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1 The Fields

This proposal represents a variation on the Maxwell equations for EM. In fact, the Maxwell
equations are a formal subset of the GEM�eld equations. The core idea is to use a symmetric
tensor (r�A� +r�A�)/2 for gravity just as an antisymmetric (r�A� � r�A�)/2 tensor is
used for EM. Here are the 5 �elds that play a central role in this proposal:

E = �r0Au �ru� (1)

Bw = ruAv �rvAu (2)

e = �r0Au +ru� (3)

bw = �ruAv �rvAu � �r� A (4)

g� = r�A� (5)

Together these compose all the terms in the manifestly covariant tensor r�A� :Instead of
using tensors, I will be using quaternions, a 4-dimensional division algebra. Because it is
a division algebra, an inverse of any �eld equation necessarily exists, something needed by
quantum �eld theory to determine the propagator.

2 The Lagrangian For EM and Field Equations

The Lagrangian of EM is the di¤erence between the square of the B �eld and the square of
the E �eld. A quaternion di¤erential acting on a quaternion potential generates three of
the �ve �elds:

rA = (r0��r � A;r0A+r�+r� A) = (tr(g�);�E +B) (6)

The scalar has all the terms that make up a typical gauge for EM. The scalar is easily
eliminated by subtracting the conjugate:

1

2
(rA� (rA)�) = (0;�E +B) (7)
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In this early stage, one can see that a proposal built from these quaternion operators
will be invariant under a gauge transformation since the g� �eld has already been subtracted
away (usually one looks for the symmetry of the �eld equations, derived later).
By changing the order of the di¤erential and the potential, the sign of B is changed. Use

this trick to get the di¤erence of the two �elds:

1

8
(rA� (rA)�)(Ar� (Ar)�) =

1

2
(0;�E +B)(0;�E �B) (8)

=
1

2
(B2 � E2; 2E �B)

Notice the 3-vector is the Poynting vector, vital for conservation laws in EM. The La-
grangian uses only the scalar which can be isolated by adding the conjugate of this expression.
Write out the Lagrangian in terms of its components, including the current coupling

term:

LEB =
1

2
(�(r1�)

2 � (r2�)
2 � (r3�)

2)� (r0A1)
2 � (r0A2)

2 � (r0A3)
2 (9)

+(r3A2)
2 + (r2A3)

2 + (r1A3)
2 + (r3A1)

2 + (r2A1)
2 + (r1A2)

2)

�(r3A2)(r2A3)� (r1A3)(r3A1)� (r1A2)(r2A1)

�(r1�)(r0A1)� (r2�)(r0A2)� (r3�)(r0A3)

���+ J1A1 + J2A2 + J3A3

Calculate the �eld equations using the Euler-Lagrange equations, taking the derivatives
of the Lagrangian with respect to the potential and the derivatives of the potential:

r�(
@LEB
@(r��)

) = �r2
1��r2

2��r2
3� (10)

�r0r1A1 �r0r2A2 �r0r3A3 � �
= r � E � � = 0

r�(
@LEB
@(r�A1)

) = �r2
0A1 +r2

3A1 +r2
2A1 (11)

�r1r3A3 �r1r2A2 �r0r1�+ J1

= r0E1 � (r�B)1 + J1 = 0

r�(
@LEB
@(r�A2)

) = �r2
0A2 +r2

3A2 +r2
1A2 (12)

�r2r3A3 �r1r2A1 �r0r2�+ J2

= r0E2 � (r�B)2 + J2 = 0

r�(
@LEB
@(r�A3)

) = �r2
0A3 +r2

2A3 +r2
1A3 (13)

�r2r3A2 �r1r3A1 �r0r3�+ J3

= r0E3 � (r�B)3 + J3 = 0
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These results can be summarized with the Maxwell source �eld equations:

� = r � E (14)

J = r�B �r0E (15)

The only part of this derivation that was non-standard occurred early with the use of
quaternions operators to generate the Lagrangian in eq. 8. From there onward, the covariant
notation and calculation may be more detailed than one normally sees, but the math is the
same. This exercise was done so the small variations for the gravity proposal may be more
easily spotted against this background of the most successful �eld theory in physics.

3 The Lagrangian for Gravity and Field Equations

A riddle: how can one represent the symmetric b �eld using quaternions? A key word in the
riddle references representation theory. What is needed is a representation of quaternions
that has a symmetric curl. The standard Hamilton 4x4 real matrix representation of a
quaternion looks like this:

q = (�;A1; A2; A3) =

0BB@
� �A1 �A2 �A3
A1 � �A3 A2
A2 A3 � �A1
A3 �A2 A1 �

1CCA (16)

To make sure no signs �ip, make all the terms positive, what I will call the "Even
representation" of quaternions (also known as the hypercomplex numbers developed by Clyde
Daven):

q2 = (�;A1; A2; A3) =

0BB@
� A1 A2 A3
A1 � A3 A2
A2 A3 � A1
A3 A2 A1 �

1CCA (17)

While this 4x4 real matrix will create a symmetric curl, it raises a new puzzle: how does
one guarantee this is a division algebra? The answer is to exclude the eigenvalues from the
possible values of q2, and then an inverse will necessarily exist. Given the important role
of eigenvalues in quantum mechanics, this is an interesting constraint whose implications I
do not fully understand.
The Lagrangian of gravity is the di¤erence between the square of the symmetric b �eld

and the square of the e �eld. The order of the di¤erential operator and potential does not
matter for the Even representation. The conjugate operator can be used to generate the
�elds needed for gravity:

r�A2 = (r0��r � A;r0A�r��r� A) = (tr(g�);�e+ b) (18)

Again the scalar has all the terms that make up a typical gauge. Eliminate by subtracting
the conjugate:
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1

2
(r�A2� (r�A2)�) = (0;�e+ b) (19)

Again a gauge-invariant �eld theory is promised.
By changing the order of conjugation, the sign of the e �eld is changed. Use this trick

to get the di¤erence of the two �elds:

1

8
(r�A2� (r�A2)�)(rA2� � (rA2�)�) =

1

2
(0;�e+ b)(0; e+ b) (20)

=
1

2
(b2 � e2; b� b� e� e)

The meaning of the 3-vector is unclear at this time. The Lagrangian uses only the scalar
which can be isolated by adding the conjugate of this expression.
Write out the Lagrangian for gravity in terms of its components, including the current

coupling term:

Leb =
1

2
((r1�)

2 + (r2�)
2 + (r3�)

2) + (r0A1)
2 + (r0A2)

2 + (r0A3)
2 (21)

�(r3A2)
2 � (r2A3)

2 � (r1A3)
2 � (r3A1)

2 � (r2A1)
2 � (r1A2)

2)

�(r3A2)(r2A3)� (r1A3)(r3A1)� (r1A2)(r2A1)

�(r1�)(r0A1)� (r2�)(r0A2)� (r3�)(r0A3)

���+ J1A1 + J2A2 + J3A3

What has changed are the signs of all the pure terms, while all the mixed terms keep
their signs.
Calculate the �eld equations using the Euler-Lagrange equations, taking the derivatives

of the Lagrangian with respect to the potential and the derivatives of the potential:
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r�(
@Leb
@(r��)

) = +r2
1�+r2

2�+r2
3� (22)

�r0r1A1 �r0r2A2 �r0r3A3 � �
= r � e� � = 0

r�(
@Leb

@(r�A1)
) = +r2

0A1 �r2
3A1 �r2

2A1 (23)

�r1r3A3 �r1r2A2 �r0r1�+ J1

= �r0e1 � (r� b)1 + J1 = 0

r�(
@Leb

@(r�A2)
) = +r2

0A2 �r2
3A2 �r2

1A2 (24)

�r2r3A3 �r1r2A1 �r0r2�+ J2

= �r0e2 � (r� b)2 + J2 = 0

r�(
@Leb

@(r�A3)
) = +r2

0A3 �r2
2A3 �r2

1A3 (25)

�r2r3A2 �r1r3A1 �r0r3�+ J3

= �r0e3 � (r� b)3 + J3 = 0

These results can be summarized with the symmetric �eld Maxwell source �eld equations:

� = r � e (26)

J = r� b+r0e (27)

One can spot a manifestly covariant form of Newton�s law of gravity in eq. 22. The static
form of Newton�s law is there. If the mass density changes, there is a time derivative of A
that can respond in a way consistent with special relativity. Like charges attract because
when the charge density is put on the other side of the equality, they have the same sign.
Like charges repel for Gauss�static force law, eq. 10, because the signs are opposite.

4 The Exponential Metric Solution

Tests of the equivalence principle have proven that one must have a dynamic metric solution
for gravity. People accustom to general relativity expect a gravity proposal to be exclusively
about geometry. What the GEM proposal does is the ultimate compromise between a
potential and metric theory: there is a choice whether to account for gravity as a potential
or metric theory or a combination of both. The symmetry can be seen in the de�nition of
a covariant derivative:

rA = @A� �A (28)

A covariant derivative is the di¤erence between the change in the potential, and the
connection, which is changes in the metric. With a �at, Minkowski metric in Euclidean
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coordinates, the connection will be zero everywhere, so the covariant derivative is identical
with the standard derivative. One could choose to work with a potential that was constant,
in which case all the variation found in the covariant derivative comes from the connection.
In this case, if one forms the �eld equations, one takes a derivative of the covariant derivative,
which in turn means one forms a second-order di¤erential equation for the metric. By solving
the second order di¤erential equation, one can determine what the metric is for a physical
situation. This I will now do.
Start with relativistic Newtonian law of gravity, eq. 22, under the assumptions that the

system is static, spherically symmetric, uncharged, with a constant potential:

� = ru(r0Au �ru�) (29)

= ru(@0Au � @u�� 2�� u0A�)=2 (30)

= �ru(g��(
@g�u
@t

+
@g�0
@xu

� @gu0
@xu

))A�=2 (31)

= �rug00rug00�=2 (32)

A metric consistent with weak �eld tests must be found that satis�es this di¤erential
equation. It is known as the Rosen metric, although I prefer to call it the exponential
metric, since the name is more descriptive:

ds2 = c2 exp(�2GM
c2R

)dt2 � exp(2GM
c2R

)dR2 (33)

When one takes the derivative of the g00 term, one gets an exponential back, which
neatly cancels the exponential in g00. One ends up with the Laplacian operator acting on a
charge/R potential, which should sound familiar.

� = �ru exp(2
GM

c2R
)ru exp((�2

GM

c2R
))
c2

G
=2 = �r2M

R
(34)

The metric solution looks like a potential solution. This is a mathematical demonstration
of similarities for a potential and metric explanation of gravity.
The technical problem with Rosen�s work is that is posits a �xed background metric.

This structure can store energy and momentum, so that dipole emissions of gravity waves
are possible. Yet the rate of gravity wave energy emission is consistent with a quadrapole
being the lowest mode of emission. A common problem for theories that add another
component to general relativity is the dipole mode of emission becomes possible. The GEM
proposal is actually simpler than general relativity in the following way. The Riemann
curvature tensor contains the di¤erence of two derivatives of connections. This is where the
second order derivatives of the metric reside. The GEM equation only contains one second
order derivative of a metric, and is thus simpler than general relativity.

5 Phase Symmetries of Current Coupling

Like charges attract for gravity, while they repel for EM. This requires the particles have
spin 2 and spin 1 respectively. The symmetry of the mediating particles can be seen in
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two places. First there are the two �eld strength tensors, the symmetric rank 2 tensor
(r�A� + r�A�)/2 for gravity and the antisymmetric rank 2 tensor (r�A� � r�A�)/2 for
EM. These make respective homes for the graviton and the photon.
The second place to see the mediating particle symmetry is in the current coupling term.

One usually takes the Fourier transform of the potential, and looks at the current-current
interaction. Here the phases of the two tell use what kind of particle can participate in
the interaction. If the phase takes 2� to get back to the start, then the system has spin 1
symmetry. If it only takes � radians, the phase has spin 2 symmetry.
The scalar has already been written down as part of the Lagrangian as a Lorentz invariant

contraction of two four vectors. There are two ways to reproduce the contractions using the
Hamilton and Even representations of quaternions:

�JJ 0 � J2�J20 = (���0 + J1J 01 + J2J 02 + J3J 03;��J 01 � J1�0 + J2J 03 � J3J 02; :::) + (35)

(���0 + J1J 01 + J2J 02 + J3J 03;+�J 01 � J1�0 � J2J 03 � J3J 02; :::)+

If the two currents happen to be pointing in nearly the same direction, there are contri-
butions to both a spin 1 and spin 2 symmetry for all the terms that are part of the phase.
Those pairs that have the same sign are part of spin 2 symmetry because they e¤ectively
work together to get around twice as fast. When the two have opposite signs, it will re-
quire the normal 2�, so it is spin 1 symmetry. The phase of the current-current interaction
requires a uni�ed �eld theory.
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