suite. Like PKCS#7,
CMS provides for “signed attributes,” which offer a
different way to prevent crypto alterations. Suppose
the sender includes a signed “To-List” attribute, and
suppose the recipient knows how to process and inter-
pret such an attribute. Then the recipient can iden-
tify who intended him to receive the message, and no
attacker can profit by replacing the outer crypto lay-
ers. Unfortunately, like the PKCS#7 specification,
the CMS specification does not stipulate or even sug-
gest such naming attributes, though the specification
does suggest other signed attributes.

These S/MIME repairs are cumbersome, and they
only barely meet the e-mail industry’s needs. Cru-
cially, because the specification neither requires any
repair, nor even mentions that some features can
serve as repairs, the repairs’ interpretations aren’t
standardized, and different vendors’ S/MIME appli-
cations can’t readily interoprate with full Sign & En-
crypt security.

3.7 XML Security

At this writing (Spring 2001), the XML-Signatures
draft specification [6] is nearing completion, and the
allied XML-Encryption Working Group [26] is just
starting its work. Both groups have explicitly com-
mitted to producing low-level “toolkit” specifications,
which will describe how to combine basic public-
key operations with a rich array of XML document-
structuring features. In particular, both groups are
very unwilling to stipulate any high-level security be-
havior, such as how to sign and encrypt with full
security.

To some extent, this is proper: these standards
are intended to support as broad a class of appli-
cations as possible, including document preparation
and handling, financial applications, wire protocols,
and potentially even intricate cryptographic security
protocols. The Secure XML Working Groups say that
they don’t want to require secure high-level behavior
in their specifications, because they don’t want to
constrain how low-level applications will use XML’s
security features. The WGs explicitly hope that a
higher-level XML security specification, with out-of-
the-box “idiot-proof” security, will be built someday
to follow on the current WGs’ specifications. But
for now, certainly, the XML-Signatures draft speci-
fication is most suitable for use only by experienced
security engineers and cryptographers, and not for
application programmers who don’t want to special-
ize in security.



4 Analysis

We propose that users of file-security and mail-
security need simple security semantics, and that
symmetric-key semantics are sufficient for most users
and most applications’ needs. Further, symmetric-
key semantics are natural and easy for unsophisti-
cated users to understand.

In this section, we present three overlapping views
of what’s wrong with naive Sign & Encrypt. Then,
we summarize and discuss several arguments in de-
fense of the naive Sign & Encrypt standards. Finally,
we discuss how this flaw survived several standards-
review committees’ deliberations.

4.1 Asymmetric Security Guarantees

At first glance, naive Sign & Encrypt seems quite se-
cure, because message-author Alice gets the security
guarantees she needs: her signature proves her au-
thorship, and she knows who can read the message.
The reader, Bob, doesn’t get the same guarantees,
though. He knows who wrote the message, but he
doesn’t know who encrypted it, and therefore doesn’t
know who else besides Alice has read the message.
Note the asymmetry:

e When A sends B a signed & encrypted message,
A knows that only B can read it, because A
trusts B not to divulge the message, but —

e When B receives A’s signed & encrypted mes-
sage, B can’t know how many hands it has passed
through, even if B trusts A to be careful.

Seen this way, the flaw in naive Sign & Encrypt is
that B gets no proof that it was A who encrypted
the message. In hindsight, this is obvious: public key
algorithms usually don’t automatically authenticate
the encryptor of a message.

Certainly, in some applications, it’s neither nec-
essary nor feasible to give a recipient any assurance
that only the sender has seen the message-plaintext.
Thus, for example, mail-security applications do need
the flexibility to waive full end-to-end symmetric-key
semantics. But, whenever possible, and by default,
mail- and file-security applications should give end-
users easy-to-understand security guarantees.

4.2 Symmetric-Key Semantics

Users tacitly expect public-key file-encryption to of-
fer the same security semantics that a symmetric key
offers. Thus, another way to describe the Sign & En-
crypt problem is that whether signing or encryption is
applied first, naive Sign & Encrypt fails to duplicate

the security meaning of a symmetric-key ciphertext.
When B receives a symmetric-key ciphertext from A,
B can safely assume that:

e A sent the message,
e No-one else has seen the plaintext,

e A intended B to receive the plaintext.

With naive Sign & Encrypt, these assumptions can
break down, because the recipient may have to rely
on the crypto layer to supply the intended recipient’s
names. That is, the problem arises when:

e The message plaintexts don’t mention the
sender’s and target’s names;

e The sender’s and recipient’s names are impor-
tant for understanding the message or its secu-
rity import;

e The recipient assumes that the signer encrypted
the message.

Under these conditions, an attacker can successfully
and surreptitiously forward a naively signed and en-
crypted message.

4.3 Sign & Encrypt Must Cross-Refer

We suggest that the messaging standards all erred by
treating public-key encryption and digital signatures
as if they were fully independent operations. This
independence assumption is convienient for writing
standards and for writing software, but it is crypto-
graphically incorrect. When independent operations
are applied one on top of another, then the outer-
most crypto layer can undetectably be replaced, and
security is weakened.

In [1], Abadi and Needham presented a simple best-
practice rule for protocol design:

When a principal signs material that has al-
ready been encrypted, it should not be in-
ferred that the principal knows the content
of the message. On the other hand, it is
proper to infer that the principal that signs
a message and then encrypts it for privacy
knows the content of the message.

In [2], Anderson and Needham presented their
plaintext-substitution attack against Encrypt-then-
Sign (see §1.2), and they strengthened Abadi’s pre-
scription:

Sign before encrypting. If a signature is
affixed to encrypted data, then ...a third
party certainly cannot assume that the sig-
nature is authentic, so nonrepudiation is
lost.



These principles were well-understood soon after
X.509’s defect was discovered (if not before), and
to be fair, they were published after the early ver-
sions of PEM, PKCS#7 and S/MIME were pub-
lished. But PKCS#7 and S/MIME have been revised
since Abadi’s and Anderson’s papers became well-
known, so the updated standards could have been re-
paired. Nevertheless, the e-mail standards still treat
the Sign & Encrypt problem as a user-interface issue:
“There are security ramifications to choosing whether
to sign first or encrypt first...” [20].

Though signing and encryption are not inde-
pendent of one another, the defective standards
treated crypto operations as independent content-
transformations, converting “content” to “content.”
Conceptually, this makes it easy for users and pro-
grammers to layer crypto operations in arbitrary
depth and in arbitrary order. By this device, the
standards authors sought to avoid constraining ap-
plication developers’ designs.

With such independent operations, though, it’s
hard to fulfill the recipient’s security expectations. In
order to work properly together, the signature layer
and the encryption layer actually must refer to one
another, so as to achieve basic symmetric-key secu-
rity guarantees that users expect. The recipient needs
proof that the signer and the encryptor were the same
person, which necessarily entails either signing the
recipient’s identifier (in Sign & Encrypt), or encrypt-
ing the signer’s identifier (in Encrypt & Sign). Once
such cross-references are in place, an attacker can’t
remove and replace the outermost layer, because the
inner layer’s reference will reveal the alteration.

In Section 5, “Repair Options,” we present five
ways to give the recipient this cross-referenced proof
of the encryptor’s identity. In each of these five re-
pairs, the sender identifies the outermost operation’s
key-holder, inside the innermost content, so as to
bind the sender’s and recipients’ names together. For
example, one repair for Sign & Encrypt puts the de-
crypting recipient’s name inside the signed plaintext
message:

A— B {{“To: Bob”, msg}°}?  (20)
This repair is straightforward for a user or an im-
plementor to do, but it’s hard for a standards spec-
ification to stipulate that different crypto operations
must be tied together like this, without breaking the

full generality of the content-transformation model.

4.4 Trust and Risk

A common defense of naive Sign & Encrypt is that
users have to be careful about whom they trust, or

equivalently, that users should carefully assess risk
when putting sensitive material under cryptographic
protection. In this view, the recipient of a signed
and encrypted message should not invest more trust
in the message than the technology and the sender’s
reputation can support. This argument seems very
plausible, but it turns out not to address the problems
with naive Sign & Encrypt.

B has no way to gauge the risk that the message
has been divulged to people unknown to A and B.
To gauge the risk, B would have to know how trust-
worthy are the people who have surreptitiously for-
warded the message along from A towards B. Thus,
in general, one can’t assess the privacy of a decrypted
plaintext, and shouldn’t trust its privacy, unless one
knows who encrypted it. In sum: if we accept the
Trust and Risk argument, then the encryption step of
Sign & Encrypt is quite pointless from the receiver’s
point-of-view.

4.5 Security and Ease-of-Use

Another common defense of S/MIME’s naive Sign
& Encrypt is that “Users shouldn’t trust unsigned
information” about the signer’s intended recipients.
This argument misses the point of S/MIME’s weak-
ness, by supposing that users are over-relying on the
unsigned SMTP header to identify the sender’s in-
tended recipients. The users’ mistake is more subtle,
though; they’re over-relying on the encrypting-key’s
certificate, as a secure record of the sender’s intended
recipient.

It’s unrealistic to expect today’s users to catch such
a subtle point. When X.509, PEM, and S/MIME
were designed, PKI users were expected to be system
administrators and other fairly sophisticated users;
now, though, with the modern Internet and with elec-
tronic commerce in play, we can’t expect most users
to understand any cryptographic nuances at all.

A similar defense of the defective secure mail
standards 1s that the specifications aren’t actually
broken, because “Applications can and should put
names into the content, if that’s what they want.”
This argument assumes that application program-
mers shouldn’t try to incorporate cryptographic se-
curity into programs in the first place, unless they
understand security and cryptography well enough
to design security protocols. Further, the argument
insists that no security standard can be so complete
as to prevent ignorant programmers from “shooting
themselvers in the foot.”

A ready answer to this argument is “SSL.” The
SSL specification gives fairly complete security, out-
of-the-box. Further, non-specialist programmers are
able to set up secure SSL connections for their appli-



cations, without having to patch the SSL protocol on
their own.

4.6 How Did This Happen?

According to the authors of the PEM [16, 17],
S/MIME [8, 10], and XML-Security [25] standards,
those working groups explicitly discussed surrepti-
tious forwarding, and yet deliberately left the flaw
unrepaired. The committees accepted this crypto-
graphic neglect for several reasons:

e Optional Coverage: All of the specifications al-
low senders to put the recipient’s name, or the
whole mail header, into the message-body before
signing. In addition, some protocols explicitly
provide an optional mechanism for signing the
mail header or the recipient-list.

e Contertual Repair: In the same way, the PEM
committee’s discussion explicitly decided that
the message’s context would wusually solve the
problem. For example, Alice’s signed “Dear
Bob” salutation would reveal any re-encryption.

e Qut of Scope: The PEM committee noted that
surreptitious forwarding is a type of replay, and
that no e-mail mechanism can prevent e-mail re-
play. Thus, to the PEM committee, it seemed
inappropriate to worry about surreptitious for-
warding of signed-and-encrypted mail.

More recently, the XML-Signature and XML-
Encryption working groups explicitly decided, from
the outset of their work, to emulate S/MIME’s secu-
rity. Both groups decided not to address S/MIME’s
and PKCS#T7’s vulnerability to surreptitious for-
warding, for three related reasons:

1. XML-Signature and XML-Encryption are ex-
plicitly low-level protocols. Thus, the XML-
security standards mustn’t force higher-level
protocols to follow a particular cryptographic
model.

2. The W3C intends that for XML documents, for-
mat specifications and semantics specifications
should generally be kept separate. Accordingly,
surreptitious forwarding, being an issue of Sign
& Encrypt “semantics,” should be treated in a
separate XML Security Semantics specification.

3. A document-format working group shouldn’t try
to resolve questions about minute details of cryp-
tographic implementation, because such discus-
sions invariably become time-wasting “ratholes.”

Thus, the XML-Security working groups seem to in-
tend their specifications to be accepted as strictly
“low-level” cryptographic primitives. It’s hard,
though, to reconcile this “low-level” label with these
working groups’ early proposal to emulate S/MIME,
since S/MIME claims to offer high-level, comprehen-
sive, and secure messaging.

It’s hard to blame the secure-mail standards groups
for having made a cryptographic mistake. Clearly,
they all worked in good faith to promote secure and
usable technologies. Further, it’s important to ac-
knowledge how hard it i1s to write networking stan-
dards in general, and mail-related standards in par-
ticular. As hard as it is to design cryptographic secu-
rity protocols, cryptographic difficulty is only a for-
mal or mathematical affair, and is very different from
the difficulty of designing workable networking pro-
tocols for real-world deployment. In any design of a
concrete security protocol, many hard problems have
to be solved simultaneously, including;:

e Flexibility for application programmers;

e Flexibility for network admins and sys-admins;
e Interoperation with other protocols;

e OS platform differences;

e Scaling;

e Server statelessness;

e Exportability;

e Time-to-market.

Clearly, each of the secure e-mail standards commit-
tees tried to codify a cryptographically correct pro-
tocol. The worst that can be said of these working
groups is that they underestimated the subtlety of
adding cryptography to their already-burdened port-
folio.

5 Repair Options

We present five independent and equivalently-secure
ways to fix the naive Sign & Encrypt problem:

1. Sign the recipient’s name into the plaintext, or
2. Encrypt the sender’s name into the plaintext, or
3. Incorporate both names; or

4. Sign again the signed-&-encrypted message; or

5. Encrypt again the signed ciphertext.



In each case, the signing layer and the encryption
layer become interdependent, binding the sender’s
name, in one layer, to the recipient’s name in the
other layer. Any one of these alternatives suffices to
establish that Alice authored both the plaintext and
the ciphertext. Note though that an effective secu-
rity standard should require not only that the au-
thor must provide one of these five proofs, but also
that the recipient must demand some such proof as
well. That is, if a naive Sign & Encrypt message
arrives without proof that the signer and encryptor
were the same person, then the application software
should warn the recipient that the message’s privacy
and/or authenticity are suspect.

5.1 Naming Repairs

Perhaps part of the reason naive Sign & Encrypt
seems secure is that with many common payload mes-
sages, S&E is secure. For example, even if Alice just
signs and encrypts the text “Dear Bob, The deal is
off. Regretfully, Alice,” then Alice’s message is se-
cure, albeit only accidentally so. The presence of
names under both crypto layers is crucial, but in-
cluding both names is not strictly necessary:

1. If Alice wants to use Sign & Encrypt, then she
needs to enclose only Bob’s name, because this
will link the outer layer’s key to the inner layer.

A— B {{Bob, msg}*}? (21)
By signing Bob’s name into her message, Alice
explicitly identifies him as her intended recipi-
ent. This is equivalent to I’Anson’s repair for

X.509v1, as discussed above in Section 3.1.

2. If Alice prefers instead to use Encrypt & Sign,
then she should encrypt her own name along
with her message, and should sign her message-
plaintext outside the ciphertext, so as to block
Anderson’s plaintext-replacement attack:

A— B {{Alice, msg}?, #msg}® (22)

Again, this links the outer layer’s key-pair to

the inner layer, and prevents an attacker from

replacing Alice’s signature.  Encrypting the
sender’s name works in a subtle way to prove
that Alice performed the encryption: The en-
closed name shows that the encryptor intends
for the outer signature to carry the same name

(Alice’s). The outer signature, in turn, says that

Alice did indeed touch the ciphertext. Therefore,

Bob knows that Alice performed the encryption.

3. If Alice encloses both names in the message-body,
she can avoid having to pay attention to crypto-
graphic choices early on, while she’s formatting
her message text. She can send to Bob in either
of two ways:

A—= B
A— B

{4 B msg)?, #hmsg)”
{{“A — B”, msg}"}B (23)

These two-name formats might be suitable for
a flexible standards-specification like S/MIME,
in which the layers of crypto can be applied in
any order. Always enclosing both names with
the message is simpler than judging on the fly
which names to enclose, depending on the choice
of cryptographic wrappings.

These repairs are rational examples of Martin Abadi’s
and Catherine Meadows’ rule-of-thumb for designing
security protocols:

e Abadi: “If the identity of a principal is essen-
tial to the meaning of a message, it is prudent
to mention the principal’s name explicitly in the
message.” (Principle 3 in [1])

e Meadows: “In general, it’s safer to include names
explicitly inside crypto protocols’ messages.” [18]
5.2 Sign/Encrypt/Sign

Surprisingly, we can get an effective repair for S&E, if
Alice signs and encrypts the plaintext, and then she
signs the ciphertext, too:®

{{{msg}"}? | #B}°

(Here, #B means Alice hashes Bob’s key, not his
name.) This message means:

A B (24)

e Inner Signature: “Alice wrote the plaintext;”
e Encryption: “Only Bob can see the plaintext;”
e Outer Signature: “Alice used key B to encrypt.”

Bob can conclude not only that Alice wrote the mes-
sage, but that she also encrypted it. Seen another
way, S/E/S is a variation on including the sender’s
name inside the plaintext, which then is encrypted
and signed (see Sec. 5.1, bullet 2). The inner sig-
nature’s key links the encryption-layer to the outer
signature’s layer. Alice signs Bob’s key, so as to pro-
tect herself from Anderson’s plaintext-substitution
attack.

8For notational simplicity, we represent these signatures as

{stuff }*, instead of as stuff, {#stuff }* .



5.3 Encrypt/Sign/Encrypt

Conversely, Alice can get the same security guaran-
tees by re-encrypting her ciphertext’s signature:

A= B {{{msg}? , #msgl®}®  (25)

This message means:
e First Encryption: “Only Bob sees the plaintext;”
“Alice wrote the plaintext and the

e Signature:
ciphertext;”

e QOuter Encryption: “Only Bob can see that Alice
wrote the plaintext and ciphertext.”

Bob cannot forward the message without invalidat-
ing Alice’s signature. The outer encryption serves to
prevent an attacker from replacing Alice’s signature.
As with S/E/S, E/S/E is a variant of including the
recipient’s name inside the plaintext, which is then
signed and encrypted (see Sec. 5.1, bullet 1). Al-
ice signs her plaintext along with her ciphertext [27],
so as to protect herself from Anderson’s plaintext-
substitution attack. At the same time, Alice’s signed
plaintext gives Bob non-repudiation.

5.4 Costs and Advantages

Of course, the naming repairs and the double-signed
repairs offer different trade-offs. The naming re-
pairs bring no performance cost, but they do require
new standards, and those standards would arguably
be more intricate than the current standards (be-
cause interdependence of layers conflicts with arbi-
trary nesting of layers). The double-signed repairs are
quite expensive in speed, but they have two virtues:

e Double-signing is quite compatible with the ex-
isting CMS and S/MIME specifications. The
only change double-signing would bring is that
the standard would have to require that the re-
cipient check the innermost layer’s key against
the outermost layer’s key.

e For some applications, double-signing may be
preferable to having to put names into message-
bodies or payloads.

Overall, it’s clear that the simplest repair is to add
the recipient’s name, then Sign & Encrypt(§ 5.1, bul-
lets 1 and 3). The other solutions all require an extra
hash of the message or of the encrypting key, so as to
block Anderson’s plaintext-replacement attack.

6 Conclusions

We have presented a forensic history of how naive
Sign & Encrypt, an insecure cryptographic primitive,
has come to be widely trusted, standardized, and im-
plemented, despite its insecurity. The notion that
naive Sign & Encrypt is secure seems to have arisen
with PGP’s first description in 1986. This mistake
was reinforced by a misstatement in a paper that
proposed several repairs for X.509v1. Since then, all
of the leading standards for file-encryption and for
secure e-mail have relied on naive Sign & Encrypt.
Some of these defective standards can be fixed eas-
ily, but for others, the repair would become intricate.
Secure-session protocols and authentication protocols
typically do not rely on naive Sign & Encrypt, so they
are not affected by this paper’s findings.

The weakness of naive Sign & Encrypt is somewhat
subtle, but 1t is easily fixed in several ways. The re-
pairs all show that Signing and Encryption should not
be viewed as independent operations; the repairs pre-
sented here all rely on linking the outer operation’s
key to the inner operation’s payload. This realiza-
tion, that public-key operations are not necessarily
so independent as they’re commonly thought to be,
and that coupling two layers together is a profitable
primitive, may prove to be a novel and useful axiom
for beginning protocol designers and analysts.
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